Asymptotic analysis of singular solutions of the scalar and mean curvature equations - Semantic Scholar

We show that positive solutions of a semilinear elliptic problem in the Sobolev critical exponent with Newmann conditions, related to conformal deformation of metrics in R n + , are asymptotically symmetric in a neighborhood of the origin. As a consequence, we prove for a related problem of conforma...

Full description

Autores:
Yaker Agudelo, Hendel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
eng
OAI Identifier:
oai:repository.icesi.edu.co:10906/79597
Acceso en línea:
https://www.semanticscholar.org/paper/Asymptotic-analysis-of-singular-solutions-of-the-García-Yaker/bd901ab93340c8f5c83b8e6a020b665ad58147b3
http://www.hindawi.com/journals/ijmms/2005/641294/abs/
https://www.hindawi.com/journals/ijmms/2005/641294/abs/
http://hdl.handle.net/10906/79597
Palabra clave:
Ingeniería de producción
Production engineering
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:We show that positive solutions of a semilinear elliptic problem in the Sobolev critical exponent with Newmann conditions, related to conformal deformation of metrics in R n + , are asymptotically symmetric in a neighborhood of the origin. As a consequence, we prove for a related problem of conformal deformation of metrics in R n + that if a solution satisfies a Kazdan-Warner-type identity, then the conformal metric can be realized as a smooth metric on S n + .