Negafibonacci Numbers via Matrices

In this paper, negafibonacci numbers are generated by means of matrix methods. A 2×2 matrix is used to obtain some properties of negafibonacci numbers; on the other hand, families of tridiagonal matrices are introduced to generate negafibonacci numbers through determinants.

Autores:
Triana Laverde, Juan Gabriel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1390
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1390
Palabra clave:
Fibonacci numbers
Matrices
Determinants.
Números de Fibonacci
Matrices
Determinantes
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_eaa2451b23c89b0afa7b9c3de8b012ca
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1390
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Negafibonacci Numbers via Matrices
title Negafibonacci Numbers via Matrices
spellingShingle Negafibonacci Numbers via Matrices
Fibonacci numbers
Matrices
Determinants.
Números de Fibonacci
Matrices
Determinantes
title_short Negafibonacci Numbers via Matrices
title_full Negafibonacci Numbers via Matrices
title_fullStr Negafibonacci Numbers via Matrices
title_full_unstemmed Negafibonacci Numbers via Matrices
title_sort Negafibonacci Numbers via Matrices
dc.creator.fl_str_mv Triana Laverde, Juan Gabriel
dc.contributor.author.none.fl_str_mv Triana Laverde, Juan Gabriel
dc.contributor.researchgroup.spa.fl_str_mv Matemáticas
dc.subject.proposal.eng.fl_str_mv Fibonacci numbers
Matrices
Determinants.
topic Fibonacci numbers
Matrices
Determinants.
Números de Fibonacci
Matrices
Determinantes
dc.subject.proposal.spa.fl_str_mv Números de Fibonacci
Matrices
Determinantes
description In this paper, negafibonacci numbers are generated by means of matrix methods. A 2×2 matrix is used to obtain some properties of negafibonacci numbers; on the other hand, families of tridiagonal matrices are introduced to generate negafibonacci numbers through determinants.
publishDate 2019
dc.date.available.none.fl_str_mv 2019
2021-05-05T04:26:01Z
2021-10-01T17:20:50Z
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-05-05T04:26:01Z
2021-10-01T17:20:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1512-0082
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1390
identifier_str_mv 1512-0082
url https://repositorio.escuelaing.edu.co/handle/001/1390
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 23, No. 1, 2019, 19–24
dc.relation.citationendpage.spa.fl_str_mv 24
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 19
dc.relation.citationvolume.spa.fl_str_mv 23
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Bulletin of TICMI
dc.relation.references.eng.fl_str_mv N. Cahill, J. D’errico, N. Narayan, J. Narayan, Fibonacci determinants, College Mathematical Journal, 33, 3 (2002), 221-225
R, Dunlap, The Golden Ratio and Fibonacci Numbers, World scientific, Singapore, 1997
H. Gulec, N. Taskara, K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Applied Mathematics and Computation, 220 (2013), 482-486
C. King, Some Properties of Fibonacci Numbers, San Jose State College: Master’s Thesis, 1960
P. Trojovsky, On a sequence of tridiagonal matrices whose determinants are fibonacci numbers Fn+1, International Journal of Pure and Applied Mathematics, 102, 3 (2015), 527-532
I. Matousova, P. Trojovsky, On a sequence of tridiagonal matrices whose permanents are related to Fibonacci and Lucas numbers, International Journal of Pure and Applied Mathematics, 105, 4 (2015), 715721
T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & sons, New York, 2001
A, Posamentier, I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, New York, 2007
H. Belbachir, S. Laszlo, Fibonacci and Lucas Pascal triangles, Hacettepe journal of mathematics and statistics, 45, 5 (2016), 1343-1354
R. Keskin, B. Demirturk, Some new Fibonacci and Lucas identities by matrix methods, International Journal of Mathematical Education in Science and Technology, 41, 3 (2010), 379-387
G. Strang, Linear Algebra and its Applications, Thomson Brooks/Cole, Belmont, 2006
N. Voll, The Cassini identity and its relative, Fibonacci Quarterly, 48, 3 (2010), 197-201
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Universidad Estatal de Tbilisi
dc.publisher.place.spa.fl_str_mv Georgia
dc.source.spa.fl_str_mv https://www.emis.de/journals/TICMI/vol23_1/3_triana.pdf
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1390/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1390/2/Negafibonacci%20Numbers%20via%20Matrices.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1390/3/Negafibonacci%20Numbers%20via%20Matrices.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1390/4/Negafibonacci%20Numbers%20via%20Matrices.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
36e23e9aa1f6568484ec70cc370881ed
08d45c80d1d982d38e00890433b7f19c
4793d17e06b1bd7241bce0ae85e6df26
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355640893571072
spelling Triana Laverde, Juan Gabriel244558d50c4189ca5db2880ea0a000bb600Matemáticas2021-05-05T04:26:01Z2021-10-01T17:20:50Z20192021-05-05T04:26:01Z2021-10-01T17:20:50Z20191512-0082https://repositorio.escuelaing.edu.co/handle/001/1390In this paper, negafibonacci numbers are generated by means of matrix methods. A 2×2 matrix is used to obtain some properties of negafibonacci numbers; on the other hand, families of tridiagonal matrices are introduced to generate negafibonacci numbers through determinants.En este trabajo, los números negafibonacci se generan mediante métodos matriciales. Una matriz de 2×2 se utiliza para obtener algunas propiedades de los números negafibonacci; por otra parte, se introducen familias de matrices tridiagonales para generar números negafibonacci mediante determinantes.Universidad Nacional de Colombia, Bogot´a, Colombia (Received November 01, 2018; Revised June 08, 2019; Accepted June 24, 2019)6 páginasapplication/pdfengUniversidad Estatal de TbilisiGeorgiahttps://www.emis.de/journals/TICMI/vol23_1/3_triana.pdfNegafibonacci Numbers via MatricesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 23, No. 1, 2019, 19–242411923N/ABulletin of TICMIN. Cahill, J. D’errico, N. Narayan, J. Narayan, Fibonacci determinants, College Mathematical Journal, 33, 3 (2002), 221-225R, Dunlap, The Golden Ratio and Fibonacci Numbers, World scientific, Singapore, 1997H. Gulec, N. Taskara, K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Applied Mathematics and Computation, 220 (2013), 482-486C. King, Some Properties of Fibonacci Numbers, San Jose State College: Master’s Thesis, 1960P. Trojovsky, On a sequence of tridiagonal matrices whose determinants are fibonacci numbers Fn+1, International Journal of Pure and Applied Mathematics, 102, 3 (2015), 527-532I. Matousova, P. Trojovsky, On a sequence of tridiagonal matrices whose permanents are related to Fibonacci and Lucas numbers, International Journal of Pure and Applied Mathematics, 105, 4 (2015), 715721T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & sons, New York, 2001A, Posamentier, I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, New York, 2007H. Belbachir, S. Laszlo, Fibonacci and Lucas Pascal triangles, Hacettepe journal of mathematics and statistics, 45, 5 (2016), 1343-1354R. Keskin, B. Demirturk, Some new Fibonacci and Lucas identities by matrix methods, International Journal of Mathematical Education in Science and Technology, 41, 3 (2010), 379-387G. Strang, Linear Algebra and its Applications, Thomson Brooks/Cole, Belmont, 2006N. Voll, The Cassini identity and its relative, Fibonacci Quarterly, 48, 3 (2010), 197-201info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fibonacci numbersMatricesDeterminants.Números de FibonacciMatricesDeterminantesLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1390/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALNegafibonacci Numbers via Matrices.pdfapplication/pdf102081https://repositorio.escuelaing.edu.co/bitstream/001/1390/2/Negafibonacci%20Numbers%20via%20Matrices.pdf36e23e9aa1f6568484ec70cc370881edMD52open accessTEXTNegafibonacci Numbers via Matrices.pdf.txtNegafibonacci Numbers via Matrices.pdf.txtExtracted texttext/plain9514https://repositorio.escuelaing.edu.co/bitstream/001/1390/3/Negafibonacci%20Numbers%20via%20Matrices.pdf.txt08d45c80d1d982d38e00890433b7f19cMD53open accessTHUMBNAILNegafibonacci Numbers via Matrices.pdf.jpgNegafibonacci Numbers via Matrices.pdf.jpgGenerated Thumbnailimage/jpeg8271https://repositorio.escuelaing.edu.co/bitstream/001/1390/4/Negafibonacci%20Numbers%20via%20Matrices.pdf.jpg4793d17e06b1bd7241bce0ae85e6df26MD54open access001/1390oai:repositorio.escuelaing.edu.co:001/13902021-10-01 18:02:18.48open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK