Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes

Currently, cancer is the leading cause of death worldwide, making millions of deaths annually in developing countries due to a shortage of detection and treatment. Early detection of cancer neoantigens is useful for specialists because they can help in the development of more successful treatments....

Full description

Autores:
Orjuela Canon, Alvaro David
Perdomo Charry, Oscar Julian
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1471
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1471
https://doi.org/10.1117/12.2579602
Palabra clave:
Modelos - Aprendizaje automático
Células cancerosas
Predictive analytics
Análisis predictivo
Análisis predictivo
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_dfcc2c3f3c937a6209d2948bb90b84d3
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1471
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
title Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
spellingShingle Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
Modelos - Aprendizaje automático
Células cancerosas
Predictive analytics
Análisis predictivo
Análisis predictivo
title_short Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
title_full Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
title_fullStr Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
title_full_unstemmed Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
title_sort Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
dc.creator.fl_str_mv Orjuela Canon, Alvaro David
Perdomo Charry, Oscar Julian
dc.contributor.author.none.fl_str_mv Orjuela Canon, Alvaro David
Perdomo Charry, Oscar Julian
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Modelos - Aprendizaje automático
Células cancerosas
topic Modelos - Aprendizaje automático
Células cancerosas
Predictive analytics
Análisis predictivo
Análisis predictivo
dc.subject.armarc.eng.fl_str_mv Predictive analytics
dc.subject.armarc.spa.fl_str_mv Análisis predictivo
Análisis predictivo
description Currently, cancer is the leading cause of death worldwide, making millions of deaths annually in developing countries due to a shortage of detection and treatment. Early detection of cancer neoantigens is useful for specialists because they can help in the development of more successful treatments. Based on this problem, the objective of this work is to carry out a comparative process between machine learning models, to determine which of them allows an adequate prediction of the data, and thus determine the carcinogenic neoantigens. For this, information extracted from protein sequences was employed. The preliminary results show sensitivity and specificity of 1.0 and 0.98 respectively.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-05-24T17:48:41Z
2021-10-01T17:16:51Z
dc.date.available.none.fl_str_mv 2021-05-24
2021-10-01T17:16:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0277-786X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1471
dc.identifier.doi.none.fl_str_mv 10.1117/12.2579602
dc.identifier.url.none.fl_str_mv https://doi.org/10.1117/12.2579602
identifier_str_mv 0277-786X
10.1117/12.2579602
url https://repositorio.escuelaing.edu.co/handle/001/1471
https://doi.org/10.1117/12.2579602
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11583
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Proceedings Of Spie, The International Society For Optical Engineering
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv SPIE
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579602/Comparison-of-machine-learning-models-for-the-prediction-of-cancer/10.1117/12.2579602.short?SSO=1&tab=ArticleLinkCited
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1471/5/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1471/4/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.png
https://repositorio.escuelaing.edu.co/bitstream/001/1471/6/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1471/3/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1471/1/license.txt
bitstream.checksum.fl_str_mv cf7af20f5642e7af9d2c5e534e5d1896
13d9c712f031a109850a107af44d81d5
59e77ba73952b34a7da7b2ebc4d4641b
010845330ff5c8439e0a9b24de156554
5a7ca94c2e5326ee169f979d71d0f06e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355584581894144
spelling Orjuela Canon, Alvaro Davidcc8f86677d6dc983cbfe50be82b9e516600Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600GiBiome2021-05-24T17:48:41Z2021-10-01T17:16:51Z2021-05-242021-10-01T17:16:51Z20200277-786Xhttps://repositorio.escuelaing.edu.co/handle/001/147110.1117/12.2579602https://doi.org/10.1117/12.2579602Currently, cancer is the leading cause of death worldwide, making millions of deaths annually in developing countries due to a shortage of detection and treatment. Early detection of cancer neoantigens is useful for specialists because they can help in the development of more successful treatments. Based on this problem, the objective of this work is to carry out a comparative process between machine learning models, to determine which of them allows an adequate prediction of the data, and thus determine the carcinogenic neoantigens. For this, information extracted from protein sequences was employed. The preliminary results show sensitivity and specificity of 1.0 and 0.98 respectively.En la actualidad, el cáncer es la principal causa de muerte en todo el mundo y provoca millones de fallecimientos anuales en los países en desarrollo debido a la escasez de detección y tratamiento. La detección temprana de los neoantígenos del cáncer es útil para los especialistas, ya que pueden ayudar en el desarrollo de tratamientos más exitosos. Partiendo de esta problemática, el objetivo de este trabajo es realizar un proceso comparativo entre modelos de aprendizaje automático, para determinar cuál de ellos permite una adecuada predicción de los datos, y así determinar los neoantígenos cancerígenos. Para ello, se empleó la información extraída de las secuencias de proteínas. Los resultados preliminares muestran una sensibilidad y especificidad de 1,0 y 0,98 respectivamente.application/pdfengSPIEEstados Unidoshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579602/Comparison-of-machine-learning-models-for-the-prediction-of-cancer/10.1117/12.2579602.short?SSO=1&tab=ArticleLinkCitedComparison of machine learning models for the prediction of cancer cells using MHC class I complexesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a858111583N/AProceedings Of Spie, The International Society For Optical Engineeringinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbModelos - Aprendizaje automáticoCélulas cancerosasPredictive analyticsAnálisis predictivoAnálisis predictivoORIGINALComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdfComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdfArtículo de revistaapplication/pdf586791https://repositorio.escuelaing.edu.co/bitstream/001/1471/5/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdfcf7af20f5642e7af9d2c5e534e5d1896MD55metadata only accessTHUMBNAILComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pngComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pngimage/png209512https://repositorio.escuelaing.edu.co/bitstream/001/1471/4/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.png13d9c712f031a109850a107af44d81d5MD54open accessComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdf.jpgComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdf.jpgGenerated Thumbnailimage/jpeg17141https://repositorio.escuelaing.edu.co/bitstream/001/1471/6/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdf.jpg59e77ba73952b34a7da7b2ebc4d4641bMD56metadata only accessTEXTComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdf.txtComparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdf.txtExtracted texttext/plain6https://repositorio.escuelaing.edu.co/bitstream/001/1471/3/Comparison%20of%20machine%20learning%20models%20for%20the%20prediction%20of%20cancer%20cells%20using%20MHC%20class%20I%20complexes.pdf.txt010845330ff5c8439e0a9b24de156554MD53open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1471/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open access001/1471oai:repositorio.escuelaing.edu.co:001/14712022-12-14 03:00:14.88metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK