Tecnología de asistencia: exoesqueletos robóticos en rehabilitación
- Autores:
- Tipo de recurso:
- article
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universitaria Iberoamericana
- Repositorio:
- Repositorio Ibero
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ibero.edu.co:001/4478
- Acceso en línea:
- https://repositorio.ibero.edu.co/handle/001/4478
https://doi.org/10.33881/2011-7191.mct.10207
- Palabra clave:
- Dispositivo exoesqueleto
Rehabilitación
Robótica
Marcha
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
IBERO_0b955292e872204bd34e192eff2a082f |
---|---|
oai_identifier_str |
oai:repositorio.ibero.edu.co:001/4478 |
network_acronym_str |
IBERO |
network_name_str |
Repositorio Ibero |
repository_id_str |
|
dc.title.none.fl_str_mv |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
title |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
spellingShingle |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación Alfonso Mantilla, Jose Ivan Dispositivo exoesqueleto Rehabilitación Robótica Marcha |
title_short |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
title_full |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
title_fullStr |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
title_full_unstemmed |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
title_sort |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación |
dc.creator.none.fl_str_mv |
Alfonso Mantilla, Jose Ivan Martínez Santa, Jaime |
author |
Alfonso Mantilla, Jose Ivan |
author_facet |
Alfonso Mantilla, Jose Ivan Martínez Santa, Jaime |
author_role |
author |
author2 |
Martínez Santa, Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dispositivo exoesqueleto Rehabilitación Robótica Marcha |
topic |
Dispositivo exoesqueleto Rehabilitación Robótica Marcha |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-23 04:51:53 2017-06-23 04:51:53 2017-06-23 2022-06-14T21:52:18Z 2022-06-14T21:52:18Z |
dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/version/c_970fb48d4fbd8a85 Text info:eu-repo/semantics/article Artículos Articles http://purl.org/redcol/resource_type/ARTREF info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
10.33881/2011-7191.mct.10207 2463-2236 2011-7191 https://repositorio.ibero.edu.co/handle/001/4478 https://doi.org/10.33881/2011-7191.mct.10207 |
identifier_str_mv |
10.33881/2011-7191.mct.10207 2463-2236 2011-7191 |
url |
https://repositorio.ibero.edu.co/handle/001/4478 https://doi.org/10.33881/2011-7191.mct.10207 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revmovimientocientifico.ibero.edu.co/article/download/mct.10207/936 Núm. 2 , Año 2016 : Revista Movimiento Científico 90 2 83 10 Movimiento Científico Aach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R., Tegenthoff, M., et al. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J, 14(12), 2847-2853. Agrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., & Hsu, W. L. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 15(3), 410-420. Alavi, N., Herrnstadt, G., Randhawa, B. K., Boyd, L. A., & Menon, C. (2015). Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification. Conf Proc IEEE Eng Med Biol Soc, 2015, 4643-4646. Asselin, P. K., Avedissian, M., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2016). Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton. J Vis Exp(112). Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil, 12, 54. Buesing, C., Fisch, G., O'Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C. K., et al. (2015). Effects of a wearable exoskeleton stride management assist system (SMA(R)) on spatiotemporal gait characteristics in individuals after stroke: a randomi zed controlled trial. J Neuroeng Rehabil, 12, 69. Chen, G., Chan, C. K., Guo, Z., & Yu, H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng, 41(4-5), 343-363. Cooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., et al. (2008). A perspective on intelligent devices and environments in medical rehabilitation. Med Eng Phys, 30(10), 1387-1398. Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11), 911-921. Evans, N., Hartigan, C., Kandilakis, C., Pharo, E., & Clesson, I. (2015). Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 122-132. Ferrigno, G., Baroni, G., Casolo, F., De Momi, E., Gini, G., Matteucci, M., & Pedrocchi, A. (2011). Medical robotics. IEEE Pulse, 2(3), 55-61. Ferris, P. (2010). Robotic lower limb orthosis: goals obstacles and current research. Paper presented at the The 34 th Annual Meerting of the American Sociaty of Biomechanics, Symposia: Robotic Lower Limb Ortheses and Prostheses. Fisahn, C., Aach, M., Jansen, O., Moisi, M., Mayadev, A., Pagarigan, K. T., et al. (2016). The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J, 6(8), 822-841. Fleischer, C., Wege, A., Kondak, K., & Hommel, G. (2006). Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl), 51(5-6), 314-319. Francis, P., & Winfield, H. N. (2006). Medical robotics: the impact on perioperative nursing practice. Urol Nurs, 26(2), 99-104, 107-108. French, J. A., Rose, C. G., & O'Malley, M. K. (2014). System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation. Proc ASME Dyn Syst Control Conf, 2014. Gillesen, J. C., Barakova, E. I., Huskens, B. E., & Feijs, L. M. (2011). From training to robot behavior: towards custom scenarios for robotics in training programs for ASD. IEEE Int Conf Rehabil Robot, 2011, 5975381. Hornby, T. G., Kinnaird, C. R., Holleran, C. L., Rafferty, M. R., Rodriguez, K. S., & Cain, J. B. (2012). Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury. Phys Ther, 92(10), 1278-1291. Jimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys, 34(4), 397-408. Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010a). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech, 43(2), 203-209. Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010b). Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech, 43(7), 1401-1407. Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010c). Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil, 7, 33. Koller, J. R., Jacobs, D. A., Ferris, D. P., & Remy, C. D. (2015). Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil, 12, 97. Kozlowski, A. J., Bryce, T. N., & Dijkers, M. P. (2015). Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil, 21(2), 110-121. Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 15(3), 327-335. Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol, 11(7), 535-547. Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5), 789-793. Li, Z., Wang, B., Sun, F., Yang, C., Xie, Q., & Zhang, W. (2014). sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform, 18(3), 1043-1050. Lim, H. O., & Takanishi, A. (2007). Biped walking robots created at Waseda University: WL and WABIAN family. Philos Trans A Math Phys Eng Sci, 365(1850), 49-64. Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys, 34(3), 261-268. Louie, D. R., & Eng, J. J. (2016). Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil, 13(1), 53. Masiero, S., Carraro, E., Ferraro, C., Gallina, P., Rossi, A., & Rosati, G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med, 41(12), 981-985. Miller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl), 9, 455-466. Olaya, A. F. R. (2009). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. Universidad Carlos III de Madrid. Pehlivan, A. U., Rose, C., & O'Malley, M. K. (2013). System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation. IEEE Int Conf Rehabil Robot, 2013, 6650462. Popovic, D. B., & Popovic, M. B. (2006). Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics. Conf Proc IEEE Eng Med Biol Soc, 1, 2146-2149. Reinkensmeyer, D. J., Akoner, O., Ferris, D. P., & Gordon, K. E. (2009). Slacking by the human motor system: computational models and implications for robotic orthoses. Conf Proc IEEE Eng Med Biol Soc, 2009, 2129-2132. Renjewski, D., & Seyfarth, A. (2012). Robots in human biomechanics—a study on ankle push-off in walking. Bioinspir Biomim, 7(3), 036005. Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng, 15(3), 367-378. Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoske le tons. J Exp Biol, 211(Pt 9), 1402-1413. Sawicki, G. S., & Ferris, D. P. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol, 212(Pt 1), 21-31. Sczesny-Kaiser, M., Hoffken, O., Aach, M., Cruciger, O., Grasmucke, D., Meindl, R.,... Tegenthoff, M. (2015). HAL(R) exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil, 12, 68. Sylos-Labini, F., La Scaleia, V., d'Avella, A., Pisotta, I., Tamburella, F., Scivoletto, G., ... Ivanenko, Y. P. (2014). EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci, 8, 423. Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., & Yang, Z. (2014). An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Basel), 14(4), 6677-6694. van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomed Eng Online, 2, 17. Yakub, F., Md Khudzari, A. Z., & Mori, Y. (2014). Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res, 37(1), 9-21. Yang, A., Asselin, P., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2015). Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 100-109. Yoshimoto, T., Shimizu, I., & Hiroi, Y. (2016). Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J Phys Ther Sci, 28(9), 2684-2687. Yoshimoto, T., Shimizu, I., Hiroi, Y., Kawaki, M., Sato, D., & Nagasawa, M. (2015). Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res, 38(4), 338-343. Zhang, F., Fu, Y., Zhang, Q., & Wang, S. (2015). Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Biomed Mater Eng, 26 Suppl 1, S665-672. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Corporación Universitaria Iberoamericana |
publisher.none.fl_str_mv |
Corporación Universitaria Iberoamericana |
dc.source.none.fl_str_mv |
https://revmovimientocientifico.ibero.edu.co/article/view/mct.10207 reponame:Repositorio Ibero instname:Corporación Universitaria Iberoamericana instacron:Corporación Universitaria Iberoamericana |
instname_str |
Corporación Universitaria Iberoamericana |
instacron_str |
Corporación Universitaria Iberoamericana |
institution |
Corporación Universitaria Iberoamericana |
reponame_str |
Repositorio Ibero |
collection |
Repositorio Ibero |
_version_ |
1781207071661752320 |
spelling |
Tecnología de asistencia: exoesqueletos robóticos en rehabilitaciónAlfonso Mantilla, Jose IvanMartínez Santa, JaimeDispositivo exoesqueletoRehabilitaciónRobóticaMarchaCorporación Universitaria Iberoamericana2017-06-23 04:51:532022-06-14T21:52:18Z2017-06-23 04:51:532022-06-14T21:52:18Z2017-06-23Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleArtículosArticleshttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionapplication/pdf10.33881/2011-7191.mct.102072463-22362011-7191https://repositorio.ibero.edu.co/handle/001/4478https://doi.org/10.33881/2011-7191.mct.10207https://revmovimientocientifico.ibero.edu.co/article/view/mct.10207reponame:Repositorio Iberoinstname:Corporación Universitaria Iberoamericanainstacron:Corporación Universitaria Iberoamericanaspahttps://revmovimientocientifico.ibero.edu.co/article/download/mct.10207/936Núm. 2 , Año 2016 : Revista Movimiento Científico9028310Movimiento CientíficoAach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R., Tegenthoff, M., et al. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J, 14(12), 2847-2853.Agrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., & Hsu, W. L. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 15(3), 410-420.Alavi, N., Herrnstadt, G., Randhawa, B. K., Boyd, L. A., & Menon, C. (2015). Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification. Conf Proc IEEE Eng Med Biol Soc, 2015, 4643-4646.Asselin, P. K., Avedissian, M., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2016). Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton. J Vis Exp(112).Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil, 12, 54.Buesing, C., Fisch, G., O'Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C. K., et al. (2015). Effects of a wearable exoskeleton stride management assist system (SMA(R)) on spatiotemporal gait characteristics in individuals after stroke: a randomi zed controlled trial. J Neuroeng Rehabil, 12, 69.Chen, G., Chan, C. K., Guo, Z., & Yu, H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng, 41(4-5), 343-363.Cooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., et al. (2008). A perspective on intelligent devices and environments in medical rehabilitation. Med Eng Phys, 30(10), 1387-1398.Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11), 911-921.Evans, N., Hartigan, C., Kandilakis, C., Pharo, E., & Clesson, I. (2015). Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 122-132.Ferrigno, G., Baroni, G., Casolo, F., De Momi, E., Gini, G., Matteucci, M., & Pedrocchi, A. (2011). Medical robotics. IEEE Pulse, 2(3), 55-61.Ferris, P. (2010). Robotic lower limb orthosis: goals obstacles and current research. Paper presented at the The 34 th Annual Meerting of the American Sociaty of Biomechanics, Symposia: Robotic Lower Limb Ortheses and Prostheses.Fisahn, C., Aach, M., Jansen, O., Moisi, M., Mayadev, A., Pagarigan, K. T., et al. (2016). The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J, 6(8), 822-841.Fleischer, C., Wege, A., Kondak, K., & Hommel, G. (2006). Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl), 51(5-6), 314-319.Francis, P., & Winfield, H. N. (2006). Medical robotics: the impact on perioperative nursing practice. Urol Nurs, 26(2), 99-104, 107-108.French, J. A., Rose, C. G., & O'Malley, M. K. (2014). System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation. Proc ASME Dyn Syst Control Conf, 2014.Gillesen, J. C., Barakova, E. I., Huskens, B. E., & Feijs, L. M. (2011). From training to robot behavior: towards custom scenarios for robotics in training programs for ASD. IEEE Int Conf Rehabil Robot, 2011, 5975381.Hornby, T. G., Kinnaird, C. R., Holleran, C. L., Rafferty, M. R., Rodriguez, K. S., & Cain, J. B. (2012). Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury. Phys Ther, 92(10), 1278-1291.Jimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys, 34(4), 397-408.Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010a). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech, 43(2), 203-209.Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010b). Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech, 43(7), 1401-1407.Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010c). Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil, 7, 33.Koller, J. R., Jacobs, D. A., Ferris, D. P., & Remy, C. D. (2015). Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil, 12, 97.Kozlowski, A. J., Bryce, T. N., & Dijkers, M. P. (2015). Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil, 21(2), 110-121.Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 15(3), 327-335.Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol, 11(7), 535-547.Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5), 789-793.Li, Z., Wang, B., Sun, F., Yang, C., Xie, Q., & Zhang, W. (2014). sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform, 18(3), 1043-1050.Lim, H. O., & Takanishi, A. (2007). Biped walking robots created at Waseda University: WL and WABIAN family. Philos Trans A Math Phys Eng Sci, 365(1850), 49-64.Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys, 34(3), 261-268.Louie, D. R., & Eng, J. J. (2016). Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil, 13(1), 53.Masiero, S., Carraro, E., Ferraro, C., Gallina, P., Rossi, A., & Rosati, G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med, 41(12), 981-985.Miller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl), 9, 455-466.Olaya, A. F. R. (2009). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. Universidad Carlos III de Madrid.Pehlivan, A. U., Rose, C., & O'Malley, M. K. (2013). System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation. IEEE Int Conf Rehabil Robot, 2013, 6650462.Popovic, D. B., & Popovic, M. B. (2006). Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics. Conf Proc IEEE Eng Med Biol Soc, 1, 2146-2149.Reinkensmeyer, D. J., Akoner, O., Ferris, D. P., & Gordon, K. E. (2009). Slacking by the human motor system: computational models and implications for robotic orthoses. Conf Proc IEEE Eng Med Biol Soc, 2009, 2129-2132.Renjewski, D., & Seyfarth, A. (2012). Robots in human biomechanics—a study on ankle push-off in walking. Bioinspir Biomim, 7(3), 036005.Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng, 15(3), 367-378.Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoske le tons. J Exp Biol, 211(Pt 9), 1402-1413.Sawicki, G. S., & Ferris, D. P. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol, 212(Pt 1), 21-31.Sczesny-Kaiser, M., Hoffken, O., Aach, M., Cruciger, O., Grasmucke, D., Meindl, R.,... Tegenthoff, M. (2015). HAL(R) exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil, 12, 68.Sylos-Labini, F., La Scaleia, V., d'Avella, A., Pisotta, I., Tamburella, F., Scivoletto, G., ... Ivanenko, Y. P. (2014). EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci, 8, 423.Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., & Yang, Z. (2014). An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Basel), 14(4), 6677-6694.van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomed Eng Online, 2, 17.Yakub, F., Md Khudzari, A. Z., & Mori, Y. (2014). Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res, 37(1), 9-21.Yang, A., Asselin, P., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2015). Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 100-109.Yoshimoto, T., Shimizu, I., & Hiroi, Y. (2016). Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J Phys Ther Sci, 28(9), 2684-2687.Yoshimoto, T., Shimizu, I., Hiroi, Y., Kawaki, M., Sato, D., & Nagasawa, M. (2015). Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res, 38(4), 338-343.Zhang, F., Fu, Y., Zhang, Q., & Wang, S. (2015). Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Biomed Mater Eng, 26 Suppl 1, S665-672.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/2023-04-07T23:13:32Z |