Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético

Autores:
Tipo de recurso:
article
Fecha de publicación:
2014
Institución:
Corporación Universitaria Iberoamericana
Repositorio:
Repositorio Ibero
Idioma:
spa
OAI Identifier:
oai:repositorio.ibero.edu.co:001/4350
Acceso en línea:
https://repositorio.ibero.edu.co/handle/001/4350
https://doi.org/10.33881/2011-7191.%x
Palabra clave:
Musculoesquelético
Proteínas contráctiles
Síntesis de proteínas contráctiles
Carga anaeróbica
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id IBERO_50c0a43c7c7659c9f00acfca8832e75f
oai_identifier_str oai:repositorio.ibero.edu.co:001/4350
network_acronym_str IBERO
network_name_str Repositorio Ibero
repository_id_str
dc.title.none.fl_str_mv Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
title Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
spellingShingle Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
Sánchez Niño, Adriana Isabel
Musculoesquelético
Proteínas contráctiles
Síntesis de proteínas contráctiles
Carga anaeróbica
title_short Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
title_full Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
title_fullStr Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
title_full_unstemmed Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
title_sort Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético
dc.creator.none.fl_str_mv Sánchez Niño, Adriana Isabel
author Sánchez Niño, Adriana Isabel
author_facet Sánchez Niño, Adriana Isabel
author_role author
dc.subject.none.fl_str_mv Musculoesquelético
Proteínas contráctiles
Síntesis de proteínas contráctiles
Carga anaeróbica
topic Musculoesquelético
Proteínas contráctiles
Síntesis de proteínas contráctiles
Carga anaeróbica
publishDate 2014
dc.date.none.fl_str_mv 2014-07-11 15:32:29
2014-07-11 15:32:29
2014-07-11
2022-06-14T21:51:26Z
2022-06-14T21:51:26Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
Text
info:eu-repo/semantics/article
Artículos
Articles
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 10.33881/2011-7191.%x
2463-2236
2011-7191
https://repositorio.ibero.edu.co/handle/001/4350
https://doi.org/10.33881/2011-7191.%x
identifier_str_mv 10.33881/2011-7191.%x
2463-2236
2011-7191
url https://repositorio.ibero.edu.co/handle/001/4350
https://doi.org/10.33881/2011-7191.%x
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revmovimientocientifico.ibero.edu.co/article/download/163/135
Núm. 1 , Año 2012 : Revista Movimiento Científico
113
1
102
6
Movimiento Científico
Solomon, A. (2006). Modifying muscle mass the endocrine perspective. Rev. Journal of Endocrinology, 2 (191), 349–360. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17088404.
Ackerman, M. (1994). Ion channels and clinical disease. Rev. New England Journal of Medicine, (336), 1 -22. Recuperado el 16 de agosto del 2012. Disponible en: http://www.uwyo.edu/ neuron/ionchanneldisease.pdf
Albert, L. (1994) Biología molecular de la célula. 3ª ed. España: Omega.
Alvis, K., & Estrada, Y. (2003). Relación teórica entre actividad física y sinetesis de distrofina. Trabajo para optar al Titulo de Grado de Fisioterapeuta, 1 -120. Universidad Nacional de Colombia.
Aronson, D. (1998). Exercise stimulates c – Jun NH2 kinase activity and c – Jun transcriptional activity in human skeletal muscle. Biochemistry biophysics Res Commun. Rev. Science Direct. 1(251), 106 – 110. Recuperado el 16 de agosto del 2012. Disponible en: http://www.sciencedirect.com/science/ article/pii/S0006291X98994359.
Astrand. (1997). Fisiología del esfuerzo y del deporte. España: Harcourt Brace.
Baar, K. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Rev. FASEB Journal. 16(14),1879. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 12468452
Biolo, G. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Rev. American Physiological Society, 3 (268), 514- 520. Recuperado el 19 de agosto del 2012. Disponible en http:// ajpendo.physiology.org/content/268/3/E514.short
Biolo, G. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Rev. American Journal of Physiology-Endocrinology And Metabolism. 1 (273), E122-129. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9252488
Berg, M (2008). Bioquímica. Barcelona, España: Reverte.
Bohé, J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. Rev. Journal Physiology. (552), 315. Recuperado el 25 de septiembre de 2012. Disponible en: http://jp.physoc.org/content/552/1/315.abstract
Brower, R. (2009). Consequences of bed rest. Rev. Critical Care Medicine. (37), S422–S428. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/20046130
Castro, A. (2001). Efectos del Óxido Nítrico en la fisiología muscular. Rev. Efdeportes. Recuperado el 16 de agosto de 2011. Disponible en: http://www.efdeportes.com/efd39/ on.htm
Carraro, F. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. Rev. American Journal Physiology. (259), E470 - E476. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/2221048
Connor, MK. (2000). Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Rev. Journal Applied Physiology. ( 88), 1601–1606. Recuperado el 25 de septiembre de 2012. Disponible en: http://jap. physiology.org/content/88/5/1601
Costill, D. (1979). Adaptations In skeletal muscle following strength training. J Appl Physiol, 1(46), 96-99. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/37209
Dietze, G. (1982). New aspects of the blood flow augmenting and insulin-like activity of muscle exercise: possible involvement of the kallikreinkinin-prostaglandin system. Klin Wochenschr, (9), 429 – 444. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/6806524
Donato, D. (2012). Aerobic Exercise Intensity Affects Skeletal Muscle Myofibrillar Protein Synthesis and Anabolic Signaling in Young Men. Tesis para optar el título de Magister en Ciencias y Kinesiología. Universidad de Hamilton Ontario.
Farrell, P.A. (1999). Hypertrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. Rev. Journal of Applied Physiology, ( 87), 1083 – 1086. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/10484579
Flaim, K.E. (1980). Effects of diabetes on protein synthesis in fast and slow twich rat skeletal muscle. Rev. American Journal of Physiology endocrinology. (239), 88 – 95. Recuperado el 26 de septiembre de 2012. http://www.ncbi.nlm.nih.gov/pubmed/ 6156604
Giorgos, K. (2003). Changes in muscle morphology in diálisis patients after 6 months of aerobic execise training. Nephrol. Dial. Transplant, 9 (18), 1845-1861. Recuperado el 21 de marzo de 2011. Disponible en: http://www.kidney.org/ professionals/kdoqi/guidelines_cvd/pdf/cvd_%20in_dialysis_ composite%20gl.pdf
Gibson, JN. (1989). Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. Rev. European Journal Clinical Investigation. (2), 206- 212. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/2499480
Glover, EI. (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Rev. Journal Physiology, (586), 6049–6061. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18955382
Guyton, A. (2011). Tratado de Fisiología Médica. España: Elsevier Health Sciences.
Hakkinen, K. (1981). Effect of combined concentric and eccentric strength training and detraining on forcetime, muscle fiber and metabolic characteristics of leg extensor muscles. Rev. Seand Journal of Sports Sciences. (3), 50 – 58. Recuperado el 12 de agosto de 2012. Disponible en: http://www.cafyd.com/REVISTA/01001.pdf
Hood, D. (2001). Biogénesis mitocondrial en músculo esquelético inducida por actividad contráctil. Rev. Journal of Applied Physiology. (90), 1137 – 1157. Recuperado el 12 de marzo de 2011. Disponible en: http://www.efdeportes.com/ efd112/biogenesismitocondrial-en-musculo-esqueletico.htm
Hoffman, E. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Rev. Cell. (51), 919-928. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3319190
Hough, CL. (2006). Neuromuscular sequelae in survivors of acute lung injury. Rev. Clin Chest Med. (27), 691–703. Recuperado el 24 de septiembre de 2012 Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17085256
Kendrick, J. (1967). Protein synthesis and enzyme response to contractile activity in skeletal muscle. Rev. Nature. (5074), 406 – 408. Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/6029535
Koolman, J. (2005). Bioquímica. Madrid, España: Médica Panamericana.
Li, J, Wang, X, Fraser, S. (2002). Effects of fatigue and training on sarcoplasmic reticulum Ca2+ regulation in human skeletal muscle. Rev. Journal of Applied Physiology. (92), 912 – 922. Recuperado el 26 de septiembre de 2012.
Koolman, J. (2005). Bioquímica. Disponible en: http://www. ncbi.nlm.nih.gov/pubmed/11842021
Luque, M. (2012). Estructura y Propiedades de las Proteínas. Recuperado el 24 de septiembre de 2012. Disponible en: http: //www.uv.es/tunon/pdf_doc/proteinas_09.pdf
Insua, M. Síntesis protéica y Glutamina. Rev. Medicina. (69), 18 – 21. Recuperado el 21 de marzo de 2011. Disponible en: http://www.saic.org.ar/revista/2009_2/saic09.pdf
MacDougall J.D. (1979). Mitochondrial volume density in human skeletal muscle following heavy resistance training. Rev. Afed Sci Sports. (11), 164-166. Recuperado el 12 de agosto de 2012. Disponible en: http://ukpmc.ac.uk/abstract/MED/ 158694/reload=0;jsessionid=eBqp6BEiQMv3gBS3Vt5d.12
Petersen, AM. (2005). The anti-inflammatory effect of exercise. Rev. Journal Applied of Physiology. (98), 1154–1162. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15772055
Platonov, V. (2002). Teoría General del Entrenamiento Deportivo Olímpico. Barcelona: Paidotribo.
Rassier, DE. (2009). Molecular basis of force development by skeletal muscles during and after stretch. Rev. Molecular and cellular biomechanics. (4), 229 – 241. Recuperado el 23 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/19899446
Sale, D. (1982). Neuromuscular adaptation in human thenar muscles following strength training and immobilization. Rev. Journal of Applied Physiology. (53), 419 – 424. Recuperado el 12 de marzo de 2011. Disponible en: http://jap.physiology.org/ content/53/2/419.short
Sergeyevich, V. (1998). Fisiología del Deportista. Barcelona: Paidotribo.
Siff, M. (2000). Superentrenamiento. Barcelona: Paidotribo.
Stevens, RD. (2007). Neuromuscular dysfunction acquired in critical illness: A systematic review. Rev. Intensive Care Med. (33); 1876–1891. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17639340
Suzuki, A. (1994). Molecular organization at the glycoprotein – complex – binding site for dystrophin - three dystrophin asssociated proteins bind directly to the carboxyl – terminal portion of dystrophin. Eur J Biochem. 2(220), 283-92. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/8125086
Tanner, BC. (2012). Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. Rev. PLoS Computational Biology. (5). Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22589710
Tarnopolsky, M. (1999). Protein metabolism in strength and endurance activities. Rev. Journal of Physiology. (586), 3701 – 3717. Recuperado el 19 de agosto del 2012. Disponible en: http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2008.153916/full
Teijón, J y Cols. (2006). Fundamentos de Bioquímica Estructural. Marid, España: Tebar.
Tesch, A. (2008). Adaptaciones Enzimáticas generadas por el entrenamiento de fuerza a largo plazo. Suecia. Rev. Grupo Sobreentrenamiento.com. Recuperado el 16 de agosto de 2012. Disponible en: http://www.docstoc.com/docs/3255366/ Adaptaciones-Enzimaticas-Generadas-por-el-Entrenamiento-de-Fuerza
Thomas, R. (2007). Principios del entrenamiento de Fuerza y del acondicionamiento físico. Marid, España: Médica Panamericana.
Williams, J. (1998) Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue. Rev. Journal of Applied Physiology. (85), 619 – 626. Recuperado el 12 de marzo de 2011. Disponible en: http://jap. physiology.org/content/85/2/619.short
Wilmore, J. y Costill, D. (2004). Fisiología del Esfuerzo y el deporte. Barcelona: Paidotribo.
Winkelman, C. (2009). Bed Rest in Health and Critical Illness A Body Systems Approach. Rev. AACN Advanced Critical Care. (20); 254–266. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19638747
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Corporación Universitaria Iberoamericana
publisher.none.fl_str_mv Corporación Universitaria Iberoamericana
dc.source.none.fl_str_mv https://revmovimientocientifico.ibero.edu.co/article/view/163
reponame:Repositorio Ibero
instname:Corporación Universitaria Iberoamericana
instacron:Corporación Universitaria Iberoamericana
instname_str Corporación Universitaria Iberoamericana
instacron_str Corporación Universitaria Iberoamericana
institution Corporación Universitaria Iberoamericana
reponame_str Repositorio Ibero
collection Repositorio Ibero
_version_ 1781207080822112256
spelling Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esqueléticoSánchez Niño, Adriana IsabelMusculoesqueléticoProteínas contráctilesSíntesis de proteínas contráctilesCarga anaeróbicaCorporación Universitaria Iberoamericana2014-07-11 15:32:292022-06-14T21:51:26Z2014-07-11 15:32:292022-06-14T21:51:26Z2014-07-11Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleArtículosArticleshttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionapplication/pdf10.33881/2011-7191.%x2463-22362011-7191https://repositorio.ibero.edu.co/handle/001/4350https://doi.org/10.33881/2011-7191.%xhttps://revmovimientocientifico.ibero.edu.co/article/view/163reponame:Repositorio Iberoinstname:Corporación Universitaria Iberoamericanainstacron:Corporación Universitaria Iberoamericanaspahttps://revmovimientocientifico.ibero.edu.co/article/download/163/135Núm. 1 , Año 2012 : Revista Movimiento Científico11311026Movimiento CientíficoSolomon, A. (2006). Modifying muscle mass the endocrine perspective. Rev. Journal of Endocrinology, 2 (191), 349–360. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17088404.Ackerman, M. (1994). Ion channels and clinical disease. Rev. New England Journal of Medicine, (336), 1 -22. Recuperado el 16 de agosto del 2012. Disponible en: http://www.uwyo.edu/ neuron/ionchanneldisease.pdfAlbert, L. (1994) Biología molecular de la célula. 3ª ed. España: Omega.Alvis, K., & Estrada, Y. (2003). Relación teórica entre actividad física y sinetesis de distrofina. Trabajo para optar al Titulo de Grado de Fisioterapeuta, 1 -120. Universidad Nacional de Colombia.Aronson, D. (1998). Exercise stimulates c – Jun NH2 kinase activity and c – Jun transcriptional activity in human skeletal muscle. Biochemistry biophysics Res Commun. Rev. Science Direct. 1(251), 106 – 110. Recuperado el 16 de agosto del 2012. Disponible en: http://www.sciencedirect.com/science/ article/pii/S0006291X98994359.Astrand. (1997). Fisiología del esfuerzo y del deporte. España: Harcourt Brace.Baar, K. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Rev. FASEB Journal. 16(14),1879. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 12468452Biolo, G. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Rev. American Physiological Society, 3 (268), 514- 520. Recuperado el 19 de agosto del 2012. Disponible en http:// ajpendo.physiology.org/content/268/3/E514.shortBiolo, G. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Rev. American Journal of Physiology-Endocrinology And Metabolism. 1 (273), E122-129. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9252488Berg, M (2008). Bioquímica. Barcelona, España: Reverte.Bohé, J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. Rev. Journal Physiology. (552), 315. Recuperado el 25 de septiembre de 2012. Disponible en: http://jp.physoc.org/content/552/1/315.abstractBrower, R. (2009). Consequences of bed rest. Rev. Critical Care Medicine. (37), S422–S428. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/20046130Castro, A. (2001). Efectos del Óxido Nítrico en la fisiología muscular. Rev. Efdeportes. Recuperado el 16 de agosto de 2011. Disponible en: http://www.efdeportes.com/efd39/ on.htmCarraro, F. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. Rev. American Journal Physiology. (259), E470 - E476. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/2221048Connor, MK. (2000). Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Rev. Journal Applied Physiology. ( 88), 1601–1606. Recuperado el 25 de septiembre de 2012. Disponible en: http://jap. physiology.org/content/88/5/1601Costill, D. (1979). Adaptations In skeletal muscle following strength training. J Appl Physiol, 1(46), 96-99. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/37209Dietze, G. (1982). New aspects of the blood flow augmenting and insulin-like activity of muscle exercise: possible involvement of the kallikreinkinin-prostaglandin system. Klin Wochenschr, (9), 429 – 444. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/6806524Donato, D. (2012). Aerobic Exercise Intensity Affects Skeletal Muscle Myofibrillar Protein Synthesis and Anabolic Signaling in Young Men. Tesis para optar el título de Magister en Ciencias y Kinesiología. Universidad de Hamilton Ontario.Farrell, P.A. (1999). Hypertrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. Rev. Journal of Applied Physiology, ( 87), 1083 – 1086. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/10484579Flaim, K.E. (1980). Effects of diabetes on protein synthesis in fast and slow twich rat skeletal muscle. Rev. American Journal of Physiology endocrinology. (239), 88 – 95. Recuperado el 26 de septiembre de 2012. http://www.ncbi.nlm.nih.gov/pubmed/ 6156604Giorgos, K. (2003). Changes in muscle morphology in diálisis patients after 6 months of aerobic execise training. Nephrol. Dial. Transplant, 9 (18), 1845-1861. Recuperado el 21 de marzo de 2011. Disponible en: http://www.kidney.org/ professionals/kdoqi/guidelines_cvd/pdf/cvd_%20in_dialysis_ composite%20gl.pdfGibson, JN. (1989). Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. Rev. European Journal Clinical Investigation. (2), 206- 212. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/2499480Glover, EI. (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Rev. Journal Physiology, (586), 6049–6061. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18955382Guyton, A. (2011). Tratado de Fisiología Médica. España: Elsevier Health Sciences.Hakkinen, K. (1981). Effect of combined concentric and eccentric strength training and detraining on forcetime, muscle fiber and metabolic characteristics of leg extensor muscles. Rev. Seand Journal of Sports Sciences. (3), 50 – 58. Recuperado el 12 de agosto de 2012. Disponible en: http://www.cafyd.com/REVISTA/01001.pdfHood, D. (2001). Biogénesis mitocondrial en músculo esquelético inducida por actividad contráctil. Rev. Journal of Applied Physiology. (90), 1137 – 1157. Recuperado el 12 de marzo de 2011. Disponible en: http://www.efdeportes.com/ efd112/biogenesismitocondrial-en-musculo-esqueletico.htmHoffman, E. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Rev. Cell. (51), 919-928. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3319190Hough, CL. (2006). Neuromuscular sequelae in survivors of acute lung injury. Rev. Clin Chest Med. (27), 691–703. Recuperado el 24 de septiembre de 2012 Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17085256Kendrick, J. (1967). Protein synthesis and enzyme response to contractile activity in skeletal muscle. Rev. Nature. (5074), 406 – 408. Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/6029535Koolman, J. (2005). Bioquímica. Madrid, España: Médica Panamericana.Li, J, Wang, X, Fraser, S. (2002). Effects of fatigue and training on sarcoplasmic reticulum Ca2+ regulation in human skeletal muscle. Rev. Journal of Applied Physiology. (92), 912 – 922. Recuperado el 26 de septiembre de 2012.Koolman, J. (2005). Bioquímica. Disponible en: http://www. ncbi.nlm.nih.gov/pubmed/11842021Luque, M. (2012). Estructura y Propiedades de las Proteínas. Recuperado el 24 de septiembre de 2012. Disponible en: http: //www.uv.es/tunon/pdf_doc/proteinas_09.pdfInsua, M. Síntesis protéica y Glutamina. Rev. Medicina. (69), 18 – 21. Recuperado el 21 de marzo de 2011. Disponible en: http://www.saic.org.ar/revista/2009_2/saic09.pdfMacDougall J.D. (1979). Mitochondrial volume density in human skeletal muscle following heavy resistance training. Rev. Afed Sci Sports. (11), 164-166. Recuperado el 12 de agosto de 2012. Disponible en: http://ukpmc.ac.uk/abstract/MED/ 158694/reload=0;jsessionid=eBqp6BEiQMv3gBS3Vt5d.12Petersen, AM. (2005). The anti-inflammatory effect of exercise. Rev. Journal Applied of Physiology. (98), 1154–1162. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15772055Platonov, V. (2002). Teoría General del Entrenamiento Deportivo Olímpico. Barcelona: Paidotribo.Rassier, DE. (2009). Molecular basis of force development by skeletal muscles during and after stretch. Rev. Molecular and cellular biomechanics. (4), 229 – 241. Recuperado el 23 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/19899446Sale, D. (1982). Neuromuscular adaptation in human thenar muscles following strength training and immobilization. Rev. Journal of Applied Physiology. (53), 419 – 424. Recuperado el 12 de marzo de 2011. Disponible en: http://jap.physiology.org/ content/53/2/419.shortSergeyevich, V. (1998). Fisiología del Deportista. Barcelona: Paidotribo.Siff, M. (2000). Superentrenamiento. Barcelona: Paidotribo.Stevens, RD. (2007). Neuromuscular dysfunction acquired in critical illness: A systematic review. Rev. Intensive Care Med. (33); 1876–1891. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17639340Suzuki, A. (1994). Molecular organization at the glycoprotein – complex – binding site for dystrophin - three dystrophin asssociated proteins bind directly to the carboxyl – terminal portion of dystrophin. Eur J Biochem. 2(220), 283-92. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/8125086Tanner, BC. (2012). Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. Rev. PLoS Computational Biology. (5). Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22589710Tarnopolsky, M. (1999). Protein metabolism in strength and endurance activities. Rev. Journal of Physiology. (586), 3701 – 3717. Recuperado el 19 de agosto del 2012. Disponible en: http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2008.153916/fullTeijón, J y Cols. (2006). Fundamentos de Bioquímica Estructural. Marid, España: Tebar.Tesch, A. (2008). Adaptaciones Enzimáticas generadas por el entrenamiento de fuerza a largo plazo. Suecia. Rev. Grupo Sobreentrenamiento.com. Recuperado el 16 de agosto de 2012. Disponible en: http://www.docstoc.com/docs/3255366/ Adaptaciones-Enzimaticas-Generadas-por-el-Entrenamiento-de-FuerzaThomas, R. (2007). Principios del entrenamiento de Fuerza y del acondicionamiento físico. Marid, España: Médica Panamericana.Williams, J. (1998) Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue. Rev. Journal of Applied Physiology. (85), 619 – 626. Recuperado el 12 de marzo de 2011. Disponible en: http://jap. physiology.org/content/85/2/619.shortWilmore, J. y Costill, D. (2004). Fisiología del Esfuerzo y el deporte. Barcelona: Paidotribo.Winkelman, C. (2009). Bed Rest in Health and Critical Illness A Body Systems Approach. Rev. AACN Advanced Critical Care. (20); 254–266. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19638747info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/2023-06-02T10:00:51Z