The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy

Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machinin...

Full description

Autores:
Pulido-Suárez, P.A.
Uñate-González, K.S.
Tirado-González, J.G.
Esguerra-Arce, A.
Esguerra-Arce, J.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1595
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1595
https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
Palabra clave:
Microestructura
Metalurgia de polvos
Metales pulverizados
Microstructure
Powder metallurgy
Composite
Discontinuous chips
Powder metallurgy
Aluminum alloys
Dynamic recrystallization
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_dc53d4927a5e902f1c017d4bd95f8839
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1595
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
title The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
spellingShingle The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
Microestructura
Metalurgia de polvos
Metales pulverizados
Microstructure
Powder metallurgy
Composite
Discontinuous chips
Powder metallurgy
Aluminum alloys
Dynamic recrystallization
title_short The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
title_full The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
title_fullStr The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
title_full_unstemmed The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
title_sort The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
dc.creator.fl_str_mv Pulido-Suárez, P.A.
Uñate-González, K.S.
Tirado-González, J.G.
Esguerra-Arce, A.
Esguerra-Arce, J.
dc.contributor.author.none.fl_str_mv Pulido-Suárez, P.A.
Uñate-González, K.S.
Tirado-González, J.G.
Esguerra-Arce, A.
Esguerra-Arce, J.
dc.contributor.researchgroup.spa.fl_str_mv Centro de Investigaciones en Manufactura y Servicios - CIMSER
dc.subject.armarc.spa.fl_str_mv Microestructura
Metalurgia de polvos
Metales pulverizados
topic Microestructura
Metalurgia de polvos
Metales pulverizados
Microstructure
Powder metallurgy
Composite
Discontinuous chips
Powder metallurgy
Aluminum alloys
Dynamic recrystallization
dc.subject.armarc.eng.fl_str_mv Microstructure
Powder metallurgy
dc.subject.proposal.spa.fl_str_mv Composite
Discontinuous chips
Powder metallurgy
Aluminum alloys
Dynamic recrystallization
description Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machining Al-Si-Zn-Mg alloy parts, and powders were obtained throughgrinding processes. Grinding was performed at 45, 69, and 94 h, with grinding bodies/chipsvolume ratios of 6:1, 8:1, 10:1 and 12:1. The resulting powders were characterized by scanningelectron microscopy, laser granulometry, and X-ray diffraction. After grinding, the parti-cles were compacted and sintered, and hardness was evaluated. It was found that metallicpowder is formed through plastic deformation, hardening, fracture, and dynamic recrystal-lization. It was possible to obtain samples with lower apparent density and higher hardnessby powder metallurgy from Al-Si-Zn-Mg alloy chips than from the bulk. Powder was obtainedafter grinding, and samples were obtained by compacting and sintering. The higher hard-ness value was attributed to the presence of Al2O3formed in the particles during grinding,which acts as a second reinforcing phase in the sintered samples, and as a retardant ofintermetallic phase growing
publishDate 2020
dc.date.available.none.fl_str_mv 2020
2021-06-22T20:26:13Z
2021-10-01T17:37:38Z
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-06-22T20:26:13Z
2021-10-01T17:37:38Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2238-7854
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1595
dc.identifier.ark.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
dc.identifier.doi.none.fl_str_mv doi.org/10.1016/j.jmrt.2020.08.045
identifier_str_mv 2238-7854
doi.org/10.1016/j.jmrt.2020.08.045
url https://repositorio.escuelaing.edu.co/handle/001/1595
https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 9, Número 5, Septiembre - Octubre 2020
dc.relation.citationendpage.spa.fl_str_mv 11777
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 11769
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Materials Research and Technology
dc.relation.references.spa.fl_str_mv Hirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326(14)63305-7
Zhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001
Abdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001
Kirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3
Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136(96)02563-0
Gronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136(00)00634-8
Irfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141.
Seong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136(99)00469-0
Fuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981
Rojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028
Afshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064
Zhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16
Susila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3
Williamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160(53)90006-6
Baghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017
Tsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474
Bacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008
Schmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8.
Kapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006
Zhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10
Zhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326(17)60154-7.
Jimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12.
Boldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5
Kumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM Press
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1595/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1595/2/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1595/3/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1595/4/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
d67ce9a3aae0014b1737f43b0966e525
33f4f15a16a9843faf6a25d4f387b6fd
a656d70eaa929889771cd3d6f3107b58
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355624657420288
spelling Pulido-Suárez, P.A.055f2cc80a7ca477843e033ddd580a4b600Uñate-González, K.S.58c2f52ec5721bbd3e048afcca35f1e5600Tirado-González, J.G.c393a7715ecec88cbc501142a35ba7b7600Esguerra-Arce, A.0ab02ca2dde5caf57a4b65537d338633600Esguerra-Arce, J.d56e4604067bf9cf912a78675fd07a40600Centro de Investigaciones en Manufactura y Servicios - CIMSER2021-06-22T20:26:13Z2021-10-01T17:37:38Z20202021-06-22T20:26:13Z2021-10-01T17:37:38Z20202238-7854https://repositorio.escuelaing.edu.co/handle/001/1595https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihubdoi.org/10.1016/j.jmrt.2020.08.045Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machining Al-Si-Zn-Mg alloy parts, and powders were obtained throughgrinding processes. Grinding was performed at 45, 69, and 94 h, with grinding bodies/chipsvolume ratios of 6:1, 8:1, 10:1 and 12:1. The resulting powders were characterized by scanningelectron microscopy, laser granulometry, and X-ray diffraction. After grinding, the parti-cles were compacted and sintered, and hardness was evaluated. It was found that metallicpowder is formed through plastic deformation, hardening, fracture, and dynamic recrystal-lization. It was possible to obtain samples with lower apparent density and higher hardnessby powder metallurgy from Al-Si-Zn-Mg alloy chips than from the bulk. Powder was obtainedafter grinding, and samples were obtained by compacting and sintering. The higher hard-ness value was attributed to the presence of Al2O3formed in the particles during grinding,which acts as a second reinforcing phase in the sintered samples, and as a retardant ofintermetallic phase growingAunque las virutas metálicas largas / continuas se reciclan fácilmente por fusión, este no es el caso de las virutas de molienda discontinuas. El presente estudio tuvo como objetivo reducir la generación de residuos y facilitar el uso de este subproducto para obtener un compuesto de óxido metálico. Las virutas se recogieron después de mecanizar piezas de aleación de Al-Si-Zn-Mg y los polvos se obtuvieron mediante procesos de molienda. La trituración se realizó a las 45, 69 y 94 h, con relaciones de volumen de cuerpos de trituración / virutas de 6: 1, 8: 1, 10: 1 y 12: 1. Los polvos resultantes se caracterizaron mediante microscopía electrónica de barrido, granulometría láser y difracción de rayos X. Después de la molienda, las partículas se compactaron y sinterizaron y se evaluó la dureza. Se encontró que el polvo metálico se forma mediante deformación plástica, endurecimiento, fractura y recristalización dinámica. Fue posible obtener muestras con menor densidad aparente y mayor dureza mediante pulvimetalurgia a partir de virutas de aleación de Al-Si-Zn-Mg que a granel. El polvo se obtuvo después de la trituración y las muestras se obtuvieron por compactación y sinterización. El mayor valor de dureza se atribuyó a la presencia de Al2O3 formado en las partículas durante la molienda, que actúa como una segunda fase de refuerzo en las muestras sinterizadas y como retardador del crecimiento de la fase intermetálica.Received 7 May 2020 Accepted 11 August 2020 Available online 28 August 20209 páginasapplication/pdfengElsevierEstados UnidosThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3DihubThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgyArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 9, Número 5, Septiembre - Octubre 2020117775117699N/AJournal of Materials Research and TechnologyHirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326(14)63305-7Zhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001Abdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001Kirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136(96)02563-0Gronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136(00)00634-8Irfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141.Seong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136(99)00469-0Fuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981Rojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028Afshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064Zhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16Susila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3Williamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160(53)90006-6Baghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017Tsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474Bacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008Schmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8.Kapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006Zhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10Zhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326(17)60154-7.Jimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12.Boldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5Kumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM PressMicroestructuraMetalurgia de polvosMetales pulverizadosMicrostructurePowder metallurgyCompositeDiscontinuous chipsPowder metallurgyAluminum alloysDynamic recrystallizationLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1595/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdfapplication/pdf7609611https://repositorio.escuelaing.edu.co/bitstream/001/1595/2/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdfd67ce9a3aae0014b1737f43b0966e525MD52open accessTEXTThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.txtThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.txtExtracted texttext/plain9https://repositorio.escuelaing.edu.co/bitstream/001/1595/3/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.txt33f4f15a16a9843faf6a25d4f387b6fdMD53open accessTHUMBNAILThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.jpgThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.jpgGenerated Thumbnailimage/jpeg15637https://repositorio.escuelaing.edu.co/bitstream/001/1595/4/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.jpga656d70eaa929889771cd3d6f3107b58MD54open access001/1595oai:repositorio.escuelaing.edu.co:001/15952022-09-09 11:55:11.669open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK