External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a...
- Autores:
-
Vega, Camilo
Torres, Nancy
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1512
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1512
https://doi.org/10.15446/ing.investig.v38n3.73151
- Palabra clave:
- Mampostería
Muros
Polímeros
Resistencia de materiales
Masonry
Walls
Polymers
Strength of materials
Unreinforced masonry
Fiber reinforced polymers
Seismic retrofitting
Lateral loads
Mampostería no reforzada
Polímeros reforzados con fibra
Reforzamiento sísmico
Cargas laterales
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_dd28236b326b4b64d1f1cead33764085 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1512 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
dc.title.alternative.spa.fl_str_mv |
Reforzamiento externo de muros de mampostería no reforzada mediante polímeros reforzados con fibra de carbono |
title |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
spellingShingle |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber Mampostería Muros Polímeros Resistencia de materiales Masonry Walls Polymers Strength of materials Unreinforced masonry Fiber reinforced polymers Seismic retrofitting Lateral loads Mampostería no reforzada Polímeros reforzados con fibra Reforzamiento sísmico Cargas laterales |
title_short |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
title_full |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
title_fullStr |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
title_full_unstemmed |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
title_sort |
External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber |
dc.creator.fl_str_mv |
Vega, Camilo Torres, Nancy |
dc.contributor.author.none.fl_str_mv |
Vega, Camilo Torres, Nancy |
dc.contributor.researchgroup.spa.fl_str_mv |
Estructuras y Materiales |
dc.subject.armarc.spa.fl_str_mv |
Mampostería Muros Polímeros Resistencia de materiales |
topic |
Mampostería Muros Polímeros Resistencia de materiales Masonry Walls Polymers Strength of materials Unreinforced masonry Fiber reinforced polymers Seismic retrofitting Lateral loads Mampostería no reforzada Polímeros reforzados con fibra Reforzamiento sísmico Cargas laterales |
dc.subject.armarc.eng.fl_str_mv |
Masonry Walls Polymers Strength of materials |
dc.subject.proposal.eng.fl_str_mv |
Unreinforced masonry Fiber reinforced polymers Seismic retrofitting Lateral loads |
dc.subject.proposal.spa.fl_str_mv |
Mampostería no reforzada Polímeros reforzados con fibra Reforzamiento sísmico Cargas laterales |
description |
In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a research project that evaluates the behavior of reinforced masonry walls under lateral loads. The reinforcement was made using Carbon Fiber Reinforced Polymers (CFRP). In the test program, eight (8) clay masonry walls were built using hollow brick. Four (4) of them were 1,23 m long and 1,90 m high and the remaining four (4) were 2,47 m long and 1,90 m high. Four (4) walls were tested with a static lateral load and four (4) with a cyclic lateral load in its plane. Results revealed that the presence of the reinforcement material significantly increased the ultimate load and deformation capacity, provided that the material has a suitable anchoring system. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-05-28T15:41:20Z 2021-10-01T17:46:31Z |
dc.date.available.none.fl_str_mv |
2021-05-28T15:41:20Z 2021-10-01T17:46:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2248-8723 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1512 |
dc.identifier.doi.none.fl_str_mv |
10.15446/ing.investig.v38n3.73151 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.15446/ing.investig.v38n3.73151 |
identifier_str_mv |
2248-8723 10.15446/ing.investig.v38n3.73151 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1512 https://doi.org/10.15446/ing.investig.v38n3.73151 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Ingeniería e Investigación, Vol. 38 no. 3, december - 2018 (15-23). |
dc.relation.citationendpage.spa.fl_str_mv |
23 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationstartpage.spa.fl_str_mv |
15 |
dc.relation.citationvolume.spa.fl_str_mv |
38 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Ingeniería e Investigación |
dc.relation.references.spa.fl_str_mv |
ACI, Committee 440. (2010). 440.7R-10: Guide for the design and Construction of externally bonded fiber-reinforced polymer systems for strengthening unreinforced masonry structures. (7 ed). Farmington Hills: American Concrete Institute. Arifuzzaman, S. & Saatcioglu, M. (2012). Seismic retrofit of load bearing masonry walls by FRP sheets and anchors. Paper presented at the Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portuguese Earthquake Engineering Community. Retrieved from http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4501.pdf ASCE 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, VA: American Society of Civil Engineers ASCE 41-13. (2014). Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil Engineers Capozzuca, R. (2011). Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Composite Structures 94(1), 277-289. DOI: https://doi.org/10.1016/j.compstruct.2011.06.007 Elgawady, M., Lestuzzi, P., & Bardoux, M. (2006). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2-3), 148-162. DOI: https://doi.org/10.1016/j.compositesb.2005.06.003 FEMA 461. (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Non structural Components. Washington, D.C.: Federal Emergency Management Agency. Retrieved from https://www.atcouncil.org/pdfs/FEMA461.pdf FOPAE - Fondo de Prevención y Atención de Emergencias. (2010). Visita técnica comisión de dirección de prevención y atención de emergencias - FOPAE - San Pedro de la Paz - Concepción – Chile. Informe técnico. Bogotá D.C.: Alcaldía Mayor de Bogotá. Retrieved from https://docplayer.es/4541826-Visita-tecnica-comision-de-direccion-de-prevencion-y-atencion-de-emergencias-fopae-san-pedro-de-la-paz-concepcion-chile-informe-tecnico.html Gabor, A, Bennani, A, Jacquelin, E, & Lebon, F. (2006). Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. Composite Structures, 74 (3), pp. 277-288. DOI: https://doi.org/10.1016/j.compstruct.2005.04.012 Galati, N., Tumialán, G., & Nanni, A. (2006). Strengthening with FRP bars of URM walls subject to out-of-plane loads. Construction and Building Materials, 20(1-2), 101-110. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.047 Ingeominas. (1986). El sismo de Popayán de marzo 31 de 1983. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras. Ingeominas. (1999). Terremoto del Quindío: Enero 25 de 1999. Informe Técnico Preliminar No. 2 Armenia – Quindío. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras. Kalali, A., & Kabir, M. (2012). Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests. Engineering Structures, 39, 24-37. DOI: https://doi.org/10.1016/j.engstruct.2012.01.018 Klingner, R. (2006). Behavior of masonry in the Northridge (US) and Tecomán - Colima (Mexico) earthquakes: Lessons learned, and changes in US design. Construction and Building Materials, 20(4), 209-219. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.024 López, H. (2012). Comportamiento de muros diafragma en mampostería de concreto reforzados con tejidos de FRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería). Retrieved from: https://repositorio.escuelaing.edu.co/handle/001/211 Lignola, G., Prota, A., Manfredi, G. (2012). Numerical investigation on the influence of FRP retrofit layout and geometry on the in-plane behaviour of masonry walls. Journal of Composites for Construction, 16 (6), pp. 712- 723. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000297 Luccioni, B., & Rougier, V. (2011). In-plane retrofitting of masonry panels with fiber reinforced composite materials. Construction and Building Materials, 25(4), 1772-1788. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.088 Lunn, D., Maeda, S., Rizkalla, S., & Ueda, T. (2013). Anchorage systems for FRP strengthening of infill masonry structures. International Journal of Sustainable Materials and Structural Systems,1(2), 142-160. DOI: https://doi.org/10.1504/IJSMSS.2013.056469 AIS. (2010). Reglamento colombiano de construcción sismo resistente NSR-10 (Vol. 1 y Vol.2). Bogotá D.C.: Asociación de Ingeniería Sísmica. Mosallam, A., & Banerjee, S. (2011). Enhancement in in-plane shear capacity of unreinforced masonry (URM) walls strengthened with fiber reinforced polymer composites. Composites Part B: Engineering, 42(6), 1657-1670. DOI: https://doi.org/10.1016/j.compositesb.2011.03.015 Paulay T., & Priestley M.J. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley. Rahman, A., & Ueda, T. (2016). In-plane shear performance of masonry walls after strengthening by two different FRPs. ASCE Journal of Composites for Construction, 20(5),1-14. DOI: https://doi.org/10.1061/(ASCE)CC.1943- 5614.0000661 Santa María, H., & Alcaino, P. (2011). Repair of in-plane shear damaged masonry walls with external FRP. Construction and Building Materials, 25(3), 1172-1180. DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.030 Triantafillou, T., Papanicolaou, C., & Lekka, M. (2011). Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials, 25(2), 504-514. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.018 Tumialan, G., Vatovec, M., & Kelley, P. (2009). FRP Composites for Masonry Retrofitting: Review of Engineering Issues, Limitations and Practical Applications. Structure magazine (May), 12-14. Retrieved from https://www.structuremag.org/wp-content/uploads/2014/08/C-BuildingBlocks-Tumialan-May091.pdf Valluzzi, M., Tinazzi, D., & Modena, C. (2002). Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7), 409 – 416. DOI: https://doi.org/10.1016/S0950-0618(02)00043-0 Vega, C. (2015). Comportamiento dinámico de muros de mampostería no estructural reforzados mediante polímeros reforzados con fibra de carbono, CFRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería Julio Garavito). Retrieved from https://repositorio.escuelaing.edu.co/handle/001/211 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia. |
dc.source.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/ingeinv/article/view/73151 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1512/3/10.15446ing.investig.v38n3.73151.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1512/5/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1512/6/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1512/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1512/2/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf |
bitstream.checksum.fl_str_mv |
066cdb41fd6c1cf2c102451ed8e9e9d4 066cdb41fd6c1cf2c102451ed8e9e9d4 d21a613a8ae1561ab6f44964e93ff27b 5a7ca94c2e5326ee169f979d71d0f06e 9df8f6e396027e96cf8a6feff63d7325 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355582877958144 |
spelling |
Vega, Camilod6a4371ceb34f2490f0ed1a52e575520600Torres, Nancy59ee354f96b0dc2539a68ff9e3950918600Estructuras y Materiales2021-05-28T15:41:20Z2021-10-01T17:46:31Z2021-05-28T15:41:20Z2021-10-01T17:46:31Z20182248-8723https://repositorio.escuelaing.edu.co/handle/001/151210.15446/ing.investig.v38n3.73151https://doi.org/10.15446/ing.investig.v38n3.73151In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a research project that evaluates the behavior of reinforced masonry walls under lateral loads. The reinforcement was made using Carbon Fiber Reinforced Polymers (CFRP). In the test program, eight (8) clay masonry walls were built using hollow brick. Four (4) of them were 1,23 m long and 1,90 m high and the remaining four (4) were 2,47 m long and 1,90 m high. Four (4) walls were tested with a static lateral load and four (4) with a cyclic lateral load in its plane. Results revealed that the presence of the reinforcement material significantly increased the ultimate load and deformation capacity, provided that the material has a suitable anchoring system.La construcción de viviendas con muros de mampostería en arcilla no reforzada es tradicional en muchos países, en especial en Colombia. Debido a su baja resistencia y ductilidad, estas edificaciones son muy vulnerables a eventos sísmicos como consecuencia de su poca capacidad de disipación de energía, lo que genera fallas que llevan incluso al colapso total. Este artículo expone los resultados de un proyecto de investigación donde se evaluó el comportamiento ante cargas laterales en muros de mampostería no estructural, reforzados mediante polímeros reforzados con fibra de carbono (CFRP). En el programa experimental, se construyeron ocho (8) muros de mampostería de arcilla, utilizando bloque de perforación horizontal. Cuatro (4) de ellos tenían dimensiones de 1,23 m de largo por 1,90 m de alto y los cuatro (4) restantes de 2,47 m de largo por 1,90 m de alto. Cuatro (4) muros se probaron ante carga lateral estática y cuatro (4) ante carga lateral cíclica en su plano. Los resultados muestran que el material de refuerzo mejoró significativamente la capacidad de carga y deformación última de los muros, siempre y cuando se tenga un adecuado sistema de anclaje.1 Civil Engineer, M.Sc. in Civil Engineering, Escuela Colombiana de Ingeniería Julio Garavito, Colombia. Affiliation: Instructor Professor, Escuela Colombiana de Ingeniería Julio Garavito. E-mail: camilo.vega@escuelaing.edu.co. 2 Civil Engineer, Universidad Francisco de Paula Santander, Colombia. Ph.D. Materials Science and Technology, Universidad Nacional de Colombia, Co-lombia. Affiliation: Associate Professor, Escuela Colombiana de Ingeniería Ju-lio Garavito, Colombia. E-mail: nancy.torres@escuelaing.edu.co9 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá, Colombia.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/ingeinv/article/view/73151External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiberReforzamiento externo de muros de mampostería no reforzada mediante polímeros reforzados con fibra de carbonoArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería e Investigación, Vol. 38 no. 3, december - 2018 (15-23).2331538N/AIngeniería e InvestigaciónACI, Committee 440. (2010). 440.7R-10: Guide for the design and Construction of externally bonded fiber-reinforced polymer systems for strengthening unreinforced masonry structures. (7 ed). Farmington Hills: American Concrete Institute.Arifuzzaman, S. & Saatcioglu, M. (2012). Seismic retrofit of load bearing masonry walls by FRP sheets and anchors. Paper presented at the Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portuguese Earthquake Engineering Community. Retrieved from http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4501.pdfASCE 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, VA: American Society of Civil EngineersASCE 41-13. (2014). Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil EngineersCapozzuca, R. (2011). Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Composite Structures 94(1), 277-289. DOI: https://doi.org/10.1016/j.compstruct.2011.06.007Elgawady, M., Lestuzzi, P., & Bardoux, M. (2006). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2-3), 148-162. DOI: https://doi.org/10.1016/j.compositesb.2005.06.003FEMA 461. (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Non structural Components. Washington, D.C.: Federal Emergency Management Agency. Retrieved from https://www.atcouncil.org/pdfs/FEMA461.pdfFOPAE - Fondo de Prevención y Atención de Emergencias. (2010). Visita técnica comisión de dirección de prevención y atención de emergencias - FOPAE - San Pedro de la Paz - Concepción – Chile. Informe técnico. Bogotá D.C.: Alcaldía Mayor de Bogotá. Retrieved from https://docplayer.es/4541826-Visita-tecnica-comision-de-direccion-de-prevencion-y-atencion-de-emergencias-fopae-san-pedro-de-la-paz-concepcion-chile-informe-tecnico.htmlGabor, A, Bennani, A, Jacquelin, E, & Lebon, F. (2006). Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. Composite Structures, 74 (3), pp. 277-288. DOI: https://doi.org/10.1016/j.compstruct.2005.04.012Galati, N., Tumialán, G., & Nanni, A. (2006). Strengthening with FRP bars of URM walls subject to out-of-plane loads. Construction and Building Materials, 20(1-2), 101-110. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.047Ingeominas. (1986). El sismo de Popayán de marzo 31 de 1983. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.Ingeominas. (1999). Terremoto del Quindío: Enero 25 de 1999. Informe Técnico Preliminar No. 2 Armenia – Quindío. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.Kalali, A., & Kabir, M. (2012). Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests. Engineering Structures, 39, 24-37. DOI: https://doi.org/10.1016/j.engstruct.2012.01.018Klingner, R. (2006). Behavior of masonry in the Northridge (US) and Tecomán - Colima (Mexico) earthquakes: Lessons learned, and changes in US design. Construction and Building Materials, 20(4), 209-219. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.024López, H. (2012). Comportamiento de muros diafragma en mampostería de concreto reforzados con tejidos de FRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería). Retrieved from: https://repositorio.escuelaing.edu.co/handle/001/211Lignola, G., Prota, A., Manfredi, G. (2012). Numerical investigation on the influence of FRP retrofit layout and geometry on the in-plane behaviour of masonry walls. Journal of Composites for Construction, 16 (6), pp. 712- 723. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000297Luccioni, B., & Rougier, V. (2011). In-plane retrofitting of masonry panels with fiber reinforced composite materials. Construction and Building Materials, 25(4), 1772-1788. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.088Lunn, D., Maeda, S., Rizkalla, S., & Ueda, T. (2013). Anchorage systems for FRP strengthening of infill masonry structures. International Journal of Sustainable Materials and Structural Systems,1(2), 142-160. DOI: https://doi.org/10.1504/IJSMSS.2013.056469AIS. (2010). Reglamento colombiano de construcción sismo resistente NSR-10 (Vol. 1 y Vol.2). Bogotá D.C.: Asociación de Ingeniería Sísmica.Mosallam, A., & Banerjee, S. (2011). Enhancement in in-plane shear capacity of unreinforced masonry (URM) walls strengthened with fiber reinforced polymer composites. Composites Part B: Engineering, 42(6), 1657-1670. DOI: https://doi.org/10.1016/j.compositesb.2011.03.015Paulay T., & Priestley M.J. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley.Rahman, A., & Ueda, T. (2016). In-plane shear performance of masonry walls after strengthening by two different FRPs. ASCE Journal of Composites for Construction, 20(5),1-14. DOI: https://doi.org/10.1061/(ASCE)CC.1943- 5614.0000661Santa María, H., & Alcaino, P. (2011). Repair of in-plane shear damaged masonry walls with external FRP. Construction and Building Materials, 25(3), 1172-1180. DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.030Triantafillou, T., Papanicolaou, C., & Lekka, M. (2011). Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials, 25(2), 504-514. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.018Tumialan, G., Vatovec, M., & Kelley, P. (2009). FRP Composites for Masonry Retrofitting: Review of Engineering Issues, Limitations and Practical Applications. Structure magazine (May), 12-14. Retrieved from https://www.structuremag.org/wp-content/uploads/2014/08/C-BuildingBlocks-Tumialan-May091.pdfValluzzi, M., Tinazzi, D., & Modena, C. (2002). Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7), 409 – 416. DOI: https://doi.org/10.1016/S0950-0618(02)00043-0Vega, C. (2015). Comportamiento dinámico de muros de mampostería no estructural reforzados mediante polímeros reforzados con fibra de carbono, CFRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería Julio Garavito). Retrieved from https://repositorio.escuelaing.edu.co/handle/001/211MamposteríaMurosPolímerosResistencia de materialesMasonryWallsPolymersStrength of materialsUnreinforced masonryFiber reinforced polymersSeismic retrofittingLateral loadsMampostería no reforzadaPolímeros reforzados con fibraReforzamiento sísmicoCargas lateralesTEXT10.15446ing.investig.v38n3.73151.pdf.txt10.15446ing.investig.v38n3.73151.pdf.txtExtracted texttext/plain35785https://repositorio.escuelaing.edu.co/bitstream/001/1512/3/10.15446ing.investig.v38n3.73151.pdf.txt066cdb41fd6c1cf2c102451ed8e9e9d4MD53open accessExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.txtExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.txtExtracted texttext/plain35785https://repositorio.escuelaing.edu.co/bitstream/001/1512/5/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.txt066cdb41fd6c1cf2c102451ed8e9e9d4MD55metadata only accessTHUMBNAILExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.jpgExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.jpgGenerated Thumbnailimage/jpeg15715https://repositorio.escuelaing.edu.co/bitstream/001/1512/6/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.jpgd21a613a8ae1561ab6f44964e93ff27bMD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1512/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdfapplication/pdf2334864https://repositorio.escuelaing.edu.co/bitstream/001/1512/2/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf9df8f6e396027e96cf8a6feff63d7325MD52open access001/1512oai:repositorio.escuelaing.edu.co:001/15122022-08-09 12:57:45.263open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |