Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming
The information management has been treated primarily under the Nyquist sampling theory, but it is important to introduce new theories that replace deficiencies of what we know as the classical theory of sampling. These deficiencies create difficulties in data acquisition; this is a problem when lar...
- Autores:
-
Navarro Cadavid, Andrés
Ramos, Mario
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_c94f
- Fecha de publicación:
- 2016
- Institución:
- Universidad ICESI
- Repositorio:
- Repositorio ICESI
- Idioma:
- eng
- OAI Identifier:
- oai:repository.icesi.edu.co:10906/81948
- Palabra clave:
- Simulación
Automatización y sistemas de control
Ingeniería de sistemas y comunicaciones
Telecomunicaciones
Telecommunication
Muestreo
Gestión de la información
Sistemas de comunicaciones
Systems engineering
Automation Command and control system
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
ICESI2_7152232965e6abc490fdbfc87f4d04f2 |
---|---|
oai_identifier_str |
oai:repository.icesi.edu.co:10906/81948 |
network_acronym_str |
ICESI2 |
network_name_str |
Repositorio ICESI |
repository_id_str |
|
dc.title.none.fl_str_mv |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
title |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
spellingShingle |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming Simulación Automatización y sistemas de control Ingeniería de sistemas y comunicaciones Telecomunicaciones Telecommunication Muestreo Gestión de la información Sistemas de comunicaciones Systems engineering Automation Command and control system |
title_short |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
title_full |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
title_fullStr |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
title_full_unstemmed |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
title_sort |
Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming |
dc.creator.fl_str_mv |
Navarro Cadavid, Andrés Ramos, Mario |
dc.contributor.advisor.spa.fl_str_mv |
21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016 |
dc.contributor.author.spa.fl_str_mv |
Navarro Cadavid, Andrés Ramos, Mario |
dc.subject.spa.fl_str_mv |
Simulación Automatización y sistemas de control Ingeniería de sistemas y comunicaciones Telecomunicaciones Telecommunication Muestreo Gestión de la información Sistemas de comunicaciones |
topic |
Simulación Automatización y sistemas de control Ingeniería de sistemas y comunicaciones Telecomunicaciones Telecommunication Muestreo Gestión de la información Sistemas de comunicaciones Systems engineering Automation Command and control system |
dc.subject.eng.fl_str_mv |
Systems engineering Automation Command and control system |
description |
The information management has been treated primarily under the Nyquist sampling theory, but it is important to introduce new theories that replace deficiencies of what we know as the classical theory of sampling. These deficiencies create difficulties in data acquisition; this is a problem when large volumes of information are handled, in addition to the higher costs in storage and processing. This article presents the results obtained from the compressed sensing simulation technique applied to two types of signals. The aim of this paper was to simulate a communication system involving the data recovery applying the compressed sensing technique, analyzing sampling rates reduction, measuring the efficiency of the process and the behavior of the technique. The recovery of the signal is made using convex programming and using l1 norm minimization for recover the signals in the time domain. We used the L1Magic toolbox, which is a set of Matlab® functions used to solve optimization problems in this case with the l1eqpd function. As a summary of the obtained results, we checked the efficiency of the compressed sensing technique, minimum average rates for sampling the constructed signals, and the best performance of the technique to recover soft signals compared to non-differentiable signals. Additionally, the recovery results of an audio signal with the compressed sensing technique, by varying the sampling rate and checking the audibility of the signal, are presented. This allowed the testing of this technique in a real scenario, finding a good opportunity for the transmission of audio signals in a more efficient way. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016-12-14 |
dc.date.accessioned.none.fl_str_mv |
2017-08-17T21:49:13Z |
dc.date.available.none.fl_str_mv |
2017-08-17T21:49:13Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.local.spa.fl_str_mv |
Documento de conferencia |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_c94f |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9781509037971 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10906/81948 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1109/STSIVA.2016.7743312 |
dc.identifier.instname.none.fl_str_mv |
instname: Universidad Icesi |
dc.identifier.reponame.none.fl_str_mv |
reponame: Biblioteca Digital |
dc.identifier.repourl.none.fl_str_mv |
repourl: https://repository.icesi.edu.co/ |
identifier_str_mv |
9781509037971 instname: Universidad Icesi reponame: Biblioteca Digital repourl: https://repository.icesi.edu.co/ |
url |
http://hdl.handle.net/10906/81948 http://dx.doi.org/10.1109/STSIVA.2016.7743312 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 201 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.license.none.fl_str_mv |
Atribuci�n-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribuci�n-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
[Sin páginación] |
dc.format.medium.spa.fl_str_mv |
Digital |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Canada (inhabited place) Coordinates: Lat: 38 21 00 N degrees minutes Lat: 38.3500 decimal degrees Long: 097 06 00 W degrees minutes Long: -97.1000 decimal degrees |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Telemática |
dc.publisher.department.spa.fl_str_mv |
Departamento Tecnologías de Información y Comunicaciones |
dc.publisher.place.spa.fl_str_mv |
Canada |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
institution |
Universidad ICESI |
bitstream.url.fl_str_mv |
http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/81948/1/documento.html |
bitstream.checksum.fl_str_mv |
6dd99cd52f99ff0d39901929beed461f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital - Universidad icesi |
repository.mail.fl_str_mv |
cdcriollo@icesi.edu.co |
_version_ |
1814094876607774720 |
spelling |
21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016Navarro Cadavid, AndrésRamos, MarioCanada (inhabited place) Coordinates: Lat: 38 21 00 N degrees minutes Lat: 38.3500 decimal degrees Long: 097 06 00 W degrees minutes Long: -97.1000 decimal degrees2017-08-17T21:49:13Z2017-08-17T21:49:13Z2016-12-149781509037971http://hdl.handle.net/10906/81948http://dx.doi.org/10.1109/STSIVA.2016.7743312instname: Universidad Icesireponame: Biblioteca Digitalrepourl: https://repository.icesi.edu.co/The information management has been treated primarily under the Nyquist sampling theory, but it is important to introduce new theories that replace deficiencies of what we know as the classical theory of sampling. These deficiencies create difficulties in data acquisition; this is a problem when large volumes of information are handled, in addition to the higher costs in storage and processing. This article presents the results obtained from the compressed sensing simulation technique applied to two types of signals. The aim of this paper was to simulate a communication system involving the data recovery applying the compressed sensing technique, analyzing sampling rates reduction, measuring the efficiency of the process and the behavior of the technique. The recovery of the signal is made using convex programming and using l1 norm minimization for recover the signals in the time domain. We used the L1Magic toolbox, which is a set of Matlab® functions used to solve optimization problems in this case with the l1eqpd function. As a summary of the obtained results, we checked the efficiency of the compressed sensing technique, minimum average rates for sampling the constructed signals, and the best performance of the technique to recover soft signals compared to non-differentiable signals. Additionally, the recovery results of an audio signal with the compressed sensing technique, by varying the sampling rate and checking the audibility of the signal, are presented. This allowed the testing of this technique in a real scenario, finding a good opportunity for the transmission of audio signals in a more efficient way.Universidad Pontificia Bolivariana (UPB)[Sin páginación]Digitalapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.Facultad de IngenieríaIngeniería TelemáticaDepartamento Tecnologías de Información y ComunicacionesCanada21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 201EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribuci�n-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2SimulaciónAutomatización y sistemas de controlIngeniería de sistemas y comunicacionesTelecomunicacionesTelecommunicationMuestreoGestión de la informaciónSistemas de comunicacionesSystems engineeringAutomation Command and control systemSimulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programminginfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/resource_type/c_c94fDocumento de conferenciainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad Icesi – Investigadoresanavarro@icesi.edu.coORIGINALdocumento.htmldocumento.htmltext/html294http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/81948/1/documento.html6dd99cd52f99ff0d39901929beed461fMD5110906/81948oai:repository.icesi.edu.co:10906/819482018-10-17 18:20:20.457Biblioteca Digital - Universidad icesicdcriollo@icesi.edu.co |