Asymptotic analysis of singular solutions of the scalar and mean curvature equations - Semantic Scholar
We show that positive solutions of a semilinear elliptic problem in the Sobolev critical exponent with Newmann conditions, related to conformal deformation of metrics in R n + , are asymptotically symmetric in a neighborhood of the origin. As a consequence, we prove for a related problem of conforma...
- Autores:
-
Yaker Agudelo, Hendel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2005
- Institución:
- Universidad ICESI
- Repositorio:
- Repositorio ICESI
- Idioma:
- eng
- OAI Identifier:
- oai:repository.icesi.edu.co:10906/79597
- Acceso en línea:
- https://www.semanticscholar.org/paper/Asymptotic-analysis-of-singular-solutions-of-the-García-Yaker/bd901ab93340c8f5c83b8e6a020b665ad58147b3
http://www.hindawi.com/journals/ijmms/2005/641294/abs/
https://www.hindawi.com/journals/ijmms/2005/641294/abs/
http://hdl.handle.net/10906/79597
- Palabra clave:
- Ingeniería de producción
Production engineering
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
Summary: | We show that positive solutions of a semilinear elliptic problem in the Sobolev critical exponent with Newmann conditions, related to conformal deformation of metrics in R n + , are asymptotically symmetric in a neighborhood of the origin. As a consequence, we prove for a related problem of conformal deformation of metrics in R n + that if a solution satisfies a Kazdan-Warner-type identity, then the conformal metric can be realized as a smooth metric on S n + . |
---|