Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabra...
- Autores:
-
Romero Pereira, María Carolina
Sánchez Coría, Alba
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3093
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3093
https://doi.org/10.24050/reia.v19i38.1570
https://revistas.eia.edu.co/index.php/reveia/article/view/1570
- Palabra clave:
- Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
Desarrollo Sostenible
ODS
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
Renewable Energy
Sustainable Energy
Clean Energy
Green Energy
Environmental Impact
Photovoltaic
PV
Sustainable Development
SDGs
Environmental Impact Assessment
Life Cycle Assessment
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
id |
ESCUELAIG2_e021ce5052fe0411fb7349b116ffd0dd |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3093 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
dc.title.alternative.eng.fl_str_mv |
Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies |
title |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
spellingShingle |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. Energías Renovables Energías Sostenibles Energías Limpias Energías Verdes Impacto Ambiental Sistemas de Energía Solar Fotovoltaica Desarrollo Sostenible ODS Evaluación de Impactos Ambientales Análisis de Ciclo de Vida Renewable Energy Sustainable Energy Clean Energy Green Energy Environmental Impact Photovoltaic PV Sustainable Development SDGs Environmental Impact Assessment Life Cycle Assessment |
title_short |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
title_full |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
title_fullStr |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
title_full_unstemmed |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
title_sort |
Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. |
dc.creator.fl_str_mv |
Romero Pereira, María Carolina Sánchez Coría, Alba |
dc.contributor.author.none.fl_str_mv |
Romero Pereira, María Carolina Sánchez Coría, Alba |
dc.contributor.researchgroup.spa.fl_str_mv |
Centro de Estudios Ambientales |
dc.subject.proposal.spa.fl_str_mv |
Energías Renovables Energías Sostenibles Energías Limpias Energías Verdes Impacto Ambiental Sistemas de Energía Solar Fotovoltaica Desarrollo Sostenible ODS Evaluación de Impactos Ambientales Análisis de Ciclo de Vida |
topic |
Energías Renovables Energías Sostenibles Energías Limpias Energías Verdes Impacto Ambiental Sistemas de Energía Solar Fotovoltaica Desarrollo Sostenible ODS Evaluación de Impactos Ambientales Análisis de Ciclo de Vida Renewable Energy Sustainable Energy Clean Energy Green Energy Environmental Impact Photovoltaic PV Sustainable Development SDGs Environmental Impact Assessment Life Cycle Assessment |
dc.subject.proposal.eng.fl_str_mv |
Renewable Energy Sustainable Energy Clean Energy Green Energy Environmental Impact Photovoltaic PV Sustainable Development SDGs Environmental Impact Assessment Life Cycle Assessment |
description |
Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs modernas para satisfacer la demanda energética a nivel mundial. Aunque diferentes estudios de ACV incluyen varias categorías ambientales de evaluación, para el análisis se seleccionaron 5 categorías, potencial de calentamiento global (GWP, por sus siglas en inglés), uso del suelo, pérdida de biodiversidad, salud humana y generación de residuos. Los resultados muestran que los IAs de los SEPV documentados en ACVs dependen no solo de la tecnología, el contexto y la escala del proyecto, sino también del objetivo y alcance de cada estudio. Aun así, este artículo recoge valores orientativos para el GWP, el uso de suelo y los accidentes mortales de aves relacionados con SEPV. Además, la investigación revela la necesidad de enfoques complementarios como EIA o estudios de toxicidad para poder dimensionar impactos acerca de pérdida de biodiversidad y daños a la salud humana, así mismo concluye la falta de un sistema de gestión de residuos adecuado para las miles de toneladas que generarán estos sistemas a futuro. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-06-14T15:51:48Z |
dc.date.available.none.fl_str_mv |
2024-06-14T15:51:48Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3093 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.24050/reia.v19i38.1570 |
dc.identifier.eissn.spa.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1570 |
identifier_str_mv |
1794-1237 2463-0950 |
url |
https://repositorio.escuelaing.edu.co/handle/001/3093 https://doi.org/10.24050/reia.v19i38.1570 https://revistas.eia.edu.co/index.php/reveia/article/view/1570 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.spa.fl_str_mv |
18 |
dc.relation.citationissue.spa.fl_str_mv |
38 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.relation.references.spa.fl_str_mv |
Alsema, E.; de Wild-Scholten, M. J. (2007). Keep it clean. Reducing environmental impacts from solar PV. Renewable Energy World, pp. 96-103. Anak John, C.; See Tan, L.; Tan, J.; Loo Kiew, P.; Mohd Shariff, A.; Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Are Via Life Cycle AssessmentAnalytical Hierarchy Process (LCA.AHP): A Case Study of tatau, Sarawak. Sustainability, 13(21), 1880. DOI: 10.3390/su132111880. Antonanzas, J.; Quinn, J. C. (2021). Net environmental impact of the PV industry from 2000-2025. Journal of Cleaner Production, 311, 127791. DOI: 10.1016/j. jclepro.2021.127791. Balfour, J. R.; Shaw, M.; Bremer Nash, N. (2011). Introduction to Photovoltaic System Design. Burlington, Jones & Bartlett Publishers, pp. 2-6. Bakhiyi, B.; Labrèche, F.; Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future - environmental and occupational health issues. Environmental International, 73, pp. 224-234. DOI: 10.1016/j.envint.2014.07.023. Chowdhury, Md. S.; Rahman, K. S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman; Tiong, S. K.; Kamaruzzaman, S.; Nowshad, A. (2020): An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, pp. 100431. DOI: 10.1016/j.esr.2019.100431. Cornejo, F.; Janssen, M.; Gaudrealt, C.; Samson, R. (2005): Using Life Cycle Assessment (LCA) as a Tool to Enhance Environmental Impact Assessment (EIA). Chemical Engineering Transaction, 7, pp. 521- 528. Da Pimentel Silva, G. D.; Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36 (5), pp. 390-400. DOI: 10.1080/14615517.2018.1477498. Dhar, A.; Naeth, M. A.; Jennings, P. D.; El-Din, M. G. (2020). Perspectives on environmental impacts and a land reclamation strategyfor solar and wind energy systems. Science of the Total Environment, 718, pp. 134602. DOI: 10.1016/j. scitotenv.2019.134602. Domínguez, A.; Geyer, R. (2017). Photovoltaic waste assessment in Mexico. Resource, Conservation and Recycling, 127, pp. 29-41. DOI: 10.1016/j. resconrec.2017.08.013. Dubey, S.; Jadhav, N. Y.; Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, pp. 322-334. DOI: 10.1016/j.egypro.2013.05.073. Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36 (10), pp. 2725-2732. DOI: 10.1016/j. renene.2011.03.005. Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. (2012): Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change, New York, Cambridge University Press. European Commission (2012): Waste from Electrical and Electronic Equipment (WEEE). [Online]. Available at: https://ec.europa.eu/environment/topics/wasteand-recycling/waste-electrical-and-electronic-equipment-weee_de. Fraunhofer Institute for Solar Energy Systems (2021). Photovoltaics report. [Online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/ publications/studies/Photovoltaics-Report.pdf. Food and Agriculture Organization of the UN. FAO (2014). The Water-energy-Food Nexus. A new approach in support of food security and sustainable agriculture. Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – cohosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. Fthenakis, V.; Kim, H. C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. (2011). Life cycle inventories and life cycle assessment of photovoltaic systems, New York, International Energy Agency. Fthenakis, V.; Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), pp. 1465-1474. DOI: 10.1016/j.rser.2008.09.017. Hernandez, R. R.; Murphy-Mariscal, M. I.; Easter, S. B.; Maestre, F. T.; Tavassoli, M.; Allen, E. B.; Barrows, C. W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, pp. 766-779. DOI: 10.1016/j.rser.2013.08.041. Hong, J.; Chen, W.; Qi, C.;Ye, L.; Xu, C. (2016). Life cycle assessment of multicristalline silicon photovoltaic cell production in China. Solar Energy, 133, pp. 283-293. DOI: 10.1016/j.solener.2016.04.013. International Energy Agency (IEA). 2020. World energy outlook 2020. Online. Available at: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385- 8711-b8a062d6124a/WEO2020.pdf. IEA (2021). Renewable Power. International Energy Agency. Available at: https:// www.iea.org/reports/renewable-power. IEA, IRENA, UNSD, WBG, WHO (2019). Tracking SDG 7: The Energy progress report, Washington DC. IFO (2015). Utility-Scale Solar Photovoltaic Power Plants. [Online]. Available at: https://www.ifc.org/wps/wcm/connect/a1b3dbd3- 983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05. pdf?MOD=AJPERES&CVID=kZePDPG. IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. Available at: https://Irena. org/publications/2019/Nov/Future-of-Solar-Photovoltaic. IUCN ROWA (2019). Nexus comprehensive methodological framework: the MENA Region Initiative as a model of Nexus Approach and Renewable Energy Technologies (MINARET). Amman, Jordan: IUCN. Kafka, J.; Miller, M.A. (2020). The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use. Renewable Energy, 155, pp. 531-546. DOI: 10.1016/j.renene.2020.03.025. Kim, B.; Lee, J.; Kim, K.; Hur, T. (2013). Evaluation of the environmental performance of sc-Si and mc-SiPV systems in Korea. Solar Energy, pp, pp. 100-114. DOI: 10.1016/j.solener.2013.10.038. Kim, J. Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. (2021). Current site planning of medium to large solar power systems acceleratesthe loss of the remaining semi-natural and agricultural habitats. Science of the Total Environment, 779, 146475. DOI: 10.1016/j.scitotenv.2021.146475. Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. (2020). A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE, 15 (4). DOI: 10.1371/journal.pone.0232034. Loss, S. R. (2016). Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118 (2), pp. 424-432. DOI: 10.1650/ CONDOR-16-12.1. Loss, S. R.; Will, T.; Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. Annual Reviw of Ecology, Evolution and Systatics, 46 (1), pp. 99-120. DOI: 10.1146/annurev-ecolsys-112414-054133. Ludin, N. A.; Affandi, N. A. A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M. A.; Sophian, K.; Jusoh, S. (2021). Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Energy, 13(1), pp. 396. DOI: 10.3390/su13010396. Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. (2018). Hybrid solar poewr system versus photovoltaic plant: A comparative analysis though a life cycle approach. Renewable Energy, 130, pp. 290-304. DOI: 10.1016/j. renene.2018.06.072. Mahmoudi, S.; Huda, N.; Behnia, M. (2021). Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels. Resources, Conservation and Recycling 164, pp. 105145. DOI: 10.1016/j. resconrec.2020.105145. Mérida García, A; Gallagher, J.; McNabola, A.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, pp. 895-904. DOI: 10.1016/j. renene.2019.03.122. Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M. L. (2020). Review on Life Cycle Assessment of Soar Photovoltaic Panels. Eergies, 13 (1), pp.252. DOI: 10.3390/en13010252. Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar energy Materials and Solar Cells, 230, 111277. DOI: 10.1016/j.solmat.2021.111277. North Carolina State University (2017). Health and Safety Impacts of Solar Photovoltaics. [Online]. Available at: https://nccleantech.ncsu.edu/wp-content/ uploads/2018/10/Health-and-Safety-Impacts-of-Solar-Photovoltaics-2017_ white-paper.pdf. Ong, P.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Available at: https:// www.nrel.gov/docs/fy13osti/56290.pdf. Peng, J.; Lu, L.; Yang, H.; (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, pp. 255-274. DOI: 10.1016/j.rser.2012.11.035. Rao, H.; Gemechu, E.; Thakur, U.; Shankar, K.; Kumar, A. (2021). Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 230, 111288. DOI: 10.1016/j. solmat.2021.111288. Rix, A. J.; Steyl, J. D. T.; Rudman, J.; Terblanche, U.; van Niekerk, J. L. (2015). First Solar´s CdTe technology - performance, life cycle, health and safety assessment. [Online]. Available online: https://www.firstsolar.com/-/media/First-Solar/SustainabilityDocuments/Sustainability-Peer-Reviews/CRSES2015_06_First-Solar-CdTeModule-Technology-Review-FINAL.ashx. Robinson, S.; Meindl, G. (2019). Potential for leaching of heavy metals and metalloids from crystalline silicon photovoltaic systems. Journal of Natural Resources and Development, 9, pp. 19-24. DOI: 10.5027/jnrd.v9i0.02. Romero and Higinio (2021). Energías renovables no convencionales para satisfacer la demanda energética: análisis de tendencias entre 1990 y 2018. Revista EIA, 18(36), pp.1-21. DOI: 10.24050/reia.v18i36-1513. Schumacher, K. (2019). Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EUand the US. Energy Policy, 129, pp. 139-152. DOI: 10.1016/j.enpol.2019.02.013. Sinha, P.; Heath, G.; Wade, A.; Komoto, K. (2019). Human Health Risk Assessment Methods for PV (Part 2: Breakage Risks). U.S. Department of Energy. DOI: 10.2172/1603943. Stamford, L.; Azapagic, A. (2018). Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. Energy Technology, 6 (6), pp. 11481160. DOI: 10.1002/ente.201800037. Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the Environment, 759. DOI: 10.1016/j. scitotenv.2020.143528. U.S. Department of energy (2021a). Solar Futures Study. [Online]. Available at: https://www.energy.gov/eere/solar/solar-futures-study. Union of Concerned Scientists (2013). Environmental Impacts of Wind Power. [Online] Available at: https://www.ucsusa.org/resources/environmentalimpacts-wind-power. United Nations (2021). Sustainable Development Goals. Ensure access to affordable, reliable, sustainable and modern energy. [Online] Available at: www.un.org/ sustainabledevelopment/energy/. United Nations Environmental Programme (2015). Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector. [Online]. Available at: https://wedocs.unep. org/handle/20.500.11822/9648. United Nations Environment Programme (2018). Assessing Environmental Impact – A Global Reviews of Legislation. [Online]. Available online: https://europa.eu/ capacity4dev/unep/documents/assessing-environmental-impacts-global-reviewlegislation. United Nations Statistics Division (2021): Ensure access to affordable, reliable, sustainable and modern energy for all. [Online]. Available at: https://unstats. un.org/sdgs/report/2019/goal-07/. Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan; P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, 133, pp. 1285-1294. DOI: 10.1016/j.renene.2018.08.106. World Economic Forum (2019). A New Circular Vision for Electronics. Time for a Global Reboot. [Online]. Available at: https://www3.weforum.org/docs/WEF_A_ New_Circular_Vision_for_Electronics.pdf. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad EIA |
dc.publisher.place.spa.fl_str_mv |
Envigado (Colombia) |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1570 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3093/4/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3093/3/Portada%20-%20Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.png https://repositorio.escuelaing.edu.co/bitstream/001/3093/5/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3093/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3093/1/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdf |
bitstream.checksum.fl_str_mv |
800851754253051111bc170e81671fea cd990bd7fc4c6c1cf9a1f98131b4ed9f 97a693afda070cb8c76bcc3c98e09a43 5a7ca94c2e5326ee169f979d71d0f06e b277fd53bfa99f25f46f80846f51d173 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355586342453248 |
spelling |
Romero Pereira, María Carolinac67df1b221ae54d7233ea40bcfdafdcd600Sánchez Coría, Alba4509fae7fe43b2f36e30dcb4d4c77091Centro de Estudios Ambientales2024-06-14T15:51:48Z2024-06-14T15:51:48Z20221794-1237https://repositorio.escuelaing.edu.co/handle/001/3093https://doi.org/10.24050/reia.v19i38.15702463-0950https://revistas.eia.edu.co/index.php/reveia/article/view/1570Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs modernas para satisfacer la demanda energética a nivel mundial. Aunque diferentes estudios de ACV incluyen varias categorías ambientales de evaluación, para el análisis se seleccionaron 5 categorías, potencial de calentamiento global (GWP, por sus siglas en inglés), uso del suelo, pérdida de biodiversidad, salud humana y generación de residuos. Los resultados muestran que los IAs de los SEPV documentados en ACVs dependen no solo de la tecnología, el contexto y la escala del proyecto, sino también del objetivo y alcance de cada estudio. Aun así, este artículo recoge valores orientativos para el GWP, el uso de suelo y los accidentes mortales de aves relacionados con SEPV. Además, la investigación revela la necesidad de enfoques complementarios como EIA o estudios de toxicidad para poder dimensionar impactos acerca de pérdida de biodiversidad y daños a la salud humana, así mismo concluye la falta de un sistema de gestión de residuos adecuado para las miles de toneladas que generarán estos sistemas a futuro.According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally. Although different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation. The results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.Universidad EIA18 páginasapplication/pdfspaUniversidad EIAEnvigado (Colombia)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1570Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studiesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a851838119N/ARevista EIAAlsema, E.; de Wild-Scholten, M. J. (2007). Keep it clean. Reducing environmental impacts from solar PV. Renewable Energy World, pp. 96-103.Anak John, C.; See Tan, L.; Tan, J.; Loo Kiew, P.; Mohd Shariff, A.; Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Are Via Life Cycle AssessmentAnalytical Hierarchy Process (LCA.AHP): A Case Study of tatau, Sarawak. Sustainability, 13(21), 1880. DOI: 10.3390/su132111880.Antonanzas, J.; Quinn, J. C. (2021). Net environmental impact of the PV industry from 2000-2025. Journal of Cleaner Production, 311, 127791. DOI: 10.1016/j. jclepro.2021.127791.Balfour, J. R.; Shaw, M.; Bremer Nash, N. (2011). Introduction to Photovoltaic System Design. Burlington, Jones & Bartlett Publishers, pp. 2-6.Bakhiyi, B.; Labrèche, F.; Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future - environmental and occupational health issues. Environmental International, 73, pp. 224-234. DOI: 10.1016/j.envint.2014.07.023.Chowdhury, Md. S.; Rahman, K. S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman; Tiong, S. K.; Kamaruzzaman, S.; Nowshad, A. (2020): An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, pp. 100431. DOI: 10.1016/j.esr.2019.100431.Cornejo, F.; Janssen, M.; Gaudrealt, C.; Samson, R. (2005): Using Life Cycle Assessment (LCA) as a Tool to Enhance Environmental Impact Assessment (EIA). Chemical Engineering Transaction, 7, pp. 521- 528.Da Pimentel Silva, G. D.; Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36 (5), pp. 390-400. DOI: 10.1080/14615517.2018.1477498.Dhar, A.; Naeth, M. A.; Jennings, P. D.; El-Din, M. G. (2020). Perspectives on environmental impacts and a land reclamation strategyfor solar and wind energy systems. Science of the Total Environment, 718, pp. 134602. DOI: 10.1016/j. scitotenv.2019.134602.Domínguez, A.; Geyer, R. (2017). Photovoltaic waste assessment in Mexico. Resource, Conservation and Recycling, 127, pp. 29-41. DOI: 10.1016/j. resconrec.2017.08.013.Dubey, S.; Jadhav, N. Y.; Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, pp. 322-334. DOI: 10.1016/j.egypro.2013.05.073.Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36 (10), pp. 2725-2732. DOI: 10.1016/j. renene.2011.03.005.Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. (2012): Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change, New York, Cambridge University Press.European Commission (2012): Waste from Electrical and Electronic Equipment (WEEE). [Online]. Available at: https://ec.europa.eu/environment/topics/wasteand-recycling/waste-electrical-and-electronic-equipment-weee_de.Fraunhofer Institute for Solar Energy Systems (2021). Photovoltaics report. [Online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/ publications/studies/Photovoltaics-Report.pdf.Food and Agriculture Organization of the UN. FAO (2014). The Water-energy-Food Nexus. A new approach in support of food security and sustainable agriculture.Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – cohosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.Fthenakis, V.; Kim, H. C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. (2011). Life cycle inventories and life cycle assessment of photovoltaic systems, New York, International Energy Agency.Fthenakis, V.; Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), pp. 1465-1474. DOI: 10.1016/j.rser.2008.09.017.Hernandez, R. R.; Murphy-Mariscal, M. I.; Easter, S. B.; Maestre, F. T.; Tavassoli, M.; Allen, E. B.; Barrows, C. W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, pp. 766-779. DOI: 10.1016/j.rser.2013.08.041.Hong, J.; Chen, W.; Qi, C.;Ye, L.; Xu, C. (2016). Life cycle assessment of multicristalline silicon photovoltaic cell production in China. Solar Energy, 133, pp. 283-293. DOI: 10.1016/j.solener.2016.04.013.International Energy Agency (IEA). 2020. World energy outlook 2020. Online. Available at: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385- 8711-b8a062d6124a/WEO2020.pdf.IEA (2021). Renewable Power. International Energy Agency. Available at: https:// www.iea.org/reports/renewable-power.IEA, IRENA, UNSD, WBG, WHO (2019). Tracking SDG 7: The Energy progress report, Washington DC.IFO (2015). Utility-Scale Solar Photovoltaic Power Plants. [Online]. Available at: https://www.ifc.org/wps/wcm/connect/a1b3dbd3- 983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05. pdf?MOD=AJPERES&CVID=kZePDPG.IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. Available at: https://Irena. org/publications/2019/Nov/Future-of-Solar-Photovoltaic.IUCN ROWA (2019). Nexus comprehensive methodological framework: the MENA Region Initiative as a model of Nexus Approach and Renewable Energy Technologies (MINARET). Amman, Jordan: IUCN.Kafka, J.; Miller, M.A. (2020). The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use. Renewable Energy, 155, pp. 531-546. DOI: 10.1016/j.renene.2020.03.025.Kim, B.; Lee, J.; Kim, K.; Hur, T. (2013). Evaluation of the environmental performance of sc-Si and mc-SiPV systems in Korea. Solar Energy, pp, pp. 100-114. DOI: 10.1016/j.solener.2013.10.038.Kim, J. Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. (2021). Current site planning of medium to large solar power systems acceleratesthe loss of the remaining semi-natural and agricultural habitats. Science of the Total Environment, 779, 146475. DOI: 10.1016/j.scitotenv.2021.146475.Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. (2020). A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE, 15 (4). DOI: 10.1371/journal.pone.0232034.Loss, S. R. (2016). Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118 (2), pp. 424-432. DOI: 10.1650/ CONDOR-16-12.1.Loss, S. R.; Will, T.; Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. Annual Reviw of Ecology, Evolution and Systatics, 46 (1), pp. 99-120. DOI: 10.1146/annurev-ecolsys-112414-054133.Ludin, N. A.; Affandi, N. A. A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M. A.; Sophian, K.; Jusoh, S. (2021). Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Energy, 13(1), pp. 396. DOI: 10.3390/su13010396.Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. (2018). Hybrid solar poewr system versus photovoltaic plant: A comparative analysis though a life cycle approach. Renewable Energy, 130, pp. 290-304. DOI: 10.1016/j. renene.2018.06.072.Mahmoudi, S.; Huda, N.; Behnia, M. (2021). Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels. Resources, Conservation and Recycling 164, pp. 105145. DOI: 10.1016/j. resconrec.2020.105145.Mérida García, A; Gallagher, J.; McNabola, A.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, pp. 895-904. DOI: 10.1016/j. renene.2019.03.122.Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M. L. (2020). Review on Life Cycle Assessment of Soar Photovoltaic Panels. Eergies, 13 (1), pp.252. DOI: 10.3390/en13010252.Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar energy Materials and Solar Cells, 230, 111277. DOI: 10.1016/j.solmat.2021.111277.North Carolina State University (2017). Health and Safety Impacts of Solar Photovoltaics. [Online]. Available at: https://nccleantech.ncsu.edu/wp-content/ uploads/2018/10/Health-and-Safety-Impacts-of-Solar-Photovoltaics-2017_ white-paper.pdf.Ong, P.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Available at: https:// www.nrel.gov/docs/fy13osti/56290.pdf.Peng, J.; Lu, L.; Yang, H.; (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, pp. 255-274. DOI: 10.1016/j.rser.2012.11.035.Rao, H.; Gemechu, E.; Thakur, U.; Shankar, K.; Kumar, A. (2021). Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 230, 111288. DOI: 10.1016/j. solmat.2021.111288.Rix, A. J.; Steyl, J. D. T.; Rudman, J.; Terblanche, U.; van Niekerk, J. L. (2015). First Solar´s CdTe technology - performance, life cycle, health and safety assessment. [Online]. Available online: https://www.firstsolar.com/-/media/First-Solar/SustainabilityDocuments/Sustainability-Peer-Reviews/CRSES2015_06_First-Solar-CdTeModule-Technology-Review-FINAL.ashx.Robinson, S.; Meindl, G. (2019). Potential for leaching of heavy metals and metalloids from crystalline silicon photovoltaic systems. Journal of Natural Resources and Development, 9, pp. 19-24. DOI: 10.5027/jnrd.v9i0.02.Romero and Higinio (2021). Energías renovables no convencionales para satisfacer la demanda energética: análisis de tendencias entre 1990 y 2018. Revista EIA, 18(36), pp.1-21. DOI: 10.24050/reia.v18i36-1513.Schumacher, K. (2019). Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EUand the US. Energy Policy, 129, pp. 139-152. DOI: 10.1016/j.enpol.2019.02.013.Sinha, P.; Heath, G.; Wade, A.; Komoto, K. (2019). Human Health Risk Assessment Methods for PV (Part 2: Breakage Risks). U.S. Department of Energy. DOI: 10.2172/1603943.Stamford, L.; Azapagic, A. (2018). Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. Energy Technology, 6 (6), pp. 11481160. DOI: 10.1002/ente.201800037.Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the Environment, 759. DOI: 10.1016/j. scitotenv.2020.143528.U.S. Department of energy (2021a). Solar Futures Study. [Online]. Available at: https://www.energy.gov/eere/solar/solar-futures-study.Union of Concerned Scientists (2013). Environmental Impacts of Wind Power. [Online] Available at: https://www.ucsusa.org/resources/environmentalimpacts-wind-power.United Nations (2021). Sustainable Development Goals. Ensure access to affordable, reliable, sustainable and modern energy. [Online] Available at: www.un.org/ sustainabledevelopment/energy/.United Nations Environmental Programme (2015). Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector. [Online]. Available at: https://wedocs.unep. org/handle/20.500.11822/9648.United Nations Environment Programme (2018). Assessing Environmental Impact – A Global Reviews of Legislation. [Online]. Available online: https://europa.eu/ capacity4dev/unep/documents/assessing-environmental-impacts-global-reviewlegislation.United Nations Statistics Division (2021): Ensure access to affordable, reliable, sustainable and modern energy for all. [Online]. Available at: https://unstats. un.org/sdgs/report/2019/goal-07/.Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan; P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, 133, pp. 1285-1294. DOI: 10.1016/j.renene.2018.08.106.World Economic Forum (2019). A New Circular Vision for Electronics. Time for a Global Reboot. [Online]. Available at: https://www3.weforum.org/docs/WEF_A_ New_Circular_Vision_for_Electronics.pdf.Energías RenovablesEnergías SosteniblesEnergías LimpiasEnergías VerdesImpacto AmbientalSistemas de Energía Solar FotovoltaicaDesarrollo SostenibleODSEvaluación de Impactos AmbientalesAnálisis de Ciclo de VidaRenewable EnergySustainable EnergyClean EnergyGreen EnergyEnvironmental ImpactPhotovoltaicPVSustainable DevelopmentSDGsEnvironmental Impact AssessmentLife Cycle AssessmentTEXTImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdf.txtImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdf.txtExtracted texttext/plain53684https://repositorio.escuelaing.edu.co/bitstream/001/3093/4/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdf.txt800851754253051111bc170e81671feaMD54open accessTHUMBNAILPortada - Impactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pngPortada - Impactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pngimage/png145987https://repositorio.escuelaing.edu.co/bitstream/001/3093/3/Portada%20-%20Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pngcd990bd7fc4c6c1cf9a1f98131b4ed9fMD53open accessImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdf.jpgImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdf.jpgGenerated Thumbnailimage/jpeg13774https://repositorio.escuelaing.edu.co/bitstream/001/3093/5/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdf.jpg97a693afda070cb8c76bcc3c98e09a43MD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3093/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdfImpactos ambientales de sistemas de energía solar fotovoltaica una revisión de análisis de ciclo de vida y otros estudios.pdfArtículo de revistaapplication/pdf1684462https://repositorio.escuelaing.edu.co/bitstream/001/3093/1/Impactos%20ambientales%20de%20sistemas%20de%20energ%c3%ada%20solar%20fotovoltaica%20una%20revisi%c3%b3n%20de%20an%c3%a1lisis%20de%20ciclo%20de%20vida%20y%20otros%20estudios.pdfb277fd53bfa99f25f46f80846f51d173MD51open access001/3093oai:repositorio.escuelaing.edu.co:001/30932024-06-15 03:00:22.431open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |