The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy
Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machinin...
- Autores:
-
Pulido-Suárez, P.A.
Uñate-González, K.S.
Tirado-González, J.G.
Esguerra-Arce, A.
Esguerra-Arce, J.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1595
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1595
https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
- Palabra clave:
- Microestructura
Metalurgia de polvos
Metales pulverizados
Microstructure
Powder metallurgy
Composite
Discontinuous chips
Powder metallurgy
Aluminum alloys
Dynamic recrystallization
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
ESCUELAIG2_dc53d4927a5e902f1c017d4bd95f8839 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1595 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
title |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
spellingShingle |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy Microestructura Metalurgia de polvos Metales pulverizados Microstructure Powder metallurgy Composite Discontinuous chips Powder metallurgy Aluminum alloys Dynamic recrystallization |
title_short |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
title_full |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
title_fullStr |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
title_full_unstemmed |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
title_sort |
The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy |
dc.creator.fl_str_mv |
Pulido-Suárez, P.A. Uñate-González, K.S. Tirado-González, J.G. Esguerra-Arce, A. Esguerra-Arce, J. |
dc.contributor.author.none.fl_str_mv |
Pulido-Suárez, P.A. Uñate-González, K.S. Tirado-González, J.G. Esguerra-Arce, A. Esguerra-Arce, J. |
dc.contributor.researchgroup.spa.fl_str_mv |
Centro de Investigaciones en Manufactura y Servicios - CIMSER |
dc.subject.armarc.spa.fl_str_mv |
Microestructura Metalurgia de polvos Metales pulverizados |
topic |
Microestructura Metalurgia de polvos Metales pulverizados Microstructure Powder metallurgy Composite Discontinuous chips Powder metallurgy Aluminum alloys Dynamic recrystallization |
dc.subject.armarc.eng.fl_str_mv |
Microstructure Powder metallurgy |
dc.subject.proposal.spa.fl_str_mv |
Composite Discontinuous chips Powder metallurgy Aluminum alloys Dynamic recrystallization |
description |
Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machining Al-Si-Zn-Mg alloy parts, and powders were obtained throughgrinding processes. Grinding was performed at 45, 69, and 94 h, with grinding bodies/chipsvolume ratios of 6:1, 8:1, 10:1 and 12:1. The resulting powders were characterized by scanningelectron microscopy, laser granulometry, and X-ray diffraction. After grinding, the parti-cles were compacted and sintered, and hardness was evaluated. It was found that metallicpowder is formed through plastic deformation, hardening, fracture, and dynamic recrystal-lization. It was possible to obtain samples with lower apparent density and higher hardnessby powder metallurgy from Al-Si-Zn-Mg alloy chips than from the bulk. Powder was obtainedafter grinding, and samples were obtained by compacting and sintering. The higher hard-ness value was attributed to the presence of Al2O3formed in the particles during grinding,which acts as a second reinforcing phase in the sintered samples, and as a retardant ofintermetallic phase growing |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020 2021-06-22T20:26:13Z 2021-10-01T17:37:38Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-22T20:26:13Z 2021-10-01T17:37:38Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2238-7854 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1595 |
dc.identifier.ark.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.1016/j.jmrt.2020.08.045 |
identifier_str_mv |
2238-7854 doi.org/10.1016/j.jmrt.2020.08.045 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1595 https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 9, Número 5, Septiembre - Octubre 2020 |
dc.relation.citationendpage.spa.fl_str_mv |
11777 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationstartpage.spa.fl_str_mv |
11769 |
dc.relation.citationvolume.spa.fl_str_mv |
9 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Materials Research and Technology |
dc.relation.references.spa.fl_str_mv |
Hirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326(14)63305-7 Zhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001 Abdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001 Kirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3 Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136(96)02563-0 Gronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136(00)00634-8 Irfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141. Seong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136(99)00469-0 Fuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981 Rojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028 Afshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064 Zhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16 Susila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3 Williamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160(53)90006-6 Baghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017 Tsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474 Bacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008 Schmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8. Kapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006 Zhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10 Zhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326(17)60154-7. Jimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12. Boldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5 Kumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM Press |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1595/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1595/2/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1595/3/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1595/4/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a7ca94c2e5326ee169f979d71d0f06e d67ce9a3aae0014b1737f43b0966e525 33f4f15a16a9843faf6a25d4f387b6fd a656d70eaa929889771cd3d6f3107b58 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355624657420288 |
spelling |
Pulido-Suárez, P.A.055f2cc80a7ca477843e033ddd580a4b600Uñate-González, K.S.58c2f52ec5721bbd3e048afcca35f1e5600Tirado-González, J.G.c393a7715ecec88cbc501142a35ba7b7600Esguerra-Arce, A.0ab02ca2dde5caf57a4b65537d338633600Esguerra-Arce, J.d56e4604067bf9cf912a78675fd07a40600Centro de Investigaciones en Manufactura y Servicios - CIMSER2021-06-22T20:26:13Z2021-10-01T17:37:38Z20202021-06-22T20:26:13Z2021-10-01T17:37:38Z20202238-7854https://repositorio.escuelaing.edu.co/handle/001/1595https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihubdoi.org/10.1016/j.jmrt.2020.08.045Although long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machining Al-Si-Zn-Mg alloy parts, and powders were obtained throughgrinding processes. Grinding was performed at 45, 69, and 94 h, with grinding bodies/chipsvolume ratios of 6:1, 8:1, 10:1 and 12:1. The resulting powders were characterized by scanningelectron microscopy, laser granulometry, and X-ray diffraction. After grinding, the parti-cles were compacted and sintered, and hardness was evaluated. It was found that metallicpowder is formed through plastic deformation, hardening, fracture, and dynamic recrystal-lization. It was possible to obtain samples with lower apparent density and higher hardnessby powder metallurgy from Al-Si-Zn-Mg alloy chips than from the bulk. Powder was obtainedafter grinding, and samples were obtained by compacting and sintering. The higher hard-ness value was attributed to the presence of Al2O3formed in the particles during grinding,which acts as a second reinforcing phase in the sintered samples, and as a retardant ofintermetallic phase growingAunque las virutas metálicas largas / continuas se reciclan fácilmente por fusión, este no es el caso de las virutas de molienda discontinuas. El presente estudio tuvo como objetivo reducir la generación de residuos y facilitar el uso de este subproducto para obtener un compuesto de óxido metálico. Las virutas se recogieron después de mecanizar piezas de aleación de Al-Si-Zn-Mg y los polvos se obtuvieron mediante procesos de molienda. La trituración se realizó a las 45, 69 y 94 h, con relaciones de volumen de cuerpos de trituración / virutas de 6: 1, 8: 1, 10: 1 y 12: 1. Los polvos resultantes se caracterizaron mediante microscopía electrónica de barrido, granulometría láser y difracción de rayos X. Después de la molienda, las partículas se compactaron y sinterizaron y se evaluó la dureza. Se encontró que el polvo metálico se forma mediante deformación plástica, endurecimiento, fractura y recristalización dinámica. Fue posible obtener muestras con menor densidad aparente y mayor dureza mediante pulvimetalurgia a partir de virutas de aleación de Al-Si-Zn-Mg que a granel. El polvo se obtuvo después de la trituración y las muestras se obtuvieron por compactación y sinterización. El mayor valor de dureza se atribuyó a la presencia de Al2O3 formado en las partículas durante la molienda, que actúa como una segunda fase de refuerzo en las muestras sinterizadas y como retardador del crecimiento de la fase intermetálica.Received 7 May 2020 Accepted 11 August 2020 Available online 28 August 20209 páginasapplication/pdfengElsevierEstados UnidosThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3DihubThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgyArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 9, Número 5, Septiembre - Octubre 2020117775117699N/AJournal of Materials Research and TechnologyHirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326(14)63305-7Zhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001Abdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001Kirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136(96)02563-0Gronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136(00)00634-8Irfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141.Seong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136(99)00469-0Fuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981Rojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028Afshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064Zhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16Susila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3Williamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160(53)90006-6Baghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017Tsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474Bacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008Schmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8.Kapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006Zhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10Zhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326(17)60154-7.Jimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12.Boldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5Kumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM PressMicroestructuraMetalurgia de polvosMetales pulverizadosMicrostructurePowder metallurgyCompositeDiscontinuous chipsPowder metallurgyAluminum alloysDynamic recrystallizationLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1595/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdfapplication/pdf7609611https://repositorio.escuelaing.edu.co/bitstream/001/1595/2/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdfd67ce9a3aae0014b1737f43b0966e525MD52open accessTEXTThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.txtThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.txtExtracted texttext/plain9https://repositorio.escuelaing.edu.co/bitstream/001/1595/3/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.txt33f4f15a16a9843faf6a25d4f387b6fdMD53open accessTHUMBNAILThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.jpgThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy _ Elsevier Enhanced Reader.pdf.jpgGenerated Thumbnailimage/jpeg15637https://repositorio.escuelaing.edu.co/bitstream/001/1595/4/The%20evolution%20of%20the%20microstructure%20and%20properties%20of%20ageable%20Al-Si-Zn-Mg%20alloy%20during%20the%20recycling%20of%20milling%20chips%20through%20powder%20metallurgy%20_%20Elsevier%20Enhanced%20Reader.pdf.jpga656d70eaa929889771cd3d6f3107b58MD54open access001/1595oai:repositorio.escuelaing.edu.co:001/15952022-09-09 11:55:11.669open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |