Statistical Optimization of Ultra-High-Performance Glass Concrete

This paper presents the experimental results of research carried out involving the compressive strength and slump flow of ultra-highperformance concrete (UHPC) made with cementitious blends of recycled glass flour, recycled glass powder, micro limestone powder, silica fume, and portland cement. The...

Full description

Autores:
Abellán-García, Joaquín
Fernández, Jaime
Torres Castellanos, Nancy
Núñez López, Andrés Mauricio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2770
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2770
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292
Palabra clave:
Compressive strength
Optimization
Recycled glass concrete
Response Surface Methodology (RSM)
Sustainability
Ultra-high-performance concrete (UHPC)
Rights
closedAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_d868bb162b1d03a425c9b41213f2483c
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2770
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Statistical Optimization of Ultra-High-Performance Glass Concrete
title Statistical Optimization of Ultra-High-Performance Glass Concrete
spellingShingle Statistical Optimization of Ultra-High-Performance Glass Concrete
Compressive strength
Optimization
Recycled glass concrete
Response Surface Methodology (RSM)
Sustainability
Ultra-high-performance concrete (UHPC)
title_short Statistical Optimization of Ultra-High-Performance Glass Concrete
title_full Statistical Optimization of Ultra-High-Performance Glass Concrete
title_fullStr Statistical Optimization of Ultra-High-Performance Glass Concrete
title_full_unstemmed Statistical Optimization of Ultra-High-Performance Glass Concrete
title_sort Statistical Optimization of Ultra-High-Performance Glass Concrete
dc.creator.fl_str_mv Abellán-García, Joaquín
Fernández, Jaime
Torres Castellanos, Nancy
Núñez López, Andrés Mauricio
dc.contributor.author.none.fl_str_mv Abellán-García, Joaquín
Fernández, Jaime
Torres Castellanos, Nancy
Núñez López, Andrés Mauricio
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Estructuras y Materiales - Gimeci
dc.subject.proposal.eng.fl_str_mv Compressive strength
Optimization
Recycled glass concrete
Response Surface Methodology (RSM)
Sustainability
Ultra-high-performance concrete (UHPC)
topic Compressive strength
Optimization
Recycled glass concrete
Response Surface Methodology (RSM)
Sustainability
Ultra-high-performance concrete (UHPC)
description This paper presents the experimental results of research carried out involving the compressive strength and slump flow of ultra-highperformance concrete (UHPC) made with cementitious blends of recycled glass flour, recycled glass powder, micro limestone powder, silica fume, and portland cement. The adopted second-order polynomic regression model provided an accurate correlation between the considered variables and the obtained responses. A numerical optimization was then performed to obtain an eco-friendly mixture with the proper flow, highest compressive strength, and minimum content of cement. The use of 603 kg/m3 of cement in the mixture can be considered as the most appropriate amount to be employed in UHPC mixtures, fulfilling the limit values of compressive strength and spread flow.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2024-01-15T19:27:24Z
dc.date.available.none.fl_str_mv 2024-01-15T19:27:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0889-325X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2770
dc.identifier.url.none.fl_str_mv https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292
identifier_str_mv 0889-325X
url https://repositorio.escuelaing.edu.co/handle/001/2770
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv January 2020
dc.relation.citationendpage.spa.fl_str_mv 254
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 243
dc.relation.citationvolume.spa.fl_str_mv 117
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv ACI Materials Journal
dc.relation.references.spa.fl_str_mv Soliman, N. A., and Tagnit-Hamou, A., “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials, V. 139, 2017, pp. 374-383. doi: 10.1016/j. conbuildmat.2017.02.084
Ghafari, E.; Costa, H.; and Júlio, E., “RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-Fibers,” Construction and Building Materials, V. 66, 2014, pp. 375-383. doi: 10.1016/j.conbuildmat.2014.05.064
. Schmidt, C., and Schmidt, M., “Whitetopping of Asphalt and Concrete Pavements with Thin Layers of Ultra-High-Performance Concrete - Construction and Economic Efficiency,” Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2012, pp. 921-928.
Abbas, S.; Nehdi, M.; and Saleem, M. A., “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials, V. 10, No. 3, 2016, pp. 271-295. doi: 10.1007/s40069-016-0157-4.
Soliman, N. A., and Tagnit-Hamou, A., “Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete,” ACI Materials Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 847-858. doi: 10.14359/51701001.
Jammes, F.-X.; Cespedes, X.; and Resplendino, J., “Design of Offshore Wind Turbines,” RILEM-Fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013, 2013, pp. 443-452.
Tagnit-Hamou, A.; Soliman, N. A.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium on UHPC, Des Moines, IA, July 18-20, 2016, 10 pp.
Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1501- 1511. doi: 10.1016/0008-8846(95)00144-2.
De Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, pp. 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X10.1016/ S0008-8846(02)00861-X.
Kou, S. C., and Xing, F., “The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete,” Advances in Matererials Science and Engineering, V. 2012, 2012, 8 pp. doi: 10.1155/2012/26324310.1155/2012/263243.
Soliman, N. A., and Tagnit-Hamou, A., “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials, V. 145, 2017, pp. 243-252. doi: 10.1016/j.conbuildmat.2017.03.187.
Kalny, M.; Kvasnicka, V.; and Komanec, J., “First Practical Applications of UHPC in the Czech Republic,” Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, E. Fehling, B. Middendorf, and J. Thiemicke, eds., Kassel, Germany, 2016, pp. 147-148.
Sayed Ahmad, M., and Sennah, K., “Development of Ultra-High Performance Concrete Jointed Precast Decks and Concrete Piles in Integral Abutment Bridges,” The First International Symposium on Jointless & Sustainable Bridges, Fuzhou, Fujian, China, 2016.
Haber, Z. B.; Munoz, J. F.; and Graybeal, B. A., “Field Testing of an Ultra-High Performance Concrete Overlay,” FHWA-HRT-17-096, Federal Highway Administration, McLean, VA, 2017, 57 pp.
Acker, P., and Behloul, M., “Ductal Technology: A Large Spectrum of Properties, a Wide Range of Applications,” Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel University, Kassel, Germany, 2004.
Russell, E.; Lee, J.; and Clift, R., “Can the SDGs Provide a Basis for Supply Chain Decisions in the Construction Sector?” Sustainability, V. 10, No. 3, 2018, 19 pp. doi: 10.3390/su1003062910.3390/su10030629.
Ferdosian, I.; Camões, A.; and Ribeiro, M., “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciência e Tecnologia dos Materiais, V. 29, No. 1, 2017, pp. e157-e161. doi: 10.1016/j.ctmat.2016.10.001.
Ghafari, E.; Costa, H.; and Júlio, E., “Statistical Mixture Design Approach for Eco- Efficient UHPC,” Cement and Concrete Composites, V. 55, 2015, pp. 17-25. doi: 10.1016/j.cemconcomp.2014.07.016.
Meng, W.; Samaranayake, V. A.; and Khayat, K. H., “Factorial Design and Optimization of Ultra-High-Performance Concrete with Lightweight Sand,” ACI Materials Journal, V. 115, No. 1, Jan. 2018, pp. 129-138. doi: 10.14359/51700995.
Li, W.; Huang, Z.; Zu, T.; Shi, C.; Duan, W. H.; and Shah, S. P., “Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 1, 2016, pp. 1-9. doi: 10.1061/(ASCE)MT.1943-5533.0001327.
Huang, Z., and Cao, F., “Effects of Nano-Materials on the Performance of UHPC,” Materials Review, V. 26, No. 9, 2012, pp. 136-141.
Yu, R.; Tang, P.; Spiesz, P.; and Brouwers, H. J. H., “A Study of Multiple Effects of Nano-Silica and Hybrid Fibres on the Properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) Incorporating Waste Bottom Ash (WBA),” Construction and Building Materials, V. 60, 2014, pp. 98-110. doi: 10.1016/j.conbuildmat.2014.02.059.
Vaitkevičius, V.; Šerelis, E.; and Hilbig, H., “The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete,” Construction and Building Materials, V. 68, 2014, pp. 102-109. doi: 10.1016/j.conbuildmat.2014.05.101.
Funk, J. E., and Dinger, D., Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer Science+Business Media, New York, 1994, 786 pp.
Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; and Wold, S., Design of Experiments: Principles and Applications, Umetrics AB, Umeå, Sweden, 2000, 425 pp.
Upasani, R. S., and Banga, A. K., “Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride,” Pharmaceutical Research, V. 21, No. 12, 2004, pp. 2293-2299. doi: 10.1007/ s11095-004-7682-6.
Lenth, R. V., “Response-Surface Methods in R, Using RSM,” Journal of Statistical Software, V. 32, No. 7, 2012, pp. 1-17. doi: 10.18637/ jss.v032.i07.
Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, Inc, New York, 2005.
Mosaberpanah, M. A., and Eren, O., “Statistical Models for Mechanical Properties of UHPC Using Response Surface Methodology,” Computers and Concrete, V. 19, No. 6, 2017, pp. 667-675. doi: 10.12989/ cac.2017.19.6.667.
Mosaberpanah, M. A., and Eren, O., “Effect of Quartz Powder, Quartz Sand and Water Curing Regimes on Mechanical Properties of UHPC Using Response Surface Modeling,” Advances in Concrete Construction, V. 5, No. 5, 2017, pp. 481-492. doi: 10.12989/acc.2017.5.5.481.
Sayed Ahmed, M. S.; Sennah, K.; and Monsif, M. Y., “Mechanical Behaviour of Ultra-High Performance Concrete Obtained with Different Concrete Constituents and Mix Designs,” Resilient Infrastructure, London, UK, 2016, 10 pp.
Van, V. T. A., and Ludwig, H.-M., “Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-furnace Slag,” Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials. Kassel University, Kassel, Germany, 2012, pp. 197-205.
Abellan, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del Exponente de Fuller, la Relación Agua Conglomerante y el Contenido en Policarboxilato en Concretos de Muy Altas Prestaciones,” IV Congreso Internacional de Ingenieria Civil. Havana, Cuba, 2018.
Ghafari, E.; Costa, H.; and Júlio, E., “Critical Review on Eco-Efficient Ultra High Performance Concrete Enhanced with Nano- Materials,” Construction and Building Materials, V. 101, 2015, pp. 201-208. doi: 10.1016/j.conbuildmat.2015.10.066.
Kumar, R., and Tiwari, O. P., “Experimental Investigation of Mechanical Characterization and Drilling of Fabricated GFRP Composites Reinforced with Al2O3 Micro Particles,” International Journal of Advance Research, Ideas and Innovations Technology, V. 4, No. 4, 2018, pp. 191-199.
ASTM C1437-13, “Standard Test Method for Flow of Hydraulic Cement Mortar,” ASTM International, West Conshohocken, PA, 2013, 2 pp.
ASTM C109/C109M-11b, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [ 50-mm ] Cube Specimens),” ASTM International, West Conshohocken, PA, 2011, 10 pp.
R Core Team, “R: A Language and Environment for Statistical Computing,” Vienna, Austria, 2018, www.r-project.org. (last accessed Dec. 13, 2019).
The European Project Group, “The European Guidelines for Self-Compacting Concrete,” 2005, 63 pp.
Pedrajas, C.; Rahhal, V.; and Talero, R., “Determination of Characteristic Rheological Parameters in Portland Cement Pastes,” Construction and Building Materials, V. 51, 2014, pp. 484-491. doi: 10.1016/j. conbuildmat.2013.10.004.
Puertas, F.; Santos, H.; Palacios, M.; and Martínez-Ramírez, S., “Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes,” Advances in Cement Research, V. 17, No. 2, 2005, pp. 77-89. doi: 10.1680/adcr.2005.17.2.77.
Kubens, S., Interaction of Cement and Admixtures and Its Influence on Rheological Properties, Cuvillier Verlag, Göttingen, Germany, 2010.
Derringer, G., and Suich, R., “Simultaneous Optimization of Several Response Variables,” Journal of Quality Technology, V. 12, No. 4, 1980, pp. 214-219. doi: 10.1080/00224065.1980.11980968.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Concrete Institute
dc.publisher.place.spa.fl_str_mv United States
dc.source.spa.fl_str_mv https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2770/4/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2770/3/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass-Portada.png
https://repositorio.escuelaing.edu.co/bitstream/001/2770/5/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2770/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2770/1/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf
bitstream.checksum.fl_str_mv 7574037f8c057895406a4f6b935d6482
8ce5f4a444258a2e73646f9c7fbc27fa
a5d51ba5cf6b21b18dad7b694dbb46ec
5a7ca94c2e5326ee169f979d71d0f06e
1a50edab2afa8ade29abe088e919657b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355582643077120
spelling Abellán-García, Joaquín276478eb5b6920fa9e5175b8a1bf29d7600Fernández, Jaimeee53c520a38b65eef625212fdc46c9b5Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Núñez López, Andrés Mauricio068c9f93a2962a9f8d667a5e7f926db8600Grupo de Investigación Estructuras y Materiales - Gimeci2024-01-15T19:27:24Z2024-01-15T19:27:24Z20200889-325Xhttps://repositorio.escuelaing.edu.co/handle/001/2770https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292This paper presents the experimental results of research carried out involving the compressive strength and slump flow of ultra-highperformance concrete (UHPC) made with cementitious blends of recycled glass flour, recycled glass powder, micro limestone powder, silica fume, and portland cement. The adopted second-order polynomic regression model provided an accurate correlation between the considered variables and the obtained responses. A numerical optimization was then performed to obtain an eco-friendly mixture with the proper flow, highest compressive strength, and minimum content of cement. The use of 603 kg/m3 of cement in the mixture can be considered as the most appropriate amount to be employed in UHPC mixtures, fulfilling the limit values of compressive strength and spread flow.Este artículo presenta los resultados experimentales de una investigación llevada a cabo sobre la resistencia a la compresión y el asentamiento del hormigón de ultra altas prestaciones (UHPC) fabricado con mezclas cementosas de harina de vidrio reciclado, polvo de vidrio reciclado, polvo de microcaliza, humo de sílice y cemento portland. El modelo de regresión polinómica de segundo orden adoptado proporcionó una correlación precisa entre las variables consideradas y las respuestas obtenidas. A continuación se llevó a cabo una optimización numérica para obtener una mezcla ecológica con el flujo adecuado, la mayor resistencia a la compresión y el mínimo contenido de cemento. El uso de 603 kg/m3 de cemento en la mezcla puede considerarse como la cantidad más adecuada a emplear en las mezclas de UHPC, cumpliendo los valores límite de resistencia a la compresión y flujo extendido.13 páginasapplication/pdfengAmerican Concrete InstituteUnited Stateshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbhttps://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51720292Statistical Optimization of Ultra-High-Performance Glass ConcreteArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85January 20202541243117N/AACI Materials JournalSoliman, N. A., and Tagnit-Hamou, A., “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials, V. 139, 2017, pp. 374-383. doi: 10.1016/j. conbuildmat.2017.02.084Ghafari, E.; Costa, H.; and Júlio, E., “RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-Fibers,” Construction and Building Materials, V. 66, 2014, pp. 375-383. doi: 10.1016/j.conbuildmat.2014.05.064. Schmidt, C., and Schmidt, M., “Whitetopping of Asphalt and Concrete Pavements with Thin Layers of Ultra-High-Performance Concrete - Construction and Economic Efficiency,” Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2012, pp. 921-928.Abbas, S.; Nehdi, M.; and Saleem, M. A., “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials, V. 10, No. 3, 2016, pp. 271-295. doi: 10.1007/s40069-016-0157-4.Soliman, N. A., and Tagnit-Hamou, A., “Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete,” ACI Materials Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 847-858. doi: 10.14359/51701001.Jammes, F.-X.; Cespedes, X.; and Resplendino, J., “Design of Offshore Wind Turbines,” RILEM-Fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013, 2013, pp. 443-452.Tagnit-Hamou, A.; Soliman, N. A.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium on UHPC, Des Moines, IA, July 18-20, 2016, 10 pp.Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1501- 1511. doi: 10.1016/0008-8846(95)00144-2.De Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, pp. 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X10.1016/ S0008-8846(02)00861-X.Kou, S. C., and Xing, F., “The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete,” Advances in Matererials Science and Engineering, V. 2012, 2012, 8 pp. doi: 10.1155/2012/26324310.1155/2012/263243.Soliman, N. A., and Tagnit-Hamou, A., “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials, V. 145, 2017, pp. 243-252. doi: 10.1016/j.conbuildmat.2017.03.187.Kalny, M.; Kvasnicka, V.; and Komanec, J., “First Practical Applications of UHPC in the Czech Republic,” Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, E. Fehling, B. Middendorf, and J. Thiemicke, eds., Kassel, Germany, 2016, pp. 147-148.Sayed Ahmad, M., and Sennah, K., “Development of Ultra-High Performance Concrete Jointed Precast Decks and Concrete Piles in Integral Abutment Bridges,” The First International Symposium on Jointless & Sustainable Bridges, Fuzhou, Fujian, China, 2016.Haber, Z. B.; Munoz, J. F.; and Graybeal, B. A., “Field Testing of an Ultra-High Performance Concrete Overlay,” FHWA-HRT-17-096, Federal Highway Administration, McLean, VA, 2017, 57 pp.Acker, P., and Behloul, M., “Ductal Technology: A Large Spectrum of Properties, a Wide Range of Applications,” Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel University, Kassel, Germany, 2004.Russell, E.; Lee, J.; and Clift, R., “Can the SDGs Provide a Basis for Supply Chain Decisions in the Construction Sector?” Sustainability, V. 10, No. 3, 2018, 19 pp. doi: 10.3390/su1003062910.3390/su10030629.Ferdosian, I.; Camões, A.; and Ribeiro, M., “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciência e Tecnologia dos Materiais, V. 29, No. 1, 2017, pp. e157-e161. doi: 10.1016/j.ctmat.2016.10.001.Ghafari, E.; Costa, H.; and Júlio, E., “Statistical Mixture Design Approach for Eco- Efficient UHPC,” Cement and Concrete Composites, V. 55, 2015, pp. 17-25. doi: 10.1016/j.cemconcomp.2014.07.016.Meng, W.; Samaranayake, V. A.; and Khayat, K. H., “Factorial Design and Optimization of Ultra-High-Performance Concrete with Lightweight Sand,” ACI Materials Journal, V. 115, No. 1, Jan. 2018, pp. 129-138. doi: 10.14359/51700995.Li, W.; Huang, Z.; Zu, T.; Shi, C.; Duan, W. H.; and Shah, S. P., “Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 1, 2016, pp. 1-9. doi: 10.1061/(ASCE)MT.1943-5533.0001327.Huang, Z., and Cao, F., “Effects of Nano-Materials on the Performance of UHPC,” Materials Review, V. 26, No. 9, 2012, pp. 136-141.Yu, R.; Tang, P.; Spiesz, P.; and Brouwers, H. J. H., “A Study of Multiple Effects of Nano-Silica and Hybrid Fibres on the Properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) Incorporating Waste Bottom Ash (WBA),” Construction and Building Materials, V. 60, 2014, pp. 98-110. doi: 10.1016/j.conbuildmat.2014.02.059.Vaitkevičius, V.; Šerelis, E.; and Hilbig, H., “The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete,” Construction and Building Materials, V. 68, 2014, pp. 102-109. doi: 10.1016/j.conbuildmat.2014.05.101.Funk, J. E., and Dinger, D., Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer Science+Business Media, New York, 1994, 786 pp.Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; and Wold, S., Design of Experiments: Principles and Applications, Umetrics AB, Umeå, Sweden, 2000, 425 pp.Upasani, R. S., and Banga, A. K., “Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride,” Pharmaceutical Research, V. 21, No. 12, 2004, pp. 2293-2299. doi: 10.1007/ s11095-004-7682-6.Lenth, R. V., “Response-Surface Methods in R, Using RSM,” Journal of Statistical Software, V. 32, No. 7, 2012, pp. 1-17. doi: 10.18637/ jss.v032.i07.Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, Inc, New York, 2005.Mosaberpanah, M. A., and Eren, O., “Statistical Models for Mechanical Properties of UHPC Using Response Surface Methodology,” Computers and Concrete, V. 19, No. 6, 2017, pp. 667-675. doi: 10.12989/ cac.2017.19.6.667.Mosaberpanah, M. A., and Eren, O., “Effect of Quartz Powder, Quartz Sand and Water Curing Regimes on Mechanical Properties of UHPC Using Response Surface Modeling,” Advances in Concrete Construction, V. 5, No. 5, 2017, pp. 481-492. doi: 10.12989/acc.2017.5.5.481.Sayed Ahmed, M. S.; Sennah, K.; and Monsif, M. Y., “Mechanical Behaviour of Ultra-High Performance Concrete Obtained with Different Concrete Constituents and Mix Designs,” Resilient Infrastructure, London, UK, 2016, 10 pp.Van, V. T. A., and Ludwig, H.-M., “Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-furnace Slag,” Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials. Kassel University, Kassel, Germany, 2012, pp. 197-205.Abellan, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del Exponente de Fuller, la Relación Agua Conglomerante y el Contenido en Policarboxilato en Concretos de Muy Altas Prestaciones,” IV Congreso Internacional de Ingenieria Civil. Havana, Cuba, 2018.Ghafari, E.; Costa, H.; and Júlio, E., “Critical Review on Eco-Efficient Ultra High Performance Concrete Enhanced with Nano- Materials,” Construction and Building Materials, V. 101, 2015, pp. 201-208. doi: 10.1016/j.conbuildmat.2015.10.066.Kumar, R., and Tiwari, O. P., “Experimental Investigation of Mechanical Characterization and Drilling of Fabricated GFRP Composites Reinforced with Al2O3 Micro Particles,” International Journal of Advance Research, Ideas and Innovations Technology, V. 4, No. 4, 2018, pp. 191-199.ASTM C1437-13, “Standard Test Method for Flow of Hydraulic Cement Mortar,” ASTM International, West Conshohocken, PA, 2013, 2 pp.ASTM C109/C109M-11b, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [ 50-mm ] Cube Specimens),” ASTM International, West Conshohocken, PA, 2011, 10 pp.R Core Team, “R: A Language and Environment for Statistical Computing,” Vienna, Austria, 2018, www.r-project.org. (last accessed Dec. 13, 2019).The European Project Group, “The European Guidelines for Self-Compacting Concrete,” 2005, 63 pp.Pedrajas, C.; Rahhal, V.; and Talero, R., “Determination of Characteristic Rheological Parameters in Portland Cement Pastes,” Construction and Building Materials, V. 51, 2014, pp. 484-491. doi: 10.1016/j. conbuildmat.2013.10.004.Puertas, F.; Santos, H.; Palacios, M.; and Martínez-Ramírez, S., “Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes,” Advances in Cement Research, V. 17, No. 2, 2005, pp. 77-89. doi: 10.1680/adcr.2005.17.2.77.Kubens, S., Interaction of Cement and Admixtures and Its Influence on Rheological Properties, Cuvillier Verlag, Göttingen, Germany, 2010.Derringer, G., and Suich, R., “Simultaneous Optimization of Several Response Variables,” Journal of Quality Technology, V. 12, No. 4, 1980, pp. 214-219. doi: 10.1080/00224065.1980.11980968.Compressive strengthOptimizationRecycled glass concreteResponse Surface Methodology (RSM)SustainabilityUltra-high-performance concrete (UHPC)TEXTStatistical Optimization of Ultra-High-Performance Glass.pdf.txtStatistical Optimization of Ultra-High-Performance Glass.pdf.txtExtracted texttext/plain49822https://repositorio.escuelaing.edu.co/bitstream/001/2770/4/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf.txt7574037f8c057895406a4f6b935d6482MD54metadata only accessTHUMBNAILStatistical Optimization of Ultra-High-Performance Glass-Portada.pngStatistical Optimization of Ultra-High-Performance Glass-Portada.pngimage/png297950https://repositorio.escuelaing.edu.co/bitstream/001/2770/3/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass-Portada.png8ce5f4a444258a2e73646f9c7fbc27faMD53open accessStatistical Optimization of Ultra-High-Performance Glass.pdf.jpgStatistical Optimization of Ultra-High-Performance Glass.pdf.jpgGenerated Thumbnailimage/jpeg18579https://repositorio.escuelaing.edu.co/bitstream/001/2770/5/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf.jpga5d51ba5cf6b21b18dad7b694dbb46ecMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2770/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALStatistical Optimization of Ultra-High-Performance Glass.pdfStatistical Optimization of Ultra-High-Performance Glass.pdfArtículo de revistaapplication/pdf1964294https://repositorio.escuelaing.edu.co/bitstream/001/2770/1/Statistical%20Optimization%20of%20Ultra-High-Performance%20Glass.pdf1a50edab2afa8ade29abe088e919657bMD51metadata only access001/2770oai:repositorio.escuelaing.edu.co:001/27702024-03-04 16:07:23.524metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK