Exact solution and high frequency asymptotic methods in the wedge diffraction problem

Abstract The Sommerfeld exact solution for canonical 2D wedge diffraction problem with perfectly conducting surfaces is presented. From the integral formulation of the problem, the Malyuzhinets solution is obtained and this result is extended to obtain the general impedance solution of canonical 2D...

Full description

Autores:
Triana, Hernan G.
Cadavid, Andrés Navarro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
eng
OAI Identifier:
oai:repository.icesi.edu.co:10906/81513
Acceso en línea:
http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/2285
http://hdl.handle.net/10906/81513
http://dx.doi.org/10.18046/syt.v14i38.2285
Palabra clave:
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ICESI2_8254a1d4e9ff169f12016d86b905ae2c
oai_identifier_str oai:repository.icesi.edu.co:10906/81513
network_acronym_str ICESI2
network_name_str Repositorio ICESI
repository_id_str
spelling Triana, Hernan G.Cadavid, Andrés Navarro2017-05-27T02:24:16Z2017-05-27T02:24:16Z2016-07-011692-5238http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/2285http://hdl.handle.net/10906/81513http://dx.doi.org/10.18046/syt.v14i38.2285instname: Universidad Icesireponame: Biblioteca Digitalrepourl: https://repository.icesi.edu.co/Abstract The Sommerfeld exact solution for canonical 2D wedge diffraction problem with perfectly conducting surfaces is presented. From the integral formulation of the problem, the Malyuzhinets solution is obtained and this result is extended to obtain the general impedance solution of canonical 2D wedge problem. Keller’s asymptotic solution is developed and the general formulation of exact solution it’s used to obtain general asymptotic methods for approximate solutions useful from the computational point of view. A simulation tool is used to compare numerical calculations of exact and asymptotic solutions. The numerical simulation of exact solution is compared to numerical simulation of an asymptoticmethod, and a satisfactory agreement found.  Accuracy dependence with frequency is verified.engEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Exact solution and high frequency asymptotic methods in the wedge diffraction probleminfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1Artículoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8514ORIGINALDocumento.htmlDocumento.htmltext/html291http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/81513/1/Documento.html365f3c126d2e393f454fa36207e43efcMD5110906/81513oai:repository.icesi.edu.co:10906/815132020-05-20 22:45:40.594Biblioteca Digital - Universidad icesicdcriollo@icesi.edu.co
dc.title.spa.fl_str_mv Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title Exact solution and high frequency asymptotic methods in the wedge diffraction problem
spellingShingle Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title_short Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title_full Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title_fullStr Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title_full_unstemmed Exact solution and high frequency asymptotic methods in the wedge diffraction problem
title_sort Exact solution and high frequency asymptotic methods in the wedge diffraction problem
dc.creator.fl_str_mv Triana, Hernan G.
Cadavid, Andrés Navarro
dc.contributor.author.spa.fl_str_mv Triana, Hernan G.
Cadavid, Andrés Navarro
description Abstract The Sommerfeld exact solution for canonical 2D wedge diffraction problem with perfectly conducting surfaces is presented. From the integral formulation of the problem, the Malyuzhinets solution is obtained and this result is extended to obtain the general impedance solution of canonical 2D wedge problem. Keller’s asymptotic solution is developed and the general formulation of exact solution it’s used to obtain general asymptotic methods for approximate solutions useful from the computational point of view. A simulation tool is used to compare numerical calculations of exact and asymptotic solutions. The numerical simulation of exact solution is compared to numerical simulation of an asymptoticmethod, and a satisfactory agreement found.  Accuracy dependence with frequency is verified.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-07-01
dc.date.accessioned.none.fl_str_mv 2017-05-27T02:24:16Z
dc.date.available.none.fl_str_mv 2017-05-27T02:24:16Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.none.fl_str_mv Artículo
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1692-5238
dc.identifier.other.spa.fl_str_mv http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/2285
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10906/81513
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.18046/syt.v14i38.2285
dc.identifier.instname.none.fl_str_mv instname: Universidad Icesi
dc.identifier.reponame.none.fl_str_mv reponame: Biblioteca Digital
dc.identifier.repourl.none.fl_str_mv repourl: https://repository.icesi.edu.co/
identifier_str_mv 1692-5238
instname: Universidad Icesi
reponame: Biblioteca Digital
repourl: https://repository.icesi.edu.co/
url http://www.icesi.edu.co/revistas/index.php/sistemas_telematica/article/view/2285
http://hdl.handle.net/10906/81513
http://dx.doi.org/10.18046/syt.v14i38.2285
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
institution Universidad ICESI
bitstream.url.fl_str_mv http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/81513/1/Documento.html
bitstream.checksum.fl_str_mv 365f3c126d2e393f454fa36207e43efc
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital - Universidad icesi
repository.mail.fl_str_mv cdcriollo@icesi.edu.co
_version_ 1814094873739919360