Un enfoque de redes neuronales para la alineación de prótesis transtibiales
- Autores:
-
Luengas Contreras, Lely Adriana
Wanumen, Luis Felipe
Camargo Casallas, Esperanza
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universitaria Iberoamericana
- Repositorio:
- Repositorio Ibero
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ibero.edu.co:001/4559
- Acceso en línea:
- https://repositorio.ibero.edu.co/handle/001/4559
https://doi.org/10.33881/2011-7191.mct.15106
- Palabra clave:
- Artificial intelligence
Artificial limbs
Software
Technology
Inteligencia artificial
Miembros artificiales
Programas informáticos
Tecnología
Prótesis transtibiales
- Rights
- openAccess
- License
- Movimiento Científico - 2021
id |
IBERO2_e09d679d6dbe28d310f56f6cc60cbbde |
---|---|
oai_identifier_str |
oai:repositorio.ibero.edu.co:001/4559 |
network_acronym_str |
IBERO2 |
network_name_str |
Repositorio Ibero |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
dc.title.translated.eng.fl_str_mv |
A neural network approach to the alignment of transtibial prostheses |
title |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
spellingShingle |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales Artificial intelligence Artificial limbs Software Technology Inteligencia artificial Miembros artificiales Programas informáticos Tecnología Prótesis transtibiales |
title_short |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
title_full |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
title_fullStr |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
title_full_unstemmed |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
title_sort |
Un enfoque de redes neuronales para la alineación de prótesis transtibiales |
dc.creator.fl_str_mv |
Luengas Contreras, Lely Adriana Wanumen, Luis Felipe Camargo Casallas, Esperanza |
dc.contributor.author.spa.fl_str_mv |
Luengas Contreras, Lely Adriana Wanumen, Luis Felipe Camargo Casallas, Esperanza |
dc.subject.eng.fl_str_mv |
Artificial intelligence Artificial limbs Software Technology |
topic |
Artificial intelligence Artificial limbs Software Technology Inteligencia artificial Miembros artificiales Programas informáticos Tecnología Prótesis transtibiales |
dc.subject.spa.fl_str_mv |
Inteligencia artificial Miembros artificiales Programas informáticos Tecnología Prótesis transtibiales |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-22 15:50:00 2022-06-14T21:52:49Z |
dc.date.available.none.fl_str_mv |
2021-12-22 15:50:00 2022-06-14T21:52:49Z |
dc.date.issued.none.fl_str_mv |
2021-12-22 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículos |
dc.type.local.eng.fl_str_mv |
Articles |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.doi.none.fl_str_mv |
10.33881/2011-7191.mct.15106 |
dc.identifier.eissn.none.fl_str_mv |
2463-2236 |
dc.identifier.issn.none.fl_str_mv |
2011-7191 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.ibero.edu.co/handle/001/4559 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.33881/2011-7191.mct.15106 |
identifier_str_mv |
10.33881/2011-7191.mct.15106 2463-2236 2011-7191 |
url |
https://repositorio.ibero.edu.co/handle/001/4559 https://doi.org/10.33881/2011-7191.mct.15106 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://revmovimientocientifico.ibero.edu.co/article/download/mct15106/1742 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2021 |
dc.relation.citationendpage.none.fl_str_mv |
8 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Movimiento Científico |
dc.relation.references.spa.fl_str_mv |
Biometrics Ltd. (2020). Twin-Axis Goniometers for Dynamic Joint Movement Analysis. Biometrics Ltd. https://www.biometricsltd.com/goniometer.htm Blumentritt, S., Schmalz, T., & Jarasch, R. (2001). Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation. Der Orthopade, 30(3), 161–168. Boone, D. A., Kobayashi, T., Chou, T. G., Arabian, A. K., Coleman, K. L., Orendurff, M. S., & Zhang, M. (2012). Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait & Posture, 37(4), 620–626. https://doi.org/10.1016/j.gaitpost.2012.10.002 Clemente, Y. M., & Roque, D. M. (2013). Segmentación de imágenes cerebrales de Resonancia Magnética basada en Redes Neuronales de Regresión Generalizada. Revista Cubana de Informática Médica, 5(1), 82–90. Dávila-Cervantes, A. (2014). Simulación en Educación Médica. Inv Ed Med, 3(10), 100–105. https://doi.org/10.1016/S2007-5057(14)72733-4 Dirección Contra Minas. (2020). Víctimas de minas antipersonal y municiones sin explosionar. Presidencia de La República de Colombia. http://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticas-de-Victimas.aspx Findlow, A., Goulermas, J. Y., Nester, C., Howard, D., & Kenney, L. P. J. (2008). Predicting lower limb joint kinematics using wearable motion sensors. Gait & Posture, 28(1), 120–126. https://doi.org/10.1016/j.gaitpost.2007.11.001 Heinrichs, B., & Eickhoff, S. B. (2020). Your evidence? Machine learning algorithms for medical diagnosis and prediction. Human Brain Mapping, 41(6), 1435–1444. https://doi.org/10.1002/hbm.24886 Isakov, E., Mizrahi, J., Ring, H., Susak, Z., & Hakim, N. (1992). Standing sway and weight-bearing distribution in people with below-knee amputations. Archives of Physical Medicine and Rehabilitation, 73(2), 174–178. http://www.ncbi.nlm.nih.gov/pubmed/1543414 Isakov, E., Mizrahi, J., Susak, Z., Ona, I., & Hakim, N. (1994). Influence of prosthesis alignment on the standing balance of below-knee amputees. Clinical Biomechanics, 9(4), 258–262. https://doi.org/10.1016/0268-0033(94)90008-6 Kobayashi, T., Orendurff, M. S., & Boone, D. A. (2014). Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthetics and Orthotics International, Online, 1–5. https://doi.org/10.1177/0309364614545421 López, J. G., & Spirko, L. V. (2007). Simulación, herramienta para la educación médica. Salud Uninorte, 23(1), 79–95. Luengas C., L. A., Gutierrez, M. A., & Camargo, E. (2017). Alineación de prótesis y parámetros biomecánicos de pacientes amputados transtibiales. UD Editorial. Luengas C., L. A., & Toloza, D. C. (2019). Análisis de estabilidad en amputados transtibiales unilaterales. UD Editorial. Novel.de. (2019). The pedar® system. Novel GmbH. http://www.novel.de/novelcontent/pedar Paráková, B., Míková, M., & Janura, M. (2007). The influence of prostheses and prosthetic foot alignment on postural behavior in transtibial amputees. Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4), 37–44. Samitier, C. B., Guirao, L., Pleguezuelos, E., Pérez Mesquida, M. E., Reverón, G., & Costea, M. (2011). Evaluation of mobility in patients with a lower limb amputation. Rehabilitacion, 45(1), 61–66. https://doi.org/10.1016/j.rh.2010.09.006 Tafti, N., Hemmati, F., Safari, R., Karimi, M. T., Farmani, F., Khalaf, A., & Mardani, M. A. (2018). A systematic review of variables used to assess clinically acceptable alignment of unilateral transtibial amputees in the literature. Journal of Engineering in Medicine Manuscript, 232(8), 826–840. https://doi.org/10.1177/0954411918789450 Xiaohong, J., Xiaobing, L., Peng, D., & Ming, Z. (2005). The Influence of Dynamic Trans-tibial Prosthetic Alignment on Standing Plantar Foot Pressure. Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 7, 6916–6918. https://doi.org/10.1109/IEMBS.2005.1616096 |
dc.rights.spa.fl_str_mv |
Movimiento Científico - 2021 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
rights_invalid_str_mv |
Movimiento Científico - 2021 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Iberoamericana |
dc.source.spa.fl_str_mv |
https://revmovimientocientifico.ibero.edu.co/article/view/mct15106 |
institution |
Corporación Universitaria Iberoamericana |
bitstream.url.fl_str_mv |
https://repositorio.ibero.edu.co/bitstreams/f048b747-9e5b-4dcf-b1d6-d9bef0c3075a/download |
bitstream.checksum.fl_str_mv |
43773ecd6d957b21c143048c195d3f96 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - IBERO. |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814355773881319424 |
spelling |
Luengas Contreras, Lely Adrianae92ca100-2824-4e3d-8fce-dcfbba25aebaWanumen, Luis Feliped70bec14bcd6cb01ddfff4f66f0b2e83500Camargo Casallas, Esperanzabf663ec6b1079a6bbc5e206321082a285002021-12-22 15:50:002022-06-14T21:52:49Z2021-12-22 15:50:002022-06-14T21:52:49Z2021-12-22application/pdf10.33881/2011-7191.mct.151062463-22362011-7191https://repositorio.ibero.edu.co/handle/001/4559https://doi.org/10.33881/2011-7191.mct.15106spaCorporación Universitaria Iberoamericanahttps://revmovimientocientifico.ibero.edu.co/article/download/mct15106/1742Núm. 1 , Año 202181115Movimiento CientíficoBiometrics Ltd. (2020). Twin-Axis Goniometers for Dynamic Joint Movement Analysis. Biometrics Ltd. https://www.biometricsltd.com/goniometer.htmBlumentritt, S., Schmalz, T., & Jarasch, R. (2001). Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation. Der Orthopade, 30(3), 161–168.Boone, D. A., Kobayashi, T., Chou, T. G., Arabian, A. K., Coleman, K. L., Orendurff, M. S., & Zhang, M. (2012). Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait & Posture, 37(4), 620–626. https://doi.org/10.1016/j.gaitpost.2012.10.002Clemente, Y. M., & Roque, D. M. (2013). Segmentación de imágenes cerebrales de Resonancia Magnética basada en Redes Neuronales de Regresión Generalizada. Revista Cubana de Informática Médica, 5(1), 82–90.Dávila-Cervantes, A. (2014). Simulación en Educación Médica. Inv Ed Med, 3(10), 100–105. https://doi.org/10.1016/S2007-5057(14)72733-4Dirección Contra Minas. (2020). Víctimas de minas antipersonal y municiones sin explosionar. Presidencia de La República de Colombia. http://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticas-de-Victimas.aspxFindlow, A., Goulermas, J. Y., Nester, C., Howard, D., & Kenney, L. P. J. (2008). Predicting lower limb joint kinematics using wearable motion sensors. Gait & Posture, 28(1), 120–126. https://doi.org/10.1016/j.gaitpost.2007.11.001Heinrichs, B., & Eickhoff, S. B. (2020). Your evidence? Machine learning algorithms for medical diagnosis and prediction. Human Brain Mapping, 41(6), 1435–1444. https://doi.org/10.1002/hbm.24886Isakov, E., Mizrahi, J., Ring, H., Susak, Z., & Hakim, N. (1992). Standing sway and weight-bearing distribution in people with below-knee amputations. Archives of Physical Medicine and Rehabilitation, 73(2), 174–178. http://www.ncbi.nlm.nih.gov/pubmed/1543414Isakov, E., Mizrahi, J., Susak, Z., Ona, I., & Hakim, N. (1994). Influence of prosthesis alignment on the standing balance of below-knee amputees. Clinical Biomechanics, 9(4), 258–262. https://doi.org/10.1016/0268-0033(94)90008-6Kobayashi, T., Orendurff, M. S., & Boone, D. A. (2014). Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthetics and Orthotics International, Online, 1–5. https://doi.org/10.1177/0309364614545421López, J. G., & Spirko, L. V. (2007). Simulación, herramienta para la educación médica. Salud Uninorte, 23(1), 79–95. Luengas C., L. A., Gutierrez, M. A., & Camargo, E. (2017). Alineación de prótesis y parámetros biomecánicos de pacientes amputados transtibiales. UD Editorial.Luengas C., L. A., & Toloza, D. C. (2019). Análisis de estabilidad en amputados transtibiales unilaterales. UD Editorial.Novel.de. (2019). The pedar® system. Novel GmbH. http://www.novel.de/novelcontent/pedarParáková, B., Míková, M., & Janura, M. (2007). The influence of prostheses and prosthetic foot alignment on postural behavior in transtibial amputees. Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4), 37–44.Samitier, C. B., Guirao, L., Pleguezuelos, E., Pérez Mesquida, M. E., Reverón, G., & Costea, M. (2011). Evaluation of mobility in patients with a lower limb amputation. Rehabilitacion, 45(1), 61–66. https://doi.org/10.1016/j.rh.2010.09.006Tafti, N., Hemmati, F., Safari, R., Karimi, M. T., Farmani, F., Khalaf, A., & Mardani, M. A. (2018). A systematic review of variables used to assess clinically acceptable alignment of unilateral transtibial amputees in the literature. Journal of Engineering in Medicine Manuscript, 232(8), 826–840. https://doi.org/10.1177/0954411918789450Xiaohong, J., Xiaobing, L., Peng, D., & Ming, Z. (2005). The Influence of Dynamic Trans-tibial Prosthetic Alignment on Standing Plantar Foot Pressure. Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 7, 6916–6918. https://doi.org/10.1109/IEMBS.2005.1616096Movimiento Científico - 2021info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://creativecommons.org/licenses/by-nc-sa/4.0https://revmovimientocientifico.ibero.edu.co/article/view/mct15106Artificial intelligenceArtificial limbsSoftwareTechnologyInteligencia artificialMiembros artificialesProgramas informáticosTecnologíaPrótesis transtibialesUn enfoque de redes neuronales para la alineación de prótesis transtibialesA neural network approach to the alignment of transtibial prosthesesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleArtículosArticleshttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2642https://repositorio.ibero.edu.co/bitstreams/f048b747-9e5b-4dcf-b1d6-d9bef0c3075a/download43773ecd6d957b21c143048c195d3f96MD51001/4559oai:repositorio.ibero.edu.co:001/45592023-05-18 15:10:17.272https://creativecommons.org/licenses/by-nc-sa/4.0Movimiento Científico - 2021https://repositorio.ibero.edu.coRepositorio Institucional - IBERO.bdigital@metabiblioteca.com |