Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos

Introducción: La caracterización diagnóstica del dolor torácico, con énfasis en los síndromes coronarios agudos (SCA) es un requerimiento primordial para los médicos del área de urgencias. Objetivos: En el presente estudio se busca diseñar y evaluar el desempeño de las redes bayesianas en el apoyo a...

Full description

Autores:
Sprockel Díaz, John Jaime
Diaztagle, Juan José
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Fundación Universitaria de Ciencias de la Salud - FUCS
Repositorio:
Repositorio Digital Institucional ReDi
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.fucsalud.edu.co:001/1883
Acceso en línea:
https://repositorio.fucsalud.edu.co/handle/001/1883
Palabra clave:
Dolor torácico
Síndromes coronarios agudos
Clasificación/diagnóstico
Redes bayesianas
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id FUCS2_bc9a59432859596dd1ab5019929f4d93
oai_identifier_str oai:repositorio.fucsalud.edu.co:001/1883
network_acronym_str FUCS2
network_name_str Repositorio Digital Institucional ReDi
repository_id_str
dc.title.spa.fl_str_mv Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
dc.title.translated.none.fl_str_mv Diagnostic accuracy of a bayesian network model in acute coronary syndromes
title Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
spellingShingle Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
Dolor torácico
Síndromes coronarios agudos
Clasificación/diagnóstico
Redes bayesianas
title_short Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
title_full Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
title_fullStr Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
title_full_unstemmed Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
title_sort Precisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos
dc.creator.fl_str_mv Sprockel Díaz, John Jaime
Diaztagle, Juan José
dc.contributor.author.none.fl_str_mv Sprockel Díaz, John Jaime
Diaztagle, Juan José
dc.subject.proposal.spa.fl_str_mv Dolor torácico
Síndromes coronarios agudos
Clasificación/diagnóstico
Redes bayesianas
topic Dolor torácico
Síndromes coronarios agudos
Clasificación/diagnóstico
Redes bayesianas
description Introducción: La caracterización diagnóstica del dolor torácico, con énfasis en los síndromes coronarios agudos (SCA) es un requerimiento primordial para los médicos del área de urgencias. Objetivos: En el presente estudio se busca diseñar y evaluar el desempeño de las redes bayesianas en el apoyo al diagnóstico de los SCA. Metodología: Se trata de un estudio de pruebas diagnósticas en el cual se diseñaron dos modelos de redes bayesianas entrenadas en el framework OpenMarkov, a partir de las variables de la escala de probabilidad de Braunwald de angina en un grupo de 159 pacientes que luego se validó en una cohorte de 108 pacientes adultos hospitalizados con sospecha de un SCA en un hospital de tercer nivel de atención. Resultados: Se obtuvo una sensibilidad baja aunque con especificidad y valor predictivo positivo adecuados (62, 86 y 87% respectivamente). El rendimiento fue mejor en los casos que tuvieron electrocardiograma y biomarcadores negativos. Conclusiones: Un modelo de redes Bayesianas entrenado a partir de las variables de la escala de probabilidad de angina inestable de Braunwald, presenta un rendimiento aceptable para el diagnóstico de los SCA.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015-06-12
dc.date.accessioned.none.fl_str_mv 2021-11-04T16:58:21Z
dc.date.available.none.fl_str_mv 2021-11-04T16:58:21Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.fucsalud.edu.co/handle/001/1883
url https://repositorio.fucsalud.edu.co/handle/001/1883
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.ispartof.none.fl_str_mv Revista de la Universidad Industrial de Santander. Salud e- ISSN: 2145-8464 Vol.47 Núm. 2 (2015)
dc.relation.citationendpage.spa.fl_str_mv 185
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 179
dc.relation.citationvolume.spa.fl_str_mv 47
dc.relation.ispartofjournal.spa.fl_str_mv Revista de la Universidad Industrial de Santander. Salud
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 7 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Industrial de Santander
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/4827
institution Fundación Universitaria de Ciencias de la Salud - FUCS
bitstream.url.fl_str_mv https://repositorio.fucsalud.edu.co/bitstreams/6f1e9302-9d79-4d99-88ef-ce9d3a1df121/download
https://repositorio.fucsalud.edu.co/bitstreams/520c0b99-fd35-4988-81a6-cfb48fc99e7a/download
https://repositorio.fucsalud.edu.co/bitstreams/2f1f2442-d2a6-451c-b070-ef35e4e0b976/download
https://repositorio.fucsalud.edu.co/bitstreams/7f7dfd65-f837-4b33-8b56-07e162885514/download
bitstream.checksum.fl_str_mv 2a6c67323e2c8643ddc10cef917283fa
f6cfdd0a0be8a7a8b575d6cd88a94402
68b329da9893e34099c7d8ad5cb9c940
50104f83e4f98ad7c3d48e29a43584b8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Fundación Universitaria de Ciencias de la Salud
repository.mail.fl_str_mv redi@fucsalud.edu.co
_version_ 1814355569120641024
spelling Sprockel Díaz, John Jaime00c96ba8a13b25e96ae9572726f69badDiaztagle, Juan José0d9fbed2aac05d2fee1293199a09eaa62021-11-04T16:58:21Z2015-06-122021-11-04T16:58:21ZUniversidad Industrial de SantanderColombiaIntroducción: La caracterización diagnóstica del dolor torácico, con énfasis en los síndromes coronarios agudos (SCA) es un requerimiento primordial para los médicos del área de urgencias. Objetivos: En el presente estudio se busca diseñar y evaluar el desempeño de las redes bayesianas en el apoyo al diagnóstico de los SCA. Metodología: Se trata de un estudio de pruebas diagnósticas en el cual se diseñaron dos modelos de redes bayesianas entrenadas en el framework OpenMarkov, a partir de las variables de la escala de probabilidad de Braunwald de angina en un grupo de 159 pacientes que luego se validó en una cohorte de 108 pacientes adultos hospitalizados con sospecha de un SCA en un hospital de tercer nivel de atención. Resultados: Se obtuvo una sensibilidad baja aunque con especificidad y valor predictivo positivo adecuados (62, 86 y 87% respectivamente). El rendimiento fue mejor en los casos que tuvieron electrocardiograma y biomarcadores negativos. Conclusiones: Un modelo de redes Bayesianas entrenado a partir de las variables de la escala de probabilidad de angina inestable de Braunwald, presenta un rendimiento aceptable para el diagnóstico de los SCA.Introduction: The characterization and diagnosis of chest pain, with emphasis on acute coronary syndromes (ACS), is a fundamental requirement for the doctors at the emergency service. Objective:The aim of the present study is to design and evaluate the performance of Bayesian networks to back up the diagnosis of ACS. Methodology: A diagnostic tests study in which two models of Bayesian networkswere designed and trained in the framework OpenMarkov, using the variables of the Braunwald angina probability scale in a group of 159 patients, which was validated afterwards in a cohort of 108 adult patients hospitalized with suspicion of ACS in a third level hospital. Results: Low sensitivity was obtained, with adequate specificity and positive predictive values, though (62, 86, and 87% respectively). Performance was better in the cases that had electrocardiogram and negative biomarkers. Conclusions: A model of Bayesian networks trained from the variables of the Braunwald unstable angina probability scale, exhibits an acceptable performance for the diagnosis of ACS.https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/48277 p.application/pdfPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudosDiagnostic accuracy of a bayesian network model in acute coronary syndromesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/coar/version/c_970fb48d4fbd8a85https://repositorio.fucsalud.edu.co/handle/001/1883engspaRevista de la Universidad Industrial de Santander. Salud e- ISSN: 2145-8464 Vol.47 Núm. 2 (2015)185217947Revista de la Universidad Industrial de Santander. Saludinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Dolor torácicoSíndromes coronarios agudosClasificación/diagnósticoRedes bayesianasPublicationORIGINALPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdfPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdfArtículoapplication/pdf186570https://repositorio.fucsalud.edu.co/bitstreams/6f1e9302-9d79-4d99-88ef-ce9d3a1df121/download2a6c67323e2c8643ddc10cef917283faMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815424https://repositorio.fucsalud.edu.co/bitstreams/520c0b99-fd35-4988-81a6-cfb48fc99e7a/downloadf6cfdd0a0be8a7a8b575d6cd88a94402MD52TEXTPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdf.txtPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdf.txtExtracted texttext/plain1https://repositorio.fucsalud.edu.co/bitstreams/2f1f2442-d2a6-451c-b070-ef35e4e0b976/download68b329da9893e34099c7d8ad5cb9c940MD53THUMBNAILPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdf.jpgPrecisión diagnóstica de un modelo de redes bayesianas en los síndromes coronarios agudos.pdf.jpgGenerated Thumbnailimage/jpeg12659https://repositorio.fucsalud.edu.co/bitstreams/7f7dfd65-f837-4b33-8b56-07e162885514/download50104f83e4f98ad7c3d48e29a43584b8MD54001/1883oai:repositorio.fucsalud.edu.co:001/18832024-02-02 13:11:36.325https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.fucsalud.edu.coRepositorio Digital de la Fundación Universitaria de Ciencias de la Saludredi@fucsalud.edu.coQ09ORElDSU9ORVMgTEVHQUxFUyBERSBVU08gREVMIFBPUlRBTCBXRUIKd3d3LmZ1Y3NhbHVkLmVkdS5jbwogCkVsIFBvcnRhbCBXZWIgd3d3LmZ1Y3NhbHVkLmVkdS5jbyBoYSBzaWRvIGRpc2XDsWFkbyBwYXJhIGZhY2lsaXRhciBhbCB2aXNpdGFudGUsIGludGVyZXNhZG8sIGVzdHVkaWFudGUsIGRvY2VudGUsIGFkbWluaXN0cmF0aXZvIHkvbyB1c3VhcmlvIGVuIGdlbmVyYWwsIGVsIGFjY2VzbyBhIGxhIGluZm9ybWFjacOzbiBkZSBsYSBJbnN0aXR1Y2nDs24geSBhIHN1cyBzZXJ2aWNpb3MgZW4gbMOtbmVhLCBwb3IgbG8gY3VhbCBlc3RlIHNpdGlvIHdlYiB0aWVuZSBjb21vIGZ1bmNpw7NuIHByaW5jaXBhbCBwcm92ZWVyIGluZm9ybWFjacOzbiB5IHNlcnZpY2lvcywgYXPDrSBjb21vIGRpdnVsZ2FyIHkgcHJvbW92ZXIgbGFzIGFjdGl2aWRhZGVzIGFjYWTDqW1pY2FzLCBjaWVudMOtZmljYXMsIGN1bHR1cmFsZXMgeSBjb21lcmNpYWxlcyBkZSBsYSBGVUNTLCBwb3IgdGFudG8gbGEgYWNlcHRhY2nDs24gZGUgZXN0YXMgY29uZGljaW9uZXMgZGUgdXNvLCBzb24gb2JsaWdhdG9yaWFzIGUgaW5kaXNwZW5zYWJsZXMgcGFyYSBxdWUgZWwgdXN1YXJpbyB1dGlsaWNlIGVsIHNpdGlvLgogCkxhcyBwcmVzZW50ZXMgY29uZGljaW9uZXMgZGUgdXNvLCByZWd1bGFuIGxhIHV0aWxpemFjacOzbiBkZSBsYSBww6FnaW5hIHdlYiB3d3cuZnVjc2FsdWQuZWR1LmNvLgogClNlw7FvciB1c3VhcmlvLCBwb3IgZmF2b3IgbGVhIGRldGFsbGFkYSB5IGN1aWRhZG9zYW1lbnRlIGVzdGUgZG9jdW1lbnRvIGp1bnRvIGNvbiBsYXMgcG9sw610aWNhcyBkZSBwcml2YWNpZGFkIHkgcHJvdGVjY2nDs24gZGUgZGF0b3MsIGFudGVzIGRlIGluaWNpYXIgc3UgbmF2ZWdhY2nDs24uClNpIFVzdGVkIG5vIHNlIGVuY3VlbnRyYSBjb25mb3JtZSBjb24gbG9zIHTDqXJtaW5vcyBkZSB1c28gZGUgbGEgcMOhZ2luYSB3ZWIgbyBjdWFscXVpZXIgb3RyYSBkaXNwb3NpY2nDs24sIHBvciBmYXZvciBhYnN0ZW5nYXNlIGRlIGluZ3Jlc2FyIHkvbyB1dGlsaXphciBlc3RlIHNpdGlvIGRlIGN1YWxxdWllciBmb3JtYS4KIApBbCBhY2NlZGVyIGEgZXN0ZSBwb3J0YWwsIHN1cyBzaXRpb3MgeSB0b2RhcyBsYXMgcMOhZ2luYXMgcXVlIGxvIGNvbmZvcm1hbiwgc2UgZW50aWVuZGUgcXVlIFVzdGVkIGhhIGxlw61kbywgZW50ZW5kaWRvIHkgYWNlcHRhZG8gdG9kb3MgbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGV4cHVlc3RvcyBlbiBlc3RlIGRvY3VtZW50bywgZGUgbGEgbWlzbWEgbWFuZXJhIGNvbW8gc2kgaHViaWVyYSBmaXJtYWRvIHVuIGFjdWVyZG8gZXNjcml0bywgZW50ZW5kaWVuZG8gZW4gdG9kbyBjYXNvIHF1ZSBzdSBwb3NpY2nDs24gZW4gZWwgYWN1ZXJkbyBzZXLDoSBpZGVudGlmaWNhZGEgZW4gdG9kbyBlc3RlIGRvY3VtZW50byBjb21vIOKAnGVsIFVzdWFyaW/igJ0uCiAKTGEgRlVDUyBwb2Ryw6EgbW9kaWZpY2FyIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RlIGRvY3VtZW50byBlbiBjdWFscXVpZXIgbW9tZW50bywgeSBlc3RhcyBtb2RpZmljYWNpb25lcyB0ZW5kcsOhbiB2YWxpZGV6IGRlc2RlIGVsIG1vbWVudG8gZW4gcXVlIHNlYW4gcHVibGljYWRhcyBlbiBlbCBzaXRpbyB3ZWIuCiAKMS4gQXNwZWN0b3MgZ2VuZXJhbGVzOgogCmEuIExhIGluZm9ybWFjacOzbiBjb250ZW5pZGEgZW4gZXN0ZSBwb3J0YWwgd2ViIChlbiBhZGVsYW50ZSBjb250ZW5pZG9zKSBkZWJlcsOhIHNlciB1dGlsaXphZGEgw7puaWNhbWVudGUgY29uIGZpbmVzIHBlcnNvbmFsZXMsIHBvciBsbyB0YW50byBlbCBVc3VhcmlvIG5vIHBvZHLDoSBkaXN0cmlidWlyLCBtb2RpZmljYXIsIHRyYW5zbWl0aXIsIGNvcGlhciwgYWxtYWNlbmFyLCBjb2RpZmljYXIsIGVudmlhciBvIHVzYXIgZXN0b3MgY29udGVuaWRvcyBwYXJhIHByb3DDs3NpdG9zIGNvbWVyY2lhbGVzIHUgb3Ryb3MgcXVlIGltcGxpcXVlbiBleHBsb3RhY2nDs24gZWNvbsOzbWljYSwgc2Fsdm8gcHJldmlhIGF1dG9yaXphY2nDs24gZXNjcml0YWxhIEZVQ1MuCiAKYi4gU2UgZW50ZW5kZXLDoSBxdWUgZWwgVXN1YXJpbyBoYSBsZcOtZG8sIGVudGVuZGlkbyB5IGFjZXB0YWRvIHRvZG9zIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBleHB1ZXN0b3MgZW4gZXN0ZSBkb2N1bWVudG8gZW4gbG9zIHNpZ3VpZW50ZXMgY2Fzb3M6CiAKQ29uc3VsdGEgZGUgY3VhbHF1aWVyIGNvbnRlbmlkbyBpbmNvcnBvcmFkbyBlbiBlbCBzaXRpbyB3ZWIuCkVudmnDsyBkZSBkYXRvcyBlbiBsb3MgZm9ybXVsYXJpb3MgZGUgcmVnaXN0cm8gZGVsIHNpdGlvIHdlYi4KTGEgdXRpbGl6YWNpw7NuIGRlIGN1YWxxdWllcmEgZGUgbG9zIHNlcnZpY2lvcyBkaXNwb25pYmxlcyBlbiBlbCBzaXRpbyB3ZWIuCkxhIGRlc2NhcmdhIGRlIGNvbnRlbmlkb3MgaW5jb3Jwb3JhZG9zIGVuIGVsIHNpdGlvIHdlYi4KTGEgbmF2ZWdhY2nDs24gZW4gZWwgc2l0aW8gd2ViIGRlIGN1YWxxdWllciBtYW5lcmEgY29ub2NpZGEgbyBwb3IgY29ub2Nlci4KIApjLiBFbCBVc3VhcmlvIHBvZHLDoSBuYXZlZ2FyIGxpYnJlIHkgZ3JhdHVpdGFtZW50ZSBhIHRyYXbDqXMgZGUgZXN0ZSBzaXRpby4KIApkLiBFbCBVc3VhcmlvIHNvbG8gcG9kcsOhIGRlc2NhcmdhciBjb250ZW5pZG9zIGRlbCBtaXNtbywgY3VhbmRvIGVsIHNpdGlvIGV4cHJlc2FtZW50ZSBsbyBhdXRvcmljZS4KIAplLiBQb2Ryw6FuIGV4aXN0aXIgYWxndW5vcyBjYXNvcyBlbiBsb3MgY3VhbGVzIHNlIGNvbmRpY2lvbmUgZWwgc2VydmljaW8gZW4gbMOtbmVhLCBhbCBwcmV2aW8gY3VtcGxpbWllbnRvIGRlbCBkaWxpZ2VuY2lhbWllbnRvIGRlIGZvcm11bGFyaW9zIHkvbyBwYWdvIHBvciBsYSBwcmVzdGFjacOzbiBkZWwgc2VydmljaW8uCiAKZi4gRWwgdXN1YXJpbyBhY2VwdGEgY29ub2NlciB5IGN1bXBsaXIgdG9kYXMgbGFzIGxleWVzIHkgbm9ybWFzIG5hY2lvbmFsZXMsIGNvbXVuaXRhcmlhcyBlIGludGVybmFjaW9uYWxlcyByZWxhY2lvbmFkYXMgY29uIHN1cyBvYmxpZ2FjaW9uZXMgeSBkZWJlcmVzIGJham8gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlIGNvbmRpY2lvbmVzIGxlZ2FsZXMgZGUgdXNvLgogCjIuIEluZm9ybWFjacOzbiBkZSByZWdpc3RybzoKIApMb3Mgc2lndWllbnRlcyBzb24gbG9zIGxpbmVhbWllbnRvcyBkZSBudWVzdHJhcyBjb25kaWNpb25lcyBkZSB1c28gZW4gY3VhbnRvIGFsIHJlY2F1ZG8sIGFjY2VzbyB5IHVzbyBkZSBsYSBpbmZvcm1hY2nDs24gZGUgcmVnaXN0cm8gcXVlIHN1bWluaXN0cmEgZWwgdXN1YXJpbyBhIHRyYXbDqXMgZGVsIHNpdGlvIHdlYi4KIApMYSBGVUNTIHByb3RlZ2Vyw6EgbG9zIGRhdG9zIG8gY3VhbHF1aWVyIGluZm9ybWFjacOzbiBwZXJzb25hbCBxdWUgZWwgdXN1YXJpbyBwcm9wb3JjaW9uZSBhbCBtb21lbnRvIGVuIHF1ZSBoYWNlIHVzbyBkZSBlc3RlIHNpdGlvd2VieSwgZXN0b3Mgc2UgdXRpbGl6YXLDoW4gZXhjbHVzaXZhbWVudGUgcGFyYSBjdW1wbGlyIGNvbiBsb3MgcHJvcMOzc2l0b3MgZGUgc3Ugc2l0aW8gd2ViIHkgc3UgdXNvIGVzIGVsIGVzdGFibGVjaWRvIGVuIGVsIHByZXNlbnRlIGRvY3VtZW50by4KRWwgdXN1YXJpbyBxdWUgcHJvcG9yY2lvbmUgc3VzIGRhdG9zIGVuIGVzdGUgc2l0aW8gd2ViIG8gYSB0cmF2w6lzIGRlIMOpbCwgZXhwcmVzYW1lbnRlIGF1dG9yaXphIGEgbGEgRlVDUyBwYXJhIHJlYWxpemFyIHN1IHRyYXRhbWllbnRvIHNlYSBvIG5vIGF1dG9tYXRpemFkbyB5IHBhcmEgdXNhcmxvcyBjb25mb3JtZSBhIGxvIGV4cHJlc2FkbyBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGRlIGFjdWVyZG8gY29uIGxhIHBvbMOtdGljYSBpbnRlcm5hIGRlIHByb3RlY2Npw7NuIGRlIGRhdG9zLgpFbCBVc3VhcmlvIGVudGllbmRlIHkgYWNlcHRhIHF1ZSBsYSBGVUNTIHBvZHLDoSBlZmVjdHVhciBlbCB0cmF0YW1pZW50byBkZSBsb3MgZGF0b3MgZGVsIHVzdWFyaW8sIGRlIG1hbmVyYSBkaXJlY3RhIG8gYSB0cmF2w6lzIGRlIHRlcmNlcm9zIGV4cHJlc2FtZW50ZSBkZXNpZ25hZG9zIHBvciBlbGxhLCBxdWllbmVzIGFjdHVhcsOhbiBjb21vIGVuY2FyZ2Fkb3MgZGVsIHRyYXRhbWllbnRvIGRlIHN1IGluZm9ybWFjacOzbiBwZXJzb25hbCwgY29uIGxhcyBvYmxpZ2FjaW9uZXMgcXVlIGxhIGxleSBjb250ZW1wbGUuCkxhIGluZm9ybWFjacOzbiBkZSByZWdpc3RybyBxdWUgc2UgbGUgc29saWNpdGEgYWwgdXN1YXJpbyBlcyBsYSBtw61uaW1hIHBhcmEgZGFyIGN1bXBsaW1pZW50byBhIGxhIHBvbMOtdGljYSBkZSB0cmF0YW1pZW50byB5IHByb3RlY2Npw7NuIGRlIGRhdG9zIHBlcnNvbmFsZXMgZGUgbGEgRlVDUyB5IGFsYXMgbm9ybWFzIGxlZ2FsZXMgdmlnZW50ZXMgZW4gQ29sb21iaWEuCkVuIGVsIHByb2Nlc28gZGUgcmVnaXN0cm8sIHNlIGxlIGFkdmVydGlyw6EgYWwgdXN1YXJpbyBjb24gdW4gYXN0ZXJpc2NvICgqKSBxdcOpIGluZm9ybWFjacOzbiBkZWJlIHNlciBzdW1pbmlzdHJhZGEgb2JsaWdhdG9yaWFtZW50ZSB5IGN1w6FsIGVzIG9wY2lvbmFsLgpFbCB1c3VhcmlvIGRlIGVzdGUgc2l0aW8gd2ViIGVudGllbmRlIHkgYWNlcHRhIHF1ZSBzdXMgZGF0b3MgcGVyc29uYWxlcyBzZSByZWNvcGlsYW4gY29uIGVsIGZpbiBkZSBwcm9jdXJhcmxlIHVuIHNlcnZpY2lvIGVmaWNpZW50ZSB5IHBlcnNvbmFsaXphZG8sIHkgcXVlIHBvZHLDoW4gc2VyIHVzYWRvcyBjb24gZmluZXMgYWNhZMOpbWljb3MsIGludmVzdGlnYXRpdm9zIHkgY29tZXJjaWFsZXMsIHBvciBsbyBjdWFsIGF1dG9yaXphIGV4cHJlc2FtZW50ZSBxdWUgc2VhbiB1c2Fkb3MgcGFyYSByZW1pdGlyIGluZm9ybWFjacOzbiBkZSBzdXMgcHJvZ3JhbWFzIGFjYWTDqW1pY29zIGZvcm1hbGVzIGUgaW5mb3JtYWxlcywgcGFyYSBkYXIgY3VtcGxpbWllbnRvIGEgc3VzIG9ibGlnYWNpb25lcyBjb250cmFjdHVhbGVzIG8gbGVnYWxlcywgcGFyYSBldmFsdWFyIGxhIGNhbGlkYWQgZGVsIHNlcnZpY2lvLCBhc8OtIGNvbW8gcGFyYSByZW1pdGlyIGluZm9ybWFjacOzbiBkZSBzdXMgcHJveWVjdG9zLCBwbGFuZXMgeSBkZW3DoXMgaW5mb3JtYWNpw7NuIGluc3RpdHVjaW9uYWwgZGUgbGEgRlVDUy4gRW4gdG9kbyBjYXNvLCBlc3RhIGluZm9ybWFjacOzbiBzZXLDoSB1dGlsaXphZGEgZW4gZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUgbGEgRlVDUy4KMy4gRGl2dWxnYWNpw7NuIGRlIGxhIGluZm9ybWFjacOzbiBkZSByZWdpc3RybzoKIApMYSBpbmZvcm1hY2nDs24gZGUgcmVnaXN0cm8gZGUgY2FkYSB1c3VhcmlvIGVzIGNvbmZpZGVuY2lhbCwgeSBubyBzZSBjb21wYXJ0aXLDoSBjb24gb3RyYXMgcGVyc29uYXMgbyBlbnRpZGFkZXMsIHNhbHZvIGN1YW5kbyBsYSBGVUNTIGNvbnNpZGVyZSBxdWUgc2UgcHJlc2VudGVuIGxvcyBzaWd1aWVudGVzIGNhc29zOgogCkN1YW5kbyBsYSBhdXRvcml6YWNpw7NuIGRlbCB0aXR1bGFyIG5vIHNlYSBvYmxpZ2F0b3JpYSAoTnVtZXJhbCA4LiDigJxBdXRvcml6YWNpw7NuIGRlbCBUaXR1bGFy4oCdIOKAkyBQb2zDrXRpY2EgZGUgVHJhdGFtaWVudG8geSBQcm90ZWNjacOzbiBkZSBEYXRvcyBQZXJzb25hbGVzIGRlIGxhIEZVQ1MpClBvciBsYSBleGlzdGVuY2lhIGRlIHVuIG1hbmRhdG8gbGVnYWwsIGRlYmVyIGVzdGF0dXRhcmlvIG8ganVkaWNpYWwgcXVlIG9ibGlndWUgYSBzdW1pbmlzdHJhcmxhLgpDdWFscXVpZXIgb3RyYSBleGNlcGNpw7NuIGRlZmluaWRhIGVuIGxhcyBsZXllcyBhcGxpY2FibGVzCkVuIHRvZG8gY2FzbywgZWwgVXN1YXJpbyBlbnRpZW5kZSB5IGFjZXB0YSBxdWUgc3VzIGRhdG9zIHBlcnNvbmFsZXMgZXZlbnR1YWxtZW50ZSBzZSBjb21wYXJ0aXLDoW4gY29uIG90cmFzIGVudGlkYWRlcyB1IG9yZ2FuaXphY2lvbmVzIHByaXZhZGFzIG8gZXN0YXRhbGVzLCBjb24gZWwgZmluIGRlIGN1bXBsaXIgY29uIGxvcyBkZWJlcmVzIHkgb2JsaWdhY2lvbmVzIHF1ZSBsZWdhbG1lbnRlIHRpZW5lIGNvbW8gSW5zdGl0dWNpw7NuIGRlIEVkdWNhY2nDs24gU3VwZXJpb3IuCiAKNC4gT2JsaWdhY2lvbmVzIHkgZGViZXJlcyBkZWwgdXN1YXJpbzoKIApFbCB1c3VhcmlvIGVzdMOhIGRlIGFjdWVyZG8gZW4gcHJvcG9yY2lvbmFyIGEgbGEgRlVDUywgaW5mb3JtYWNpw7NuIHZlcmRhZGVyYSwgcHJlY2lzYSwgYWN0dWFsaXphZGEgeSBjb21wbGV0YSwgc2Vnw7puIHNlIGluZGlxdWUgZW4gZWwgZm9ybXVsYXJpbyBkZSByZWdpc3Ryby4gSWd1YWxtZW50ZSwgZWwgdXN1YXJpbyBlc3TDoSBkZSBhY3VlcmRvIGVuIGNvbGFib3JhciBjb24gbGEgRlVDUywgcGFyYSBtYW50ZW5lciBlc3RhIGluZm9ybWFjacOzbiBhY3R1YWxpemFkYSB5IGNvbXBsZXRhLgogCkVsIHVzdWFyaW8gc2Ugb2JsaWdhIGEgbm8gcmVwcm9kdWNpciwgZHVwbGljYXIsIGNvcGlhciwgdmVuZGVyLCByZXZlbmRlciBvIGV4cGxvdGFyIHBhcmEgZmluZXMgY29tZXJjaWFsZXMsIGN1YWxxdWllciBzZWNjacOzbiBkZWwgc2VydmljaW8sIHVzbyBvIGFjY2VzbyBhbCBtaXNtby4gVGFudG8gZWwgc2VydmljaW8gY29tbyB0ZXJjZXJvcyBwb2Ryw6FuIHByb3BvcmNpb25hciB2w61uY3Vsb3MgYSBvdHJvcyBzaXRpb3MgbyByZWN1cnNvcyBkZSBsYSByZWQgbXVuZGlhbC4gRGViaWRvIGEgcXVlIGxhIEZVQ1Mgbm8gdGllbmUgY29udHJvbCBhbGd1bm8gc29icmUgZGljaG9zIHNpdGlvcyBvIHJlY3Vyc29zLCBlbCB1c3VhcmlvIHJlY29ub2NlIHkgYWNlcHRhIHF1ZSBsYSBGVUNTIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYSBkaXNwb25pYmlsaWRhZCBkZSBsb3Mgc2l0aW9zIG8gcmVjdXJzb3MgZXh0ZXJub3MgbmkgcG9yIGN1YWxxdWllciBjb250ZW5pZG8sIHB1YmxpY2lkYWQsIHByb2R1Y3Rvcywgc2VydmljaW9zIHUgb3RybyB0aXBvIGRlIG1hdGVyaWFsIGNvbnRlbmlkbyDDsyBhIGRpc3Bvc2ljacOzbiBlbiB0YWxlcyBzaXRpb3MgbyByZWN1cnNvcy4KIApFbCB1c3VhcmlvIHJlY29ub2NlIHkgYWNlcHRhIHF1ZSBsYSBGVUNTIG5vIHNlcsOhIHJlc3BvbnNhYmxlLCBkaXJlY3RhIG8gaW5kaXJlY3RhbWVudGUsIHBvciBjdWFscXVpZXIgZGHDsW8gbyBwZXJqdWljaW8gY2F1c2FkbyBvIHF1ZSBzZSBwcmVzdW1hIHF1ZSBzZWEgY2F1c2FkbyBwb3IgdGFsZXMgY29udGVuaWRvcywgcHJvZHVjdG9zIG8gc2VydmljaW9zIGRpc3BvbmlibGVzIGVuIGRpY2hvcyBzaXRpb3MgbyByZWN1cnNvcyBleHRlcm5vcywgbyBwb3IgbGEgdXRpbGl6YWNpw7NuIG8gY29uZmlhbnphIGRlcG9zaXRhZGEgcG9yIGVsIHVzdWFyaW8gZW4gdGFsZXMgY29udGVuaWRvcywgcHJvZHVjdG9zIG8gc2VydmljaW9zLgogCkVsIHVzdWFyaW8gc2Ugb2JsaWdhIGEgTk8gdXRpbGl6YXIgZWwgcG9ydGFsIHdlYiBuaSBlc3RlIFNlcnZpY2lvIGNvbiBlbCBmaW4gZGU6CiAKUG9uZXIgYSBkaXNwb3NpY2nDs24gZGUgbG9zIGRlbcOhcywgZW52aWFyIHBvciBlLW1haWwgbywgZGUgY3VhbHF1aWVyIG1vZG8sIHRyYW5zbWl0aXIgY29udGVuaWRvcyBpbGVnYWxlcywgZGHDsWlub3MsIG1vbGVzdG9zLCBhbWVuYXphZG9yZXMsIGFidXNpdm9zLCB0b3J0dW9zb3MsIGRpZmFtYXRvcmlvcywgdnVsZ2FyZXMsIG9ic2Nlbm9zLCBpbnZhc29yZXMgZGUgbGEgaW50aW1pZGFkIGRlIHRlcmNlcm9zLCBvZGlvc29zLCB4ZW7Ds2ZvYm9zLCByYWNpc3RhcywgaWxlZ2FsZXMgbywgZGUgYWxnw7puIG1vZG8sIGluYWNlcHRhYmxlczsKSGFjZXJzZSBwYXNhciBvIGZpbmdpciBzZXIgY3VhbHF1aWVyIG90cmEgcGVyc29uYSBvIGVudGlkYWQsIGluY2x1eWVuZG8sIHNpbiBsaW1pdGFjacOzbiwgdW4gcmVwcmVzZW50YW50ZSBkZSBsYSBGVUNTLCBmdW5kYWRvciwgZ3XDrWEgbyBhbmZpdHJpw7NuIGRlIGZvcnVtcywgbyBkZSBjdWFscXVpZXIgb3RybyBtb2RvIG1lbnRpciBvIGZpbmdpciBzb2JyZSBzdSByZWxhY2nDs24gY29uIGN1YWxxdWllciBvdHJhIHBlcnNvbmEgbyBhZmlsaWFjacOzbiBhIGN1YWxxdWllciBlbnRpZGFkOwpQb25lciBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgZGVtw6FzIHVzdWFyaW9zLCBlbnZpYXIgcG9yIGUtbWFpbCBvLCBkZSBhbGfDum4gbW9kbyB0cmFuc21pdGlyLCBjdWFscXVpZXIgY29udGVuaWRvIHF1ZSwgZGUgYWN1ZXJkbyBjb24gbGFzIGxleWVzIGFwbGljYWJsZXMgbyByZWxhY2lvbmVzIGNvbnRyYWN0dWFsZXMgZXhpc3RlbnRlcywgZWwgdXN1YXJpbyBubyBlc3TDoSBhdXRvcml6YWRvIGEgdHJhbnNtaXRpciAodGFsZXMgY29tbyBpbmZvcm1hY2nDs24gcHJpdmlsZWdpYWRhLCBpbmZvcm1hY2nDs24gcHJvdGVnaWRhIHBvciBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCBvIGludGVsZWN0dWFsIG8gaW5mb3JtYWNpw7NuIHNvYnJlIGxhIGN1YWwgdGllbmUgdW4gZGViZXIgZGUgY29uZmlkZW5jaWFsaWRhZCkuClBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyBkZW3DoXMgdXN1YXJpb3MsIGVudmlhciBwb3IgZS1tYWlsIG8sIGRlIGFsZ8O6biBtb2RvLCB0cmFuc21pdGlyIGNvbnRlbmlkbyBhbGd1bm8gc3VzY2VwdGlibGUgZGUgaW5mcmluZ2lyIHBhdGVudGVzLCBtYXJjYXMsIHNlY3JldG9zIGNvbWVyY2lhbGVzLCBkZXJlY2hvcyBkZSBhdXRvciB1IG90cm9zIGRlcmVjaG9zIGRlIHRlcmNlcm9zICgiRGVyZWNob3MiKTsKUG9uZXIgYSBkaXNwb3NpY2nDs24gZGUgbG9zIGRlbcOhcyB1c3VhcmlvcywgZW52aWFyIHBvciBlLW1haWwgbywgZGUgYWxnw7puIG1vZG8sIHRyYW5zbWl0aXIgcHVibGljaWRhZCBubyBzb2xpY2l0YWRhIG8gYXV0b3JpemFkYSwgbWF0ZXJpYWwgcHVibGljaXRhcmlvLCAiY29ycmVvIGJhc3VyYSIsICJjYXJ0YXMgZW4gY2FkZW5hIiwgImVzdHJ1Y3R1cmFzIHBpcmFtaWRhbGVzIiwgbyBjdWFscXVpZXIgb3RyYSBmb3JtYSBkZSBzb2xpY2l0dWQ7ClBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyBkZW3DoXMgdXN1YXJpb3MsIGVudmlhciBwb3IgZS1tYWlsIG8sIGRlIGFsZ8O6biBtb2RvLCB0cmFuc21pdGlyIG1hdGVyaWFsIGFsZ3VubyBxdWUgc2VhIHBvcnRhZG9yIGRlIHZpcnVzIG8gY3VhbHF1aWVyIG90cm8gY8OzZGlnbyBpbmZvcm3DoXRpY28sIGFyY2hpdm9zIG8gcHJvZ3JhbWFzIGRpc2XDsWFkb3MgcGFyYSBpbnRlcnJ1bXBpciwgZGVzdHJ1aXIgbyBsaW1pdGFyIGVsIGZ1bmNpb25hbWllbnRvIGRlIGN1YWxxdWllciBzb2Z0d2FyZSwgaGFyZHdhcmUgbyBlcXVpcG8gZGUgdGVsZWNvbXVuaWNhY2lvbmVzOwpQb25lciBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgZGVtw6FzIHVzdWFyaW9zLCBlbnZpYXIgcG9yIGUtbWFpbCBvLCBkZSBhbGfDum4gbW9kbyB0cmFuc21pdGlyLCBjdWFscXVpZXIgY29udGVuaWRvIHF1ZSwgZGUgYWN1ZXJkbyBjb24gbGFzIGxleWVzIGFwbGljYWJsZXMsIHNlYSBkZSBjYXLDoWN0ZXIgaWxlZ2FsIG8gaW1wbGlxdWUsIGF5dWRlIG8gY29hZHl1dmUgbGEgY29taXNpw7NuIGRlIGNvbmR1Y3RhcyBkZWxpY3R1YWxlcyBvIGlsZWdhbGVzIGRlIGN1YWxxdWllciBtYW5lcmEuCkludGVycnVtcGlyIGVsIGN1cnNvIG5vcm1hbCBkZSBsYXMgY29udmVyc2FjaW9uZXMsIHByb3ZvY2FyIHF1ZSBsYSBwYW50YWxsYSBkZWwgb3JkZW5hZG9yIGFkcXVpZXJhIG1heW9yIHZlbG9jaWRhZCBkZSBsYSBub3JtYWwgY29uIGxhIHF1ZSBsb3MgdXN1YXJpb3MgcHVlZGVuIHBhcnRpY2lwYXIgZW4gZWwgU2VydmljaW8sIG8gZGUgYWxnw7puIG1vZG8gYWN0dWFyIGRlIG1hbmVyYSBxdWUgYWZlY3RlIGRlIGZvcm1hIG5lZ2F0aXZhIGEgbGEgcG9zaWJpbGlkYWQgZGUgY29tdW5pY2Fyc2UgZW4gdGllbXBvIHJlYWw7CkludGVyZmVyaXIgbyBpbnRlcnJ1bXBpciBlbCBTZXJ2aWNpbywgc2Vydmlkb3JlcyBvIHJlZGVzIGNvbmVjdGFkb3MgYWwgU2VydmljaW8sIG8gaW5jdW1wbGlyIGxvcyByZXF1aXNpdG9zLCBwcm9jZWRpbWllbnRvcyB5IHJlZ3VsYWNpb25lcyBkZSBsYSBwb2zDrXRpY2EgZGUgcmVkZXMgY29uZWN0YWRhcyBhbCBzZXJ2aWNpby4KNS4gTGltaXRhY2lvbmVzIGRlIGxhIFJlc3BvbnNhYmlsaWRhZDoKIApDb24gdG9kYSBsYSBleHRlbnNpw7NuIHBlcm1pdGlkYSBwb3IgbGFzIGxleWVzIG5hY2lvbmFsZXMgYXBsaWNhYmxlcywgbGEgRlVDUyBubyBhc3VtZSByZXNwb25zYWJpbGlkYWQgY29udHJhY3R1YWwgbyBleHRyYWNvbnRyYWN0dWFsIGFsZ3VuYSBkZSBsb3MgZGHDsW9zIHkgcGVyanVpY2lvcyBkaXJlY3RvcywgaW5kaXJlY3RvcywgaW5jaWRlbnRhbGVzLCBlc3BlY2lhbGVzIG8gZW1lcmdlbnRlcyAoaW5jbHVzbyBzaSBsYSBGdW5kYWNpw7NuIFVuaXZlcnNpdGFyaWEgZGUgQ2llbmNpYXMgZGUgbGEgU2FsdWQgaHViaWVyYSBzaWRvIGFkdmVydGlkbyBkZSBsYSBwb3NpYmlsaWRhZCBkZSBsb3MgbWlzbW9zKSBxdWUgdHJhaWdhbiBjYXVzYSBkZWw6IGVsIHVzbyBvIGRlIGxhIGltcG9zaWJpbGlkYWQgZGUgdXNhciBlbCBzZXJ2aWNpbzsgZWwgZGVsIGFjY2VzbyBubyBhdXRvcml6YWRvIMOzIGFsdGVyYWNpw7NuIGRlIHN1cyB0cmFuc21pc2lvbmVzIGRlIGRhdG9zOyBlbCBkZWNsYXJhY2lvbmVzIGRlIGNvbmR1Y3RhIGRlIHRlcmNlcm9zIGEgdHJhdsOpcyBkZWwgc2VydmljaW8uCiAKRWwgdXN1YXJpbyBhY3VlcmRhIGFkZW3DoXMgcXVlIGxhIEZ1bmRhY2nDs24gVW5pdmVyc2l0YXJpYSBkZSBDaWVuY2lhcyBkZSBsYSBTYWx1ZCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5nw7puIGRhw7FvIG8gcGVyanVpY2lvIGRlcml2YWRvIGRlIGxhIGludGVycnVwY2nDs24sIHN1c3BlbnNpw7NuIG8gdGVybWluYWNpw7NuIGRlbCBzZXJ2aWNpbywgaW5jbHV5ZW5kbywgcGVybyBubyBsaW1pdMOhbmRvc2UsIGEgZGHDsW9zLCBsdWNybyBjZXNhbnRlLCB1c28sIGRhdG9zIHUgb3Ryb3MgYmllbmVzIGludGFuZ2libGVzLCBvIHBlcmp1aWNpb3MgZGlyZWN0b3MsIGluZGlyZWN0b3MsIGluY2lkZW50YWxlcywgZXNwZWNpYWxlcywgY29uc2VjdWVudGVzLCBvIGVqZW1wbGFyZXMsIHlhIHNlYSBxdWUgdGFsIGludGVycnVwY2nDs24sIHN1c3BlbnNpw7NuIG8gdGVybWluYWNpw7NuIHNlYSBqdXN0aWZpY2FkYSBvIG5vLCBuZWdsaWdlbnRlIMOzIGludGVuY2lvbmFsLCBhZHZlcnRpZGEgw7MgaW5hZHZlcnRpZGEuCiAKTGEgRlVDUywgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcmV0aXJhciBzaW4gcHJldmlhIG5vdGlmaWNhY2nDs24gYSBjdWFscXVpZXIgdXN1YXJpbyBxdWUgc2UgY29uc2lkZXJlIG9mZW5zaXZvIGVuIGxhcyBjb252ZXJzYWNpb25lcyBvIGRpw6Fsb2dvcyBkZSBsb3MgdXN1YXJpb3MgbyB2aXNpdGFudGVzIGRlbCBzaXRpbyB3ZWIgZW4gZm9yb3MgbyBjaGF0cy4KIApMYSBGVUNTIG5vIGVzIHJlc3BvbnNhYmxlIGNvbiByZXNwZWN0byBhIGxhIHByaXZhY2lkYWQgZGUgbGEgaW5mb3JtYWNpw7NuIHBlcnNvbmFsIHF1ZSBlbCB1c3VhcmlvIGRpdnVsZ3VlIG8gcmVtaXRhIGVuIGZvcm9zLCBzZXNpb25lcyBkZSBjaGF0IGRlbCBzaXRpbyB3ZWIsIGVuIGNvcnJlb3MgZWxlY3Ryw7NuaWNvcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpdGlvIHdlYi4gRWwgdXN1YXJpbyBlcyBleGNsdXNpdm8gcmVzcG9uc2FibGUgZGUgbGEgcHJpdmFjaWRhZCB5IGN1c3RvZGlhIGRlIGN1YWxxdWllciBkYXRvIHBlcnNvbmFsIHF1ZSBlbnRyZWd1ZSBhIHVuYSBwZXJzb25hIG8gZW1wcmVzYSBkaWZlcmVudGUgRlVDUy4KIAo2LiBEZXJlY2hvcyBkZSBQcm9waWVkYWQgSW50ZWxlY3R1YWw6CiAKRWwgVXN1YXJpbyByZWNvbm9jZSB5IGFjZXB0YSBxdWUgZWwgc2VydmljaW8geSBjdWFscXVpZXIgc29mdHdhcmUgdXNhZG8gZW4gcmVsYWNpw7NuIGNvbiBlbCBzZXJ2aWNpbyBxdWUgY29udGllbmUgaW5mb3JtYWNpw7NuIGNvbmZpZGVuY2lhbCB5IGRlIHByb3BpZWRhZCBhamVuYSBwcm90ZWdpZGEgcG9yIGxhIGxlZ2lzbGFjacOzbiBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgeSBvdHJhcyBkaXNwb3NpY2lvbmVzIGxlZ2FsZXMuIEFkZW3DoXMgZWwgdXN1YXJpbyByZWNvbm9jZSB5IGFjZXB0YSBxdWUgZWwgY29udGVuaWRvIGluY2x1eWVuZG8sIHBlcm8gbm8gbGltaXTDoW5kb3NlLCB0ZXh0b3MsIHByb2dyYW1hcyAoYXBwbGV0cyksIGZvdG9ncmFmw61hcywgZ3LDoWZpY29zLCB2aWRlb3MgdSBvdHJvIG1hdGVyaWFsIGNvbnRlbmlkbyBlbiBlbCBzZXJ2aWNpbywgYXPDrSBjb21vIHRhbWJpw6luIGluZm9ybWFjaW9uZXMgZGl2dWxnYWRhcyBhbCB1c3VhcmlvIGEgdHJhdsOpcyBkZWwgc2VydmljaW8sIGVzdMOhIHByb3RlZ2lkbyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIG1hcmNhcyBjb21lcmNpYWxlcywgcGF0ZW50ZXMgeSBvdHJvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hLCBjb211bml0YXJpYSBlIGludGVybmFjaW9uYWwgYXBsaWNhYmxlLgogCkVsIFVzdWFyaW8gcmVjb25vY2UgeSBhY3VlcmRhIHF1ZSBzb2xhbWVudGUgcG9kcsOhIHV0aWxpemFyIHRhbGVzIG1hdGVyaWFsZXMgZSBpbmZvcm1hY2lvbmVzIHNlZ8O6biBsbyBleHByZXNhbWVudGUgYXV0b3JpemFkbyBwb3IgbGEgRlVDUywgeSBubyBwb2Ryw6EgY29waWFyLCByZXByb2R1Y2lyLCB0cmFuc21pdGlyLCBkaXN0cmlidWlyIG8gY3JlYXIgb2JyYXMgZGVyaXZhZGFzIGEgcGFydGlyIGRlIHRhbGVzIG1hdGVyaWFsZXMgbyBpbmZvcm1hY2lvbmVzIHNpbiBsYSBleHByZXNhIGF1dG9yaXphY2nDs24gZGVsIHJlc3BlY3Rpdm8gcHJvcGlldGFyaW8uCiAKRWwgVXN1YXJpbyBzZSBvYmxpZ2EgYSBubyBtb2RpZmljYXIgZWwgc29mdHdhcmUgaW52b2x1Y3JhZG8gZW4gZWwgcG9ydGFsIHdlYiBkZSBuaW5ndW5hIG1hbmVyYSwgbyB1dGlsaXphciB2ZXJzaW9uZXMgZGUgc29mdHdhcmUgbW9kaWZpY2FkYXMgY29uIGVsIGZpbiwgZW50cmUgb3Ryb3MsIGRlIG9idGVuZXIgYWNjZXNvIG5vIGF1dG9yaXphZG8gYWwgU2VydmljaW8uIEVsIFVzdWFyaW8gc2Ugb2JsaWdhIGEgbm8gYWNjZWRlciBhbCBTZXJ2aWNpbyBwb3Igb3Ryb3MgbWVkaW9zIHF1ZSBubyBzZWFuIGEgdHJhdsOpcyBkZSBsYSBpbnRlcmZheiBxdWUgbGEgRlVDUyBwcm9wb3JjaW9uYSBwYXJhIGFjY2VkZXIgYWwgU2VydmljaW8uCiAKNy4gR2FyYW50w61hIExpbWl0YWRhOgogCkVsIHVzbyBkZWwgc2VydmljaW8gc2Vyw6EgYmFqbyBleGNsdXNpdm8gcmllc2dvIHkgcmVzcG9uc2FiaWxpZGFkIGRlbCB1c3VhcmlvLiBFbCBzZXJ2aWNpbyBlcyBzdW1pbmlzdHJhZG8gZ3JhdHVpdGFtZW50ZSB5IGRlcGVuZGUgZGUgbGEgZnVuY2lvbmFsaWRhZCBkZSB2YXJpb3MgZmFjdG9yZXMsIGNvbW8gbGEgaW50ZXJhY2Npw7NuIGRlIHNlcnZpZG9yZXMgeSBzZXJ2aWNpb3MgZGUgdGVsZWNvbXVuaWNhY2lvbmVzIGRlIHRlcmNlcm9zLCBsYSBhZGVjdWFjacOzbiBkZSBsb3MgZXF1aXBvcyBkZSB1c3VhcmlvIHkgZGVzdGluYXRhcmlvIGRlbCBtZW5zYWplLiBDb25zaWRlcmFuZG8gdGFsZXMgZmFjdG9yZXMsIGxhIEZVQ1MgZW1wbGVhcsOhIHN1cyBtZWpvcmVzIGVzZnVlcnpvcyBwYXJhIHF1ZSBsb3MgbWVuc2FqZXMgZGUgZS1tYWlsIGVudmlhZG9zIGEgdHJhdsOpcyBkZWwgc2VydmljaW8sIHNlYW4gcmVjaWJpZG9zIHBvciBlbCBkZXN0aW5hdGFyaW8gZW4gZm9ybWEgY29ycmVjdGEgeSBzaW4gaW50ZXJmZXJlbmNpYXMuIFNpbiBlbWJhcmdvLCBwb3IgZXN0YXMgbWlzbWFzIHJhem9uZXMsIGxhIEZVQ1Mgbm8gcHVlZGUgZ2FyYW50aXphciBxdWUgbG9zIG1lbnNhamVzIHNlcsOhbiBlbnRyZWdhZG9zIGFsIGRlc3RpbmF0YXJpbyBjb3JyZWN0bywgZW4gdW4gcGxhem8gYWRlY3VhZG8sIG8gbm8gc3Vmcmlyw6FuIGV4dHJhdsOtbywgZGl2dWxnYWNpw7NuIG8gdmlvbGFjacOzbiBwb3IgcGFydGVzIGRlIHRlcmNlcm9zIG5vIGF1dG9yaXphZG9zLCBjb21vIHBvciBlamVtcGxvcyAiaGFja2VycyIuCiAKU2UgYWNvbnNlamEgYWwgdXN1YXJpbyBubyBjb25maWFyIGV4Y2x1c2l2YW1lbnRlIGVuIGVsIHNlcnZpY2lvIHBhcmEgZW52aWFyIGluZm9ybWFjaW9uZXMgaW1wb3J0YW50ZXMgbyBjb25maWRlbmNpYWxlcyB5IGxhIEZ1bmRhY2nDs24gVW5pdmVyc2l0YXJpYSBkZSBDaWVuY2lhcyBkZSBsYSBTYWx1ZCBubyBzZSByZXNwb25zYWJpbGl6YXLDoSBwb3IgbmluZ3VuYSBmYWxsYSByZXN1bHRhbnRlIGRlbCBlbnbDrW8gZGUgbWVuc2FqZXMgcG9yIHBhcnRlIGRlbCB1c3VhcmlvLgogCkxhIEZVQ1Mgbm8gZ2FyYW50aXphIHF1ZSBlbCBzZXJ2aWNpbyBzZSBwcmVzdGFyw6EgZGUgbWFuZXJhIGluaW50ZXJydW1waWRhLCBzZWd1cmEgbyBsaWJyZSBkZSBlcnJvci4gTGEgRlVDUyB0YW1wb2NvIG90b3JnYSBuaW5ndW5hIGdhcmFudMOtYSBlbiBjdWFudG8gYSBsb3MgcmVzdWx0YWRvcyBxdWUgc2UgcHVlZGFuIG9idGVuZXIgZGVsIHVzbyBkZWwgc2VydmljaW8sIG5pIHF1ZSBsb3MgZGVmZWN0b3MgZW4gbG9zIHByb2dyYW1hcyBzZXLDoW4gY29ycmVnaWRvcy4KIApFbCB1c3VhcmlvIHJlY29ub2NlIHkgYWN1ZXJkYSBxdWUgY3VhbHF1aWVyIG1hdGVyaWFsIHkvbyBpbmZvcm1hY2nDs24gb2J0ZW5pZGEgYSB0cmF2w6lzIGRlbCBzZXJ2aWNpbyBvIGRlIHN1IHV0aWxpemFjacOzbiwgZXN0YXLDoSBzdWpldGEgYSBzdSBlbnRlcm8gY3JpdGVyaW8geSByaWVzZ287IHkgcXVlIHNlcsOhIGVsIMO6bmljbyByZXNwb25zYWJsZSBkZSBjdWFscXVpZXIgZGHDsW8gb2N1cnJpZG8gZW4gc3UgY29tcHV0YWRvcmEgbyBww6lyZGlkYSBkZSBkYXRvcyBxdWUgcHVlZGEgcmVzdWx0YXIgZGUgcmVjaWJpciB0YWwgbWF0ZXJpYWwuCiAKTm90YTogc2kgcmVjaWJlIHVuIG1lbnNhamUgZGUgY29ycmVvIGVsZWN0csOzbmljbyBubyBzb2xpY2l0YWRvLCBvIGN1YWxxdWllciBtZW5zYWplIGFtZW5hemFkb3IgdSBvZmVuc2l2bywgbyBjb25zaWRlcmEgcXVlIG90cm8gdXN1YXJpbyBvIGN1YWxxdWllciBwZXJzb25hIGxlIGVzdMOhIHZ1bG5lcmFuZG8gdW4gZGVyZWNobyBjb25mb3JtZSBhIGVzdGUgZG9jdW1lbnRvLCByZW3DrXRhbm9zIHVuYSBjb3BpYSBjb21wbGV0YSB5IHNpbiBtb2RpZmljYXIgZGVsIG1lbnNhamUgZGUgY29ycmVvIGVsZWN0csOzbmljbyBjb24gbG9zIGVuY2FiZXphZG9zIGNvbXBsZXRvcyBhIGxhIHNpZ3VpZW50ZSBkaXJlY2Npw7NuIGVsZWN0csOzbmljYTogeWx0b3JvQGZ1Y3NhbHVkLmVkdS5jbwoKTGFzIHByZWd1bnRhcyBxdWUgZWwgdXN1YXJpbyBvIGN1YWxxdWllciBwZXJzb25hIGRlc2VlIHJlYWxpemFyIHNvYnJlIGxvIGV4cHJlc2FkbyBlbiBlc3RlIGRvY3VtZW50bywgbGFzIHB1ZWRlIGZvcm11bGFyIGEgbGEgc2lndWllbnRlIGRpcmVjY2nDs24gZWxlY3Ryw7NuaWNhOiB5bHRvcm9AZnVjc2FsdWQuZWR1LmNvCg==