External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber

In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a...

Full description

Autores:
Vega, Camilo
Torres, Nancy
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1512
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1512
https://doi.org/10.15446/ing.investig.v38n3.73151
Palabra clave:
Mampostería
Muros
Polímeros
Resistencia de materiales
Masonry
Walls
Polymers
Strength of materials
Unreinforced masonry
Fiber reinforced polymers
Seismic retrofitting
Lateral loads
Mampostería no reforzada
Polímeros reforzados con fibra
Reforzamiento sísmico
Cargas laterales
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_dd28236b326b4b64d1f1cead33764085
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1512
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
dc.title.alternative.spa.fl_str_mv Reforzamiento externo de muros de mampostería no reforzada mediante polímeros reforzados con fibra de carbono
title External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
spellingShingle External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
Mampostería
Muros
Polímeros
Resistencia de materiales
Masonry
Walls
Polymers
Strength of materials
Unreinforced masonry
Fiber reinforced polymers
Seismic retrofitting
Lateral loads
Mampostería no reforzada
Polímeros reforzados con fibra
Reforzamiento sísmico
Cargas laterales
title_short External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
title_full External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
title_fullStr External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
title_full_unstemmed External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
title_sort External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber
dc.creator.fl_str_mv Vega, Camilo
Torres, Nancy
dc.contributor.author.none.fl_str_mv Vega, Camilo
Torres, Nancy
dc.contributor.researchgroup.spa.fl_str_mv Estructuras y Materiales
dc.subject.armarc.spa.fl_str_mv Mampostería
Muros
Polímeros
Resistencia de materiales
topic Mampostería
Muros
Polímeros
Resistencia de materiales
Masonry
Walls
Polymers
Strength of materials
Unreinforced masonry
Fiber reinforced polymers
Seismic retrofitting
Lateral loads
Mampostería no reforzada
Polímeros reforzados con fibra
Reforzamiento sísmico
Cargas laterales
dc.subject.armarc.eng.fl_str_mv Masonry
Walls
Polymers
Strength of materials
dc.subject.proposal.eng.fl_str_mv Unreinforced masonry
Fiber reinforced polymers
Seismic retrofitting
Lateral loads
dc.subject.proposal.spa.fl_str_mv Mampostería no reforzada
Polímeros reforzados con fibra
Reforzamiento sísmico
Cargas laterales
description In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a research project that evaluates the behavior of reinforced masonry walls under lateral loads. The reinforcement was made using Carbon Fiber Reinforced Polymers (CFRP). In the test program, eight (8) clay masonry walls were built using hollow brick. Four (4) of them were 1,23 m long and 1,90 m high and the remaining four (4) were 2,47 m long and 1,90 m high. Four (4) walls were tested with a static lateral load and four (4) with a cyclic lateral load in its plane. Results revealed that the presence of the reinforcement material significantly increased the ultimate load and deformation capacity, provided that the material has a suitable anchoring system.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-05-28T15:41:20Z
2021-10-01T17:46:31Z
dc.date.available.none.fl_str_mv 2021-05-28T15:41:20Z
2021-10-01T17:46:31Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1512
dc.identifier.doi.none.fl_str_mv 10.15446/ing.investig.v38n3.73151
dc.identifier.url.none.fl_str_mv https://doi.org/10.15446/ing.investig.v38n3.73151
identifier_str_mv 2248-8723
10.15446/ing.investig.v38n3.73151
url https://repositorio.escuelaing.edu.co/handle/001/1512
https://doi.org/10.15446/ing.investig.v38n3.73151
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Ingeniería e Investigación, Vol. 38 no. 3, december - 2018 (15-23).
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 15
dc.relation.citationvolume.spa.fl_str_mv 38
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv ACI, Committee 440. (2010). 440.7R-10: Guide for the design and Construction of externally bonded fiber-reinforced polymer systems for strengthening unreinforced masonry structures. (7 ed). Farmington Hills: American Concrete Institute.
Arifuzzaman, S. & Saatcioglu, M. (2012). Seismic retrofit of load bearing masonry walls by FRP sheets and anchors. Paper presented at the Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portuguese Earthquake Engineering Community. Retrieved from http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4501.pdf
ASCE 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, VA: American Society of Civil Engineers
ASCE 41-13. (2014). Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil Engineers
Capozzuca, R. (2011). Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Composite Structures 94(1), 277-289. DOI: https://doi.org/10.1016/j.compstruct.2011.06.007
Elgawady, M., Lestuzzi, P., & Bardoux, M. (2006). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2-3), 148-162. DOI: https://doi.org/10.1016/j.compositesb.2005.06.003
FEMA 461. (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Non structural Components. Washington, D.C.: Federal Emergency Management Agency. Retrieved from https://www.atcouncil.org/pdfs/FEMA461.pdf
FOPAE - Fondo de Prevención y Atención de Emergencias. (2010). Visita técnica comisión de dirección de prevención y atención de emergencias - FOPAE - San Pedro de la Paz - Concepción – Chile. Informe técnico. Bogotá D.C.: Alcaldía Mayor de Bogotá. Retrieved from https://docplayer.es/4541826-Visita-tecnica-comision-de-direccion-de-prevencion-y-atencion-de-emergencias-fopae-san-pedro-de-la-paz-concepcion-chile-informe-tecnico.html
Gabor, A, Bennani, A, Jacquelin, E, & Lebon, F. (2006). Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. Composite Structures, 74 (3), pp. 277-288. DOI: https://doi.org/10.1016/j.compstruct.2005.04.012
Galati, N., Tumialán, G., & Nanni, A. (2006). Strengthening with FRP bars of URM walls subject to out-of-plane loads. Construction and Building Materials, 20(1-2), 101-110. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.047
Ingeominas. (1986). El sismo de Popayán de marzo 31 de 1983. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.
Ingeominas. (1999). Terremoto del Quindío: Enero 25 de 1999. Informe Técnico Preliminar No. 2 Armenia – Quindío. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.
Kalali, A., & Kabir, M. (2012). Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests. Engineering Structures, 39, 24-37. DOI: https://doi.org/10.1016/j.engstruct.2012.01.018
Klingner, R. (2006). Behavior of masonry in the Northridge (US) and Tecomán - Colima (Mexico) earthquakes: Lessons learned, and changes in US design. Construction and Building Materials, 20(4), 209-219. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.024
López, H. (2012). Comportamiento de muros diafragma en mampostería de concreto reforzados con tejidos de FRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería). Retrieved from: https://repositorio.escuelaing.edu.co/handle/001/211
Lignola, G., Prota, A., Manfredi, G. (2012). Numerical investigation on the influence of FRP retrofit layout and geometry on the in-plane behaviour of masonry walls. Journal of Composites for Construction, 16 (6), pp. 712- 723. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000297
Luccioni, B., & Rougier, V. (2011). In-plane retrofitting of masonry panels with fiber reinforced composite materials. Construction and Building Materials, 25(4), 1772-1788. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.088
Lunn, D., Maeda, S., Rizkalla, S., & Ueda, T. (2013). Anchorage systems for FRP strengthening of infill masonry structures. International Journal of Sustainable Materials and Structural Systems,1(2), 142-160. DOI: https://doi.org/10.1504/IJSMSS.2013.056469
AIS. (2010). Reglamento colombiano de construcción sismo resistente NSR-10 (Vol. 1 y Vol.2). Bogotá D.C.: Asociación de Ingeniería Sísmica.
Mosallam, A., & Banerjee, S. (2011). Enhancement in in-plane shear capacity of unreinforced masonry (URM) walls strengthened with fiber reinforced polymer composites. Composites Part B: Engineering, 42(6), 1657-1670. DOI: https://doi.org/10.1016/j.compositesb.2011.03.015
Paulay T., & Priestley M.J. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley.
Rahman, A., & Ueda, T. (2016). In-plane shear performance of masonry walls after strengthening by two different FRPs. ASCE Journal of Composites for Construction, 20(5),1-14. DOI: https://doi.org/10.1061/(ASCE)CC.1943- 5614.0000661
Santa María, H., & Alcaino, P. (2011). Repair of in-plane shear damaged masonry walls with external FRP. Construction and Building Materials, 25(3), 1172-1180. DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.030
Triantafillou, T., Papanicolaou, C., & Lekka, M. (2011). Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials, 25(2), 504-514. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.018
Tumialan, G., Vatovec, M., & Kelley, P. (2009). FRP Composites for Masonry Retrofitting: Review of Engineering Issues, Limitations and Practical Applications. Structure magazine (May), 12-14. Retrieved from https://www.structuremag.org/wp-content/uploads/2014/08/C-BuildingBlocks-Tumialan-May091.pdf
Valluzzi, M., Tinazzi, D., & Modena, C. (2002). Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7), 409 – 416. DOI: https://doi.org/10.1016/S0950-0618(02)00043-0
Vega, C. (2015). Comportamiento dinámico de muros de mampostería no estructural reforzados mediante polímeros reforzados con fibra de carbono, CFRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería Julio Garavito). Retrieved from https://repositorio.escuelaing.edu.co/handle/001/211
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia.
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/73151
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1512/3/10.15446ing.investig.v38n3.73151.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1512/5/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1512/6/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1512/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1512/2/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf
bitstream.checksum.fl_str_mv 066cdb41fd6c1cf2c102451ed8e9e9d4
066cdb41fd6c1cf2c102451ed8e9e9d4
d21a613a8ae1561ab6f44964e93ff27b
5a7ca94c2e5326ee169f979d71d0f06e
9df8f6e396027e96cf8a6feff63d7325
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355582877958144
spelling Vega, Camilod6a4371ceb34f2490f0ed1a52e575520600Torres, Nancy59ee354f96b0dc2539a68ff9e3950918600Estructuras y Materiales2021-05-28T15:41:20Z2021-10-01T17:46:31Z2021-05-28T15:41:20Z2021-10-01T17:46:31Z20182248-8723https://repositorio.escuelaing.edu.co/handle/001/151210.15446/ing.investig.v38n3.73151https://doi.org/10.15446/ing.investig.v38n3.73151In many countries, buildings are usually made of unreinforced clay masonry walls, especially in Colombia. These constructions have low resistance and ductility, and are very vulnerable to seismic events, due to their low capacity of energy dissipation. This paper reports the results obtained from a research project that evaluates the behavior of reinforced masonry walls under lateral loads. The reinforcement was made using Carbon Fiber Reinforced Polymers (CFRP). In the test program, eight (8) clay masonry walls were built using hollow brick. Four (4) of them were 1,23 m long and 1,90 m high and the remaining four (4) were 2,47 m long and 1,90 m high. Four (4) walls were tested with a static lateral load and four (4) with a cyclic lateral load in its plane. Results revealed that the presence of the reinforcement material significantly increased the ultimate load and deformation capacity, provided that the material has a suitable anchoring system.La construcción de viviendas con muros de mampostería en arcilla no reforzada es tradicional en muchos países, en especial en Colombia. Debido a su baja resistencia y ductilidad, estas edificaciones son muy vulnerables a eventos sísmicos como consecuencia de su poca capacidad de disipación de energía, lo que genera fallas que llevan incluso al colapso total. Este artículo expone los resultados de un proyecto de investigación donde se evaluó el comportamiento ante cargas laterales en muros de mampostería no estructural, reforzados mediante polímeros reforzados con fibra de carbono (CFRP). En el programa experimental, se construyeron ocho (8) muros de mampostería de arcilla, utilizando bloque de perforación horizontal. Cuatro (4) de ellos tenían dimensiones de 1,23 m de largo por 1,90 m de alto y los cuatro (4) restantes de 2,47 m de largo por 1,90 m de alto. Cuatro (4) muros se probaron ante carga lateral estática y cuatro (4) ante carga lateral cíclica en su plano. Los resultados muestran que el material de refuerzo mejoró significativamente la capacidad de carga y deformación última de los muros, siempre y cuando se tenga un adecuado sistema de anclaje.1 Civil Engineer, M.Sc. in Civil Engineering, Escuela Colombiana de Ingeniería Julio Garavito, Colombia. Affiliation: Instructor Professor, Escuela Colombiana de Ingeniería Julio Garavito. E-mail: camilo.vega@escuelaing.edu.co. 2 Civil Engineer, Universidad Francisco de Paula Santander, Colombia. Ph.D. Materials Science and Technology, Universidad Nacional de Colombia, Co-lombia. Affiliation: Associate Professor, Escuela Colombiana de Ingeniería Ju-lio Garavito, Colombia. E-mail: nancy.torres@escuelaing.edu.co9 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá, Colombia.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/ingeinv/article/view/73151External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiberReforzamiento externo de muros de mampostería no reforzada mediante polímeros reforzados con fibra de carbonoArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería e Investigación, Vol. 38 no. 3, december - 2018 (15-23).2331538N/AIngeniería e InvestigaciónACI, Committee 440. (2010). 440.7R-10: Guide for the design and Construction of externally bonded fiber-reinforced polymer systems for strengthening unreinforced masonry structures. (7 ed). Farmington Hills: American Concrete Institute.Arifuzzaman, S. & Saatcioglu, M. (2012). Seismic retrofit of load bearing masonry walls by FRP sheets and anchors. Paper presented at the Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portuguese Earthquake Engineering Community. Retrieved from http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4501.pdfASCE 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, VA: American Society of Civil EngineersASCE 41-13. (2014). Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil EngineersCapozzuca, R. (2011). Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Composite Structures 94(1), 277-289. DOI: https://doi.org/10.1016/j.compstruct.2011.06.007Elgawady, M., Lestuzzi, P., & Bardoux, M. (2006). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2-3), 148-162. DOI: https://doi.org/10.1016/j.compositesb.2005.06.003FEMA 461. (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Non structural Components. Washington, D.C.: Federal Emergency Management Agency. Retrieved from https://www.atcouncil.org/pdfs/FEMA461.pdfFOPAE - Fondo de Prevención y Atención de Emergencias. (2010). Visita técnica comisión de dirección de prevención y atención de emergencias - FOPAE - San Pedro de la Paz - Concepción – Chile. Informe técnico. Bogotá D.C.: Alcaldía Mayor de Bogotá. Retrieved from https://docplayer.es/4541826-Visita-tecnica-comision-de-direccion-de-prevencion-y-atencion-de-emergencias-fopae-san-pedro-de-la-paz-concepcion-chile-informe-tecnico.htmlGabor, A, Bennani, A, Jacquelin, E, & Lebon, F. (2006). Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. Composite Structures, 74 (3), pp. 277-288. DOI: https://doi.org/10.1016/j.compstruct.2005.04.012Galati, N., Tumialán, G., & Nanni, A. (2006). Strengthening with FRP bars of URM walls subject to out-of-plane loads. Construction and Building Materials, 20(1-2), 101-110. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.047Ingeominas. (1986). El sismo de Popayán de marzo 31 de 1983. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.Ingeominas. (1999). Terremoto del Quindío: Enero 25 de 1999. Informe Técnico Preliminar No. 2 Armenia – Quindío. Bogotá D.C.: Instituto Nacional de Investigaciones Geológico – Mineras.Kalali, A., & Kabir, M. (2012). Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests. Engineering Structures, 39, 24-37. DOI: https://doi.org/10.1016/j.engstruct.2012.01.018Klingner, R. (2006). Behavior of masonry in the Northridge (US) and Tecomán - Colima (Mexico) earthquakes: Lessons learned, and changes in US design. Construction and Building Materials, 20(4), 209-219. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.024López, H. (2012). Comportamiento de muros diafragma en mampostería de concreto reforzados con tejidos de FRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería). Retrieved from: https://repositorio.escuelaing.edu.co/handle/001/211Lignola, G., Prota, A., Manfredi, G. (2012). Numerical investigation on the influence of FRP retrofit layout and geometry on the in-plane behaviour of masonry walls. Journal of Composites for Construction, 16 (6), pp. 712- 723. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000297Luccioni, B., & Rougier, V. (2011). In-plane retrofitting of masonry panels with fiber reinforced composite materials. Construction and Building Materials, 25(4), 1772-1788. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.088Lunn, D., Maeda, S., Rizkalla, S., & Ueda, T. (2013). Anchorage systems for FRP strengthening of infill masonry structures. International Journal of Sustainable Materials and Structural Systems,1(2), 142-160. DOI: https://doi.org/10.1504/IJSMSS.2013.056469AIS. (2010). Reglamento colombiano de construcción sismo resistente NSR-10 (Vol. 1 y Vol.2). Bogotá D.C.: Asociación de Ingeniería Sísmica.Mosallam, A., & Banerjee, S. (2011). Enhancement in in-plane shear capacity of unreinforced masonry (URM) walls strengthened with fiber reinforced polymer composites. Composites Part B: Engineering, 42(6), 1657-1670. DOI: https://doi.org/10.1016/j.compositesb.2011.03.015Paulay T., & Priestley M.J. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley.Rahman, A., & Ueda, T. (2016). In-plane shear performance of masonry walls after strengthening by two different FRPs. ASCE Journal of Composites for Construction, 20(5),1-14. DOI: https://doi.org/10.1061/(ASCE)CC.1943- 5614.0000661Santa María, H., & Alcaino, P. (2011). Repair of in-plane shear damaged masonry walls with external FRP. Construction and Building Materials, 25(3), 1172-1180. DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.030Triantafillou, T., Papanicolaou, C., & Lekka, M. (2011). Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials, 25(2), 504-514. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.018Tumialan, G., Vatovec, M., & Kelley, P. (2009). FRP Composites for Masonry Retrofitting: Review of Engineering Issues, Limitations and Practical Applications. Structure magazine (May), 12-14. Retrieved from https://www.structuremag.org/wp-content/uploads/2014/08/C-BuildingBlocks-Tumialan-May091.pdfValluzzi, M., Tinazzi, D., & Modena, C. (2002). Shear behavior of masonry panels strengthened by FRP laminates. Construction and Building Materials, 16(7), 409 – 416. DOI: https://doi.org/10.1016/S0950-0618(02)00043-0Vega, C. (2015). Comportamiento dinámico de muros de mampostería no estructural reforzados mediante polímeros reforzados con fibra de carbono, CFRP. (M.Sc. thesis, Escuela Colombiana de Ingeniería Julio Garavito). Retrieved from https://repositorio.escuelaing.edu.co/handle/001/211MamposteríaMurosPolímerosResistencia de materialesMasonryWallsPolymersStrength of materialsUnreinforced masonryFiber reinforced polymersSeismic retrofittingLateral loadsMampostería no reforzadaPolímeros reforzados con fibraReforzamiento sísmicoCargas lateralesTEXT10.15446ing.investig.v38n3.73151.pdf.txt10.15446ing.investig.v38n3.73151.pdf.txtExtracted texttext/plain35785https://repositorio.escuelaing.edu.co/bitstream/001/1512/3/10.15446ing.investig.v38n3.73151.pdf.txt066cdb41fd6c1cf2c102451ed8e9e9d4MD53open accessExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.txtExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.txtExtracted texttext/plain35785https://repositorio.escuelaing.edu.co/bitstream/001/1512/5/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.txt066cdb41fd6c1cf2c102451ed8e9e9d4MD55metadata only accessTHUMBNAILExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.jpgExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdf.jpgGenerated Thumbnailimage/jpeg15715https://repositorio.escuelaing.edu.co/bitstream/001/1512/6/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf.jpgd21a613a8ae1561ab6f44964e93ff27bMD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1512/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALExternal strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber.pdfapplication/pdf2334864https://repositorio.escuelaing.edu.co/bitstream/001/1512/2/External%20strengthening%20of%20unreinforced%20masonry%20walls%20with%20polymers%20reinforced%20with%20carbon%20fiber.pdf9df8f6e396027e96cf8a6feff63d7325MD52open access001/1512oai:repositorio.escuelaing.edu.co:001/15122022-08-09 12:57:45.263open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK