Permeation properties of Concrete Added with a Petrochemical Industry Waste

The aim of this study is to evaluate the permeation properties of concrete added with a residue of a petrochemical industry located in Colombia, called catalytic cracking catalyst residue (FCC). Concrete samples with 10, 20 and 30 % of FCC incorporated as cement replacement were evaluated. As refere...

Full description

Autores:
Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1528
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1528
https://doi.org/10.15446/ing.investig.v37n3.58609
Palabra clave:
Craqueo catalítico
Hormigón
Hormigón - Resistencia a la penetración
Catalytic cracking
Concrete
Concrete - Penetration resistance
Fluid catalytic cracking
Metakaolin
Pozzolanic additions
Blended concrete
Permeation properties
Durability
Catalizador de craqueo catalítico
Metacaolín
Adiciones puzolánicas
Concreto adicionado
Propiedades de permeación
Durabilidad
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_f6752569f0c29615f7f1a0e0ec91653d
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1528
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Permeation properties of Concrete Added with a Petrochemical Industry Waste
dc.title.alternative.spa.fl_str_mv Propiedades de permeación de concretos adicionados con un residuo de la industria petroquímica
title Permeation properties of Concrete Added with a Petrochemical Industry Waste
spellingShingle Permeation properties of Concrete Added with a Petrochemical Industry Waste
Craqueo catalítico
Hormigón
Hormigón - Resistencia a la penetración
Catalytic cracking
Concrete
Concrete - Penetration resistance
Fluid catalytic cracking
Metakaolin
Pozzolanic additions
Blended concrete
Permeation properties
Durability
Catalizador de craqueo catalítico
Metacaolín
Adiciones puzolánicas
Concreto adicionado
Propiedades de permeación
Durabilidad
title_short Permeation properties of Concrete Added with a Petrochemical Industry Waste
title_full Permeation properties of Concrete Added with a Petrochemical Industry Waste
title_fullStr Permeation properties of Concrete Added with a Petrochemical Industry Waste
title_full_unstemmed Permeation properties of Concrete Added with a Petrochemical Industry Waste
title_sort Permeation properties of Concrete Added with a Petrochemical Industry Waste
dc.creator.fl_str_mv Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
dc.contributor.author.none.fl_str_mv Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
dc.contributor.researchgroup.spa.fl_str_mv Estructuras y Materiales
dc.subject.armarc.spa.fl_str_mv Craqueo catalítico
Hormigón
Hormigón - Resistencia a la penetración
topic Craqueo catalítico
Hormigón
Hormigón - Resistencia a la penetración
Catalytic cracking
Concrete
Concrete - Penetration resistance
Fluid catalytic cracking
Metakaolin
Pozzolanic additions
Blended concrete
Permeation properties
Durability
Catalizador de craqueo catalítico
Metacaolín
Adiciones puzolánicas
Concreto adicionado
Propiedades de permeación
Durabilidad
dc.subject.armarc.eng.fl_str_mv Catalytic cracking
Concrete
Concrete - Penetration resistance
dc.subject.proposal.eng.fl_str_mv Fluid catalytic cracking
Metakaolin
Pozzolanic additions
Blended concrete
Permeation properties
Durability
dc.subject.proposal.spa.fl_str_mv Catalizador de craqueo catalítico
Metacaolín
Adiciones puzolánicas
Concreto adicionado
Propiedades de permeación
Durabilidad
description The aim of this study is to evaluate the permeation properties of concrete added with a residue of a petrochemical industry located in Colombia, called catalytic cracking catalyst residue (FCC). Concrete samples with 10, 20 and 30 % of FCC incorporated as cement replacement were evaluated. As reference materials, concrete without addition and concrete added with 20 % of metakaolin (MK) were used. MK is a high performance pozzolan of chemical composition similar to the FCC. The properties studied, in addition to the compressive strength, were: water absorption by total immersion, porosity, surface absorption and capillary sorption. The results showed that the concrete added with FCC and MK had similar behavior, and were slightly higher than the control sample. The total absorption and porosity were below 5 % and 10 % respectively for all samples; this means that the incorporation of the addition reduces the permeability of concrete. In this sense, FCC is considered as a good alternative for producing more durable concrete, being the optimum percentage, 10 % cement replacement.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2021-05-31T13:58:33Z
2021-10-01T17:46:32Z
dc.date.available.none.fl_str_mv 2021-05-31T13:58:33Z
2021-10-01T17:46:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1528
dc.identifier.doi.none.fl_str_mv 10.15446/ing.investig.v37n3.58609
dc.identifier.url.none.fl_str_mv https://doi.org/10.15446/ing.investig.v37n3.58609
identifier_str_mv 2248-8723
10.15446/ing.investig.v37n3.58609
url https://repositorio.escuelaing.edu.co/handle/001/1528
https://doi.org/10.15446/ing.investig.v37n3.58609
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Ingeniería e Investigación, vol. 37 n.° 3, december - 2017 (23-29).
dc.relation.citationendpage.spa.fl_str_mv 29
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 23
dc.relation.citationvolume.spa.fl_str_mv 37
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Agamez, Y., Oviedo, L. A., Navarro, U., Centeno, M. a. & Odriozola, J. A. (2006). Análisis de la Microporosidad de Catalizadores de FCC. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(115), 271-278.
Aguirre, A.M., Mejía de Gutiérrez, R. (2013). Durability of reinforced concrete exposed to aggressive conditions. Materiales de Construcción, 63(309), 7-38.DOI: 10.3989/mc.2013.00313
Asbridge, A.H., Chadbourn, G.A. & Page, C.L. (2001). Effects of Metakaolin and the Interfacial Zone on the Diffusion on chloride ions through Cement Mortars. Cement and Concrete Research, 31(11), 1567-1572.DOI: 10.1016/S0008-8846(01)00598-1.
Antiohos, S. K., Chouliara, E., & Tsimas, S. (2006). Reuse of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material. China Particuology, 4(2), 73-76. DOI: 10.1016/S1672-2515(07)60238-3.
Badogiannis, E.G., Sfika,s I.P., Voukia, D.V., Trezos, K.G., & Tsivilis, S.G. (2015). Durability of metakaolin Self- Compacting concrete. Construction and Building Materials, 82, 133-141. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.23.
Borosnyói, A. (2016) Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials. Construction and Building Materials, 112, 307-324. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.224.
Borrachero, M., Monzó, J., Payá, J., Peris-Mora, E., Velázquez, S., & Soriano, L. (2002). El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Pórtland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica. Paper presented at the VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia.
Caldarone, A., Gruber, A., & Burg, G. (1994). High-Reactivity Metakaolin: A New Generation Mineral Mixture. Concrete International: Design and Construction, 37-41.
Delagrave, A. (1996). Influence of chloride ions and pH level on the durability of high performance cement pastes (part II). Cement and Concrete Research, 26, 749-760 DOI:10.1016/S0008-8846(96)85012-5.
Detwiler, R. & P. Mehta. (1989). Chemical and physical effects of silica fume on the mechanical behavior of concrete. ACI Materials Journal, 86, 609-614.
Dhir, R. & Jones, M. R. (2002). Use of the unfamiliar cement to ENV 197-1 in concrete, M.R.J. Ravindra Dhir, Editor. London.
Fernández, A. & A. Palomo. (2009). Propiedades y aplicaciones de los cementos alcalinos. Revista Ingeniería de Construcción, 24(3), 213-232. http://dx.doi.org/10.4067/S0718-50732009000300001
Jung-Hsiu, W., Wan-Lung, W., & Kung-Chung, H. (2003). The Effect of Waste Oil-Cracking Catalyst on the Compressive Strength of Cement Pastes and Mortars. Cement and Concrete Research, 33(2), 245-256. DOI:10.1016/S0008-8846(02)01006-2.
Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20(1-2), 73-80. DOI:10.1016/S0169-1317(01)00040-0.
Khatib, J.M. & Clay, R.M. (2004). Absorption characteristics of metakaolin concrete. Cement and concrete Research, 34(1), 19-29. DOI:10.1016/S0008-8846(03)00188-1.
Mehta, K. & P. Monteiro. (1998). Concreto: Estructura, Propiedades y Materiales. Instituto Mexicano del Cemento y del Concreto A.C., México, D.F.
Mehta, K. & Monteiro, P. (2006). Concrete, Microstructure, Properties, and Materials. McGraw-Hill, United States.
Mejía de Gutiérrez, R., Torres J. & Guerrero, C. (2004). Análisis del Proceso Térmico de producción de una puzolana. Materiales de Construcción, 54 (274), 65-72. DOI: 10.3989/mc.2004.v54.i274.233.
Mejia de Gutiérrez, R., Rodríguez, C., Rodríguez, E., Torres, J. & Delvasto, S. (2009). Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros. Revista Facultad de Ingeniería Universidad de Antioquia, (48), 55-64.
Neville, A. & Brooks, J. (1998). Tecnología del Concreto (1 ed.). México, D.F.: Editorial Trillas. Rincón, O., Carruyo A., Andrade, C., Helene P. & Díaz, I. (1997). Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado. CYTED.
Pacewska B., Wilinska I. & Bukowska, M. (2000). Hydration of cement slurry in the presence of spent cracking catalyst. Journal of Thermal Analysis and Calorimetry, 60, 71-78. DOI: 10.1023/A:1010120518062
Pacewska, B., Wilinska, I., M Bukowska, M., & Nocun-Wczelik, W. (2002a). Effect of Waste Aluminosilicate Material on Cement Hydration and Properties of Cement Mortar. Cement and Concrete Research, 32(11), 1823-1830. DOI:10.1016/S0008-8846(02)00873-6.
Pacewska, B., Bukowska, M, Wilinska, I., & Swatb, M. (2002b). Modification of Properties of Concrete by a New Pozzolan a Waste Catalyst from the Catalytic Process in a Fluidized Bed. Cement and Concrete Research, 32(1), 145-152. DOI:10.1016/S0008-8846(01)00646-9.
Payá, J., J, M., & Borrachero, M. (1999). Fluid catalytic cracking catalyst residue (FC3R) an excellent mineral by-product for improving early strength development of cements mixtures. Cement and Concrete Research, 29, 1773-1779. DOI:10.1016/S0008-8846(99)00164-7.
Payá, J., Monzo, J., & Borrachero, M. (2001a). Physical, Chemical and Mechanical Properties of Fluid Catalytic Cracking Catalyst Residue (FC3R) Blended Cements. Cement and Concrete Research, 31(2), 57-61. DOI: 10.1016/S0008-8846(00)00432-4
Payá, J., Monzó, J., Borrachero, M., & Velázquez, S. (2003). Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R), Thermogravimetric Analysis Studies on FC3R Portland Cement Pastes. Cement and Concrete Research, 33(4), 603-609. DOI:10.1016/S0008-8846(02)01026-8.
Payá, J., Monzo, J. & Borrachero, M. (2001b). Fluid Catalytic Cracking Residue (FC3R) as a New Pozzolanic Material: Thermal Analysis Monitoring of FC3R/Portland Cement Reactions, Seventh CANMET/ACI. International Conference on Fly Ash, Silica Fume Slag and Natural Pozzolans in Concrete.
Pinto, C.A, Büchler, P.M. & Dweck, J. (2007). Pozzolanic Properties of a Residual FCC Catalyst during the Early Stages of Cement Hydration Evaluation by thermal analysis. Journal of Thermal Analysis and Calorimetry, 87(3), 715-720. DOI:10.1007/s10973-006-7772-2
Razak, H.A. & Wong, H.S. (2005). Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research, 35(4), 688-695. DOI:10.1016/j.cemconres.2004.05.040.
Richardson, I.G. (1999). The natura of CSH in hardened cements. cement and Concrete Research, 29, 1131-1147. DOI:10.1016/S0008-8846(99)00168-4.
Soriano, M.L. (2008). Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC). Universidad Politécnica de Valencia.
Solis, R., & Moreno, E. (2006). Análisis de la porosidad del concreto con agregado calizo. Revista Facultad de Ingeniería, 21(3), 57-68.
Talero, R. (1986). Contribución al estudio analítico y físicoquímico del sistema: cementos puzolánicos-yeso-agua, in Ftad de C. Químicas., Universidad Complutense de Madrid: Madrid.
Taylor, H.F.W. (1967). Enciclopedia de la Química Industrial: La Química de los Cementos. Ediciones URMO ed. Escuela de Ingenieros Industriales de Bilbao, Universidad de Deusto. 1967, Bilbao, España.
Torres, J., Mejía de Gutiérrez, R. & Puertas, F. (2007). Effect of Kaolin treatment temperature on mortar chloride permeability. Materiales de Construcción, 57(285), 61-69. DOI:10.3989/mc.2007.v57.i285.39
Torres, J., Trochez, J., & Mejía de Gutiérrez, R. (2012a). Reutilización de un residuo de la industria petroquímica como adición al cemento Portland. Revista Ingeniería y Ciencia, 8(15), 141-156.
Torres, J., MejÍa de Gutiérrez, R., Izquierdo, S., & Trochez, J. (2012b). Estudio comparativo de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC) y metacaolín (MK). Ciencia e Ingeniería Neogranadina, 22(1), 7-17. DOI: http://dx.doi.org/10.18359/rcin.246
Torres, N., Izquierdo, S., Torres, J., & Mejía de Gutiérrez, R. (2014). Resistance to chloride ion penetration and carbonation of blended concrete with a residue of the petrochemical industry. Revista Ingeniería e Investigación, 34(1), 11-16. http://www.revistas.unal.edu.co/index.php/ingeinv/rt/printerFriendly/38730/44984.
Trafraoui, A., Escadeillas, G. & Vidal, T. (2016). Durability of the Ultra High Performances concrete containing metakaolin. Construction and Building Materials, 112, 980-987. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.169.
Trochez, J., Torres, J. & Mejía de Gutiérrez, R. (2010). Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalıtico usado (FCC) de una refinería colombiana. Revista Facultad de Ingeniería Universidad de Antioquia, 55, 26-34. http://jaibana.udea.edu.co/grupos/revista/revistas/nro055/Articulo %203.pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia.
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/58609
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1528/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1528/2/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1528/3/10.15446ing.investig.v37n3.58609.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1528/5/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1528/6/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
a06e6dbe7f7295d4d4180d20fa6f62fd
64b9e4e2f9239c86a757bd40c76a1397
64b9e4e2f9239c86a757bd40c76a1397
f5bcce5f8521d97445d99bbb39a6e67a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355635433635840
spelling Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Torres Agredo, Janneth893540b17667537fb86dfa9cdbd11dd5600Mejía de Gutierrez, Rubyca1edb84f53a87ce355254dc3d73dacf600Estructuras y Materiales2021-05-31T13:58:33Z2021-10-01T17:46:32Z2021-05-31T13:58:33Z2021-10-01T17:46:32Z20172248-8723https://repositorio.escuelaing.edu.co/handle/001/152810.15446/ing.investig.v37n3.58609https://doi.org/10.15446/ing.investig.v37n3.58609The aim of this study is to evaluate the permeation properties of concrete added with a residue of a petrochemical industry located in Colombia, called catalytic cracking catalyst residue (FCC). Concrete samples with 10, 20 and 30 % of FCC incorporated as cement replacement were evaluated. As reference materials, concrete without addition and concrete added with 20 % of metakaolin (MK) were used. MK is a high performance pozzolan of chemical composition similar to the FCC. The properties studied, in addition to the compressive strength, were: water absorption by total immersion, porosity, surface absorption and capillary sorption. The results showed that the concrete added with FCC and MK had similar behavior, and were slightly higher than the control sample. The total absorption and porosity were below 5 % and 10 % respectively for all samples; this means that the incorporation of the addition reduces the permeability of concrete. In this sense, FCC is considered as a good alternative for producing more durable concrete, being the optimum percentage, 10 % cement replacement.El objetivo de este estudio es evaluar las propiedades de permeación de concretos adicionados con un residuo de una industria petroquímica localizada en Colombia, llamado residuo de catalizador de craqueo catalítico (o FCC, por sus siglas en inglés). Se evaluaron concretos con 10, 20 y 30 % de FCC incorporado como reemplazo del cemento. Como materiales de referencia se utilizaron concreto sin adición y concreto adicionado con 20 % de metacaolin y una puzolana de alto desempeño que presenta composición química similar al FCC. Además de la resistencia a la compresión, las propiedades estudiadas fueron la absorción de agua por inmersión total, la porosidad, la absorción superficial y la absorción capilar. Los resultados mostraron que los concretos adicionados con FCC y MK tuvieron un comportamiento similar, y fueron ligeramente superiores a la muestra control. La absorción total y la porosidad estuvieron por debajo del 5 % y 10 %, respectivamente para todas las muestras, esto significa que la incorporación de la adición contribuye a una menor permeabilidad. En este sentido, el FCC se considera una buena alternativa para producir concretos durables. A su vez, se recomienda utilizar un porcentaje del 10 % como reemplazo del cemento.1 Civil Engineer. Doctoral student in Science and Technology of Materials, Uni-versidad Nacional de Colombia, Bogotá. Affiliation: Associate Professor, Es-cuela Colombiana de Ingeniería. E-mail: nancy.torres@escuelaing.edu.co 2 Materials Engineer. Universidad del Valle, Ph.D. Affiliation: Associate Profes-sor, Universidad Nacional de Colombia, Palmira, Grupo de Investigación Ma-teriales y Medio Ambiente, GIMMA. E-mail: jtorresa@unal.edu.co 3 Chemist, Universidad del Valle, Ph.D. Affiliation: Titular Professor, Universi-dad del Valle, Grupo de Investigación Materiales Compuestos (CENM). E-mail: ruby.mejia@correounivalle.edu.co7 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá, Colombia.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/ingeinv/article/view/58609Permeation properties of Concrete Added with a Petrochemical Industry WastePropiedades de permeación de concretos adicionados con un residuo de la industria petroquímicaArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería e Investigación, vol. 37 n.° 3, december - 2017 (23-29).2932337N/AIngeniería e InvestigaciónAgamez, Y., Oviedo, L. A., Navarro, U., Centeno, M. a. & Odriozola, J. A. (2006). Análisis de la Microporosidad de Catalizadores de FCC. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(115), 271-278.Aguirre, A.M., Mejía de Gutiérrez, R. (2013). Durability of reinforced concrete exposed to aggressive conditions. Materiales de Construcción, 63(309), 7-38.DOI: 10.3989/mc.2013.00313Asbridge, A.H., Chadbourn, G.A. & Page, C.L. (2001). Effects of Metakaolin and the Interfacial Zone on the Diffusion on chloride ions through Cement Mortars. Cement and Concrete Research, 31(11), 1567-1572.DOI: 10.1016/S0008-8846(01)00598-1.Antiohos, S. K., Chouliara, E., & Tsimas, S. (2006). Reuse of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material. China Particuology, 4(2), 73-76. DOI: 10.1016/S1672-2515(07)60238-3.Badogiannis, E.G., Sfika,s I.P., Voukia, D.V., Trezos, K.G., & Tsivilis, S.G. (2015). Durability of metakaolin Self- Compacting concrete. Construction and Building Materials, 82, 133-141. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.23.Borosnyói, A. (2016) Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials. Construction and Building Materials, 112, 307-324. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.224.Borrachero, M., Monzó, J., Payá, J., Peris-Mora, E., Velázquez, S., & Soriano, L. (2002). El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Pórtland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica. Paper presented at the VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia.Caldarone, A., Gruber, A., & Burg, G. (1994). High-Reactivity Metakaolin: A New Generation Mineral Mixture. Concrete International: Design and Construction, 37-41.Delagrave, A. (1996). Influence of chloride ions and pH level on the durability of high performance cement pastes (part II). Cement and Concrete Research, 26, 749-760 DOI:10.1016/S0008-8846(96)85012-5.Detwiler, R. & P. Mehta. (1989). Chemical and physical effects of silica fume on the mechanical behavior of concrete. ACI Materials Journal, 86, 609-614.Dhir, R. & Jones, M. R. (2002). Use of the unfamiliar cement to ENV 197-1 in concrete, M.R.J. Ravindra Dhir, Editor. London.Fernández, A. & A. Palomo. (2009). Propiedades y aplicaciones de los cementos alcalinos. Revista Ingeniería de Construcción, 24(3), 213-232. http://dx.doi.org/10.4067/S0718-50732009000300001Jung-Hsiu, W., Wan-Lung, W., & Kung-Chung, H. (2003). The Effect of Waste Oil-Cracking Catalyst on the Compressive Strength of Cement Pastes and Mortars. Cement and Concrete Research, 33(2), 245-256. DOI:10.1016/S0008-8846(02)01006-2.Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20(1-2), 73-80. DOI:10.1016/S0169-1317(01)00040-0.Khatib, J.M. & Clay, R.M. (2004). Absorption characteristics of metakaolin concrete. Cement and concrete Research, 34(1), 19-29. DOI:10.1016/S0008-8846(03)00188-1.Mehta, K. & P. Monteiro. (1998). Concreto: Estructura, Propiedades y Materiales. Instituto Mexicano del Cemento y del Concreto A.C., México, D.F.Mehta, K. & Monteiro, P. (2006). Concrete, Microstructure, Properties, and Materials. McGraw-Hill, United States.Mejía de Gutiérrez, R., Torres J. & Guerrero, C. (2004). Análisis del Proceso Térmico de producción de una puzolana. Materiales de Construcción, 54 (274), 65-72. DOI: 10.3989/mc.2004.v54.i274.233.Mejia de Gutiérrez, R., Rodríguez, C., Rodríguez, E., Torres, J. & Delvasto, S. (2009). Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros. Revista Facultad de Ingeniería Universidad de Antioquia, (48), 55-64.Neville, A. & Brooks, J. (1998). Tecnología del Concreto (1 ed.). México, D.F.: Editorial Trillas. Rincón, O., Carruyo A., Andrade, C., Helene P. & Díaz, I. (1997). Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado. CYTED.Pacewska B., Wilinska I. & Bukowska, M. (2000). Hydration of cement slurry in the presence of spent cracking catalyst. Journal of Thermal Analysis and Calorimetry, 60, 71-78. DOI: 10.1023/A:1010120518062Pacewska, B., Wilinska, I., M Bukowska, M., & Nocun-Wczelik, W. (2002a). Effect of Waste Aluminosilicate Material on Cement Hydration and Properties of Cement Mortar. Cement and Concrete Research, 32(11), 1823-1830. DOI:10.1016/S0008-8846(02)00873-6.Pacewska, B., Bukowska, M, Wilinska, I., & Swatb, M. (2002b). Modification of Properties of Concrete by a New Pozzolan a Waste Catalyst from the Catalytic Process in a Fluidized Bed. Cement and Concrete Research, 32(1), 145-152. DOI:10.1016/S0008-8846(01)00646-9.Payá, J., J, M., & Borrachero, M. (1999). Fluid catalytic cracking catalyst residue (FC3R) an excellent mineral by-product for improving early strength development of cements mixtures. Cement and Concrete Research, 29, 1773-1779. DOI:10.1016/S0008-8846(99)00164-7.Payá, J., Monzo, J., & Borrachero, M. (2001a). Physical, Chemical and Mechanical Properties of Fluid Catalytic Cracking Catalyst Residue (FC3R) Blended Cements. Cement and Concrete Research, 31(2), 57-61. DOI: 10.1016/S0008-8846(00)00432-4Payá, J., Monzó, J., Borrachero, M., & Velázquez, S. (2003). Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R), Thermogravimetric Analysis Studies on FC3R Portland Cement Pastes. Cement and Concrete Research, 33(4), 603-609. DOI:10.1016/S0008-8846(02)01026-8.Payá, J., Monzo, J. & Borrachero, M. (2001b). Fluid Catalytic Cracking Residue (FC3R) as a New Pozzolanic Material: Thermal Analysis Monitoring of FC3R/Portland Cement Reactions, Seventh CANMET/ACI. International Conference on Fly Ash, Silica Fume Slag and Natural Pozzolans in Concrete.Pinto, C.A, Büchler, P.M. & Dweck, J. (2007). Pozzolanic Properties of a Residual FCC Catalyst during the Early Stages of Cement Hydration Evaluation by thermal analysis. Journal of Thermal Analysis and Calorimetry, 87(3), 715-720. DOI:10.1007/s10973-006-7772-2Razak, H.A. & Wong, H.S. (2005). Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research, 35(4), 688-695. DOI:10.1016/j.cemconres.2004.05.040.Richardson, I.G. (1999). The natura of CSH in hardened cements. cement and Concrete Research, 29, 1131-1147. DOI:10.1016/S0008-8846(99)00168-4.Soriano, M.L. (2008). Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC). Universidad Politécnica de Valencia.Solis, R., & Moreno, E. (2006). Análisis de la porosidad del concreto con agregado calizo. Revista Facultad de Ingeniería, 21(3), 57-68.Talero, R. (1986). Contribución al estudio analítico y físicoquímico del sistema: cementos puzolánicos-yeso-agua, in Ftad de C. Químicas., Universidad Complutense de Madrid: Madrid.Taylor, H.F.W. (1967). Enciclopedia de la Química Industrial: La Química de los Cementos. Ediciones URMO ed. Escuela de Ingenieros Industriales de Bilbao, Universidad de Deusto. 1967, Bilbao, España.Torres, J., Mejía de Gutiérrez, R. & Puertas, F. (2007). Effect of Kaolin treatment temperature on mortar chloride permeability. Materiales de Construcción, 57(285), 61-69. DOI:10.3989/mc.2007.v57.i285.39Torres, J., Trochez, J., & Mejía de Gutiérrez, R. (2012a). Reutilización de un residuo de la industria petroquímica como adición al cemento Portland. Revista Ingeniería y Ciencia, 8(15), 141-156.Torres, J., MejÍa de Gutiérrez, R., Izquierdo, S., & Trochez, J. (2012b). Estudio comparativo de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC) y metacaolín (MK). Ciencia e Ingeniería Neogranadina, 22(1), 7-17. DOI: http://dx.doi.org/10.18359/rcin.246Torres, N., Izquierdo, S., Torres, J., & Mejía de Gutiérrez, R. (2014). Resistance to chloride ion penetration and carbonation of blended concrete with a residue of the petrochemical industry. Revista Ingeniería e Investigación, 34(1), 11-16. http://www.revistas.unal.edu.co/index.php/ingeinv/rt/printerFriendly/38730/44984.Trafraoui, A., Escadeillas, G. & Vidal, T. (2016). Durability of the Ultra High Performances concrete containing metakaolin. Construction and Building Materials, 112, 980-987. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.169.Trochez, J., Torres, J. & Mejía de Gutiérrez, R. (2010). Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalıtico usado (FCC) de una refinería colombiana. Revista Facultad de Ingeniería Universidad de Antioquia, 55, 26-34. http://jaibana.udea.edu.co/grupos/revista/revistas/nro055/Articulo %203.pdfCraqueo catalíticoHormigónHormigón - Resistencia a la penetraciónCatalytic crackingConcreteConcrete - Penetration resistanceFluid catalytic crackingMetakaolinPozzolanic additionsBlended concretePermeation propertiesDurabilityCatalizador de craqueo catalíticoMetacaolínAdiciones puzolánicasConcreto adicionadoPropiedades de permeaciónDurabilidadLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1528/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALPermeation properties of Concrete Added with a Petrochemical Industry Waste.pdfapplication/pdf1312374https://repositorio.escuelaing.edu.co/bitstream/001/1528/2/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdfa06e6dbe7f7295d4d4180d20fa6f62fdMD52open accessTEXT10.15446ing.investig.v37n3.58609.pdf.txt10.15446ing.investig.v37n3.58609.pdf.txtExtracted texttext/plain33985https://repositorio.escuelaing.edu.co/bitstream/001/1528/3/10.15446ing.investig.v37n3.58609.pdf.txt64b9e4e2f9239c86a757bd40c76a1397MD53open accessPermeation properties of Concrete Added with a Petrochemical Industry Waste.pdf.txtPermeation properties of Concrete Added with a Petrochemical Industry Waste.pdf.txtExtracted texttext/plain33985https://repositorio.escuelaing.edu.co/bitstream/001/1528/5/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdf.txt64b9e4e2f9239c86a757bd40c76a1397MD55metadata only accessTHUMBNAILPermeation properties of Concrete Added with a Petrochemical Industry Waste.pdf.jpgPermeation properties of Concrete Added with a Petrochemical Industry Waste.pdf.jpgGenerated Thumbnailimage/jpeg15783https://repositorio.escuelaing.edu.co/bitstream/001/1528/6/Permeation%20properties%20of%20Concrete%20Added%20with%20a%20Petrochemical%20Industry%20Waste.pdf.jpgf5bcce5f8521d97445d99bbb39a6e67aMD56open access001/1528oai:repositorio.escuelaing.edu.co:001/15282022-08-09 12:46:36.382open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK