Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión
El presente artículo describe los modelos de optimización recientemente aplicados al diseño y operación de los sistemas de potencia hacia la conformación de las redes inteligentes e identifica las tendencias, barreras y posibles brechas en esta área. Se describen modelos para optimizar el diseño y l...
- Autores:
-
Tello Maita, Josimar
Marulanda Guerra, Agustín
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1403
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1403
https://doi.org/10.15446/dyna.v84n202.63354
- Palabra clave:
- Sistemas híbridos de energía
Hybrid power systems
Optimización
Energías renovables
Redes inteligentes
Flujo óptimo de potencia
Optimization
Renewable energies
Smart grids
Optimal power flow
- Rights
- openAccess
- License
- The author; licensee Universidad Nacional de Colombia.
id |
ESCUELAIG2_d6a61e184b1ee7fbaf9409233b89155e |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1403 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
dc.title.alternative.spa.fl_str_mv |
Optimization models for power systems in the evolution to smart grids: A review |
title |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
spellingShingle |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión Sistemas híbridos de energía Hybrid power systems Optimización Energías renovables Redes inteligentes Flujo óptimo de potencia Optimization Renewable energies Smart grids Optimal power flow |
title_short |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
title_full |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
title_fullStr |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
title_full_unstemmed |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
title_sort |
Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión |
dc.creator.fl_str_mv |
Tello Maita, Josimar Marulanda Guerra, Agustín |
dc.contributor.author.none.fl_str_mv |
Tello Maita, Josimar Marulanda Guerra, Agustín |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Modelación Estratégica en Energía y Potencia |
dc.subject.armarc.spa.fl_str_mv |
Sistemas híbridos de energía |
topic |
Sistemas híbridos de energía Hybrid power systems Optimización Energías renovables Redes inteligentes Flujo óptimo de potencia Optimization Renewable energies Smart grids Optimal power flow |
dc.subject.armarc.eng.fl_str_mv |
Hybrid power systems |
dc.subject.proposal.spa.fl_str_mv |
Optimización Energías renovables Redes inteligentes Flujo óptimo de potencia Optimization Renewable energies Smart grids Optimal power flow |
description |
El presente artículo describe los modelos de optimización recientemente aplicados al diseño y operación de los sistemas de potencia hacia la conformación de las redes inteligentes e identifica las tendencias, barreras y posibles brechas en esta área. Se describen modelos para optimizar el diseño y la operación de los sistemas de potencia considerando las energías renovables, la generación distribuida, las micro redes, la gestión de la demanda y los sistemas de almacenamiento de energía. Se concluyó que es necesario validar muchos de los modelos que se han formulado recientemente para la optimización de la operación mediante pruebas con datos reales y a gran escala. Además, la gestión de la demanda y las micro redes son aspectos en los cuales se requieren desarrollar modelos para el flujo óptimo de potencia. Finalmente, es necesario predecir con mayor precisión las variables estocásticas para que estos modelos se adapten al comportamiento real del sistema. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-05-06T15:09:37Z 2021-10-01T17:24:41Z |
dc.date.available.none.fl_str_mv |
2021-05-06T15:09:37Z 2021-10-01T17:24:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0012-7353 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1403 |
dc.identifier.doi.none.fl_str_mv |
10.15446/dyna.v84n202.63354 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.15446/dyna.v84n202.63354 |
identifier_str_mv |
0012-7353 10.15446/dyna.v84n202.63354 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1403 https://doi.org/10.15446/dyna.v84n202.63354 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Revista DYNA, 84(202), pp. 102-111, September, 2017. |
dc.relation.citationendpage.spa.fl_str_mv |
111 |
dc.relation.citationissue.spa.fl_str_mv |
202 |
dc.relation.citationstartpage.spa.fl_str_mv |
102 |
dc.relation.citationvolume.spa.fl_str_mv |
84 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Dyna |
dc.relation.references.spa.fl_str_mv |
Borlase, S., Smart grids: Infrastructure, technology, and solutions. CRC Press, 2016. Electric Power Research Institute (EPRI), Report to NIST on the smart grid interoperability standards roadmap, EPRI, Contract No. SB1341-09-CN-0031-Deliverable, pp. 1-167, 2009. National Institute of Standards and Technology, NIST Special Publication 1108 NIST Framework and roadmap for smart grid interoperability standards, 2010. Pappu, V., Carvalho, M. and Pardalos, P.M., Optimization and security challenges in smart power grids. Springer, 2013. Momoh, J.A., Electric power system applications of optimization, 53, 2001. Calafiore, G.C. and Ghaoui, LE., Optimization models. Cambridge University Press, 2014. Sánchez, P. et al., Modelos matemáticos de optimización, Madrid, 2010. Renewable Energy Policy Network for the 21st Century (REN21), Renewables 2016: Global status report. 2016. Arrillaga, J., Watson, N. and Liu, Y., Flexible power transmission the HVDC Options. John Wiley & Sons, Ltd, 2007. European Technology Platform on Smartgrids, Consolidated view of the european platform on smartgrids, 2015. U.S. Department of Energy, 2014 Smart grid system report(August. 2014. Holttinen, H., Meibom, P. and Orths, A., Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration, Wind Energy, 14(2), pp. 179-192, 2011. DOI: 10.1109/TPWRS.2010.2070848 Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B. and Loehr, J., Impact of increased penetration of photovoltaic generation on power systems, Power Syst. IEEE Trans., 28(2), pp. 893-901, 2013. DOI: 10.1109/TPWRS.2012.2216294 Mahmoud, M.S. and AL-Sunni, F.M., Control and optimization of distributed generation systems, 2015. Ackermann, T., Andersson, G. and Söder, L., Distributed generation: A definition, Electr. Power Syst. Res., 57(3), pp. 195-204, 2001. DOI: 10.1016/S0378-7796(01)00101-8 Li, R. and Zhou, F., Microgrid technology and engineering application. Elsevier Science & Technology Books, 2015. Vanitha, R., Baskaran, J. and Sudhakaran, M., Multi Objective Optimal Power Flow with STATCOM using DE in WAFGP, Indian J. Sci. Technol., 8(2, pp. 191-198, 2015. DOI: 10.17485/ijst/2015/v8i1/56654 Kim, C.K., Sood, V.K., Jang, G.S., Lim, S.J. and Lee, S.J., HVDC Transmission: Power Conversion Applications in Power Systems. Wiley, 2009. Carrizosa, M.J.J., Navas, F.D., Damm, G. and Lamnabhi-Lagarrigue, F.F., Optimal power flow in multi-terminal HVDC grids with offshore wind farms and storage devices, Int. J. Electr. Power Energy Syst., 65, pp. 291-298, 2015. DOI: 10.1016/j.ijepes.2014.10.016 Kondoh, J. et al., Electrical energy storage systems for energy networks, Energy Convers. Manag., 41(17), pp. 1863-1874, 2000. Luo, X., Wang, J., Dooner, M. and Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, pp. 511-536, 2015. DOI: 10.1016/j.apenergy.2014.09.081 Zhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C.N. and Nygaard, C., Review of energy storage system for wind power integration support, Appl. Energy, 137, pp. 545-553, DOI: 2014. 10.1016/j.apenergy.2014.04.103 Losi, A., Mancarella, P. and Vicino, A., Integration of demand response into the electricity chain: Challenges, opportunities and smart grid solutions. Wiley, 2015. U.S. Department of Energy, Benefits of demand response in electricity markets and recommendations for achieving them, 2009. Cappers, P., Goldman, C. and Kathan, D., Demand response in U.S. electricity markets: Empirical Evidence, Berkeley, U.S.A., 2009. Siano, P., Demand response and smart grids - A survey, renew. Sustain. Energy Rev., 30, pp. 461-478, 2014. Fathima, A.H. and Palanisamy, K., Optimization in microgrids with hybrid energy systems - A review, renew. Sustain. Energy Rev., 45, pp. 431-446, 2015. DOI: 10.1016/j.rser.2015.01.059 Sinha, S. and Chandel, S.S., Review of software tools for hybrid renewable energy systems, renew. Sustain. Energy Rev., 32, pp. 192-205, 2014. DOI: 10.1016/j.rser.2014.01.035 Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M. and Ahn, S.-H., Optimization of hybrid renewable energy systems: A review, Int. J. Precis. Eng. Manuf. Technol., 2(1), pp. 99-112, 2015. Sinha, S. and Chandel, S.S., Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems, Renew. Sustain. Energy Rev., 50, pp. 755-769, 2015. DOI: 10.1016/j.rser.2015.05.040 Camargo, L.A.S., Ramos, D.S., Guarnier, E., Ishida, S. and Matsudo, E., Alternative generation sources portfolio: Optimal resource allocation and risk analysis supported by genetics algorithms, IEEE Lat. Am. Trans., 14(7), pp. 3232-3241, 2016. Abdelaziz, A.Y., Hegazy, Y.G., El-Khattam, W. and Othman, M.M., Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks, Electr. Power Syst. Res., 119, pp. 34-44, 2015. DOI: 10.1016/j.epsr.2014.09.005 Wang, J. and Yang, F., Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm, IET Renew. Power Gener., 7(5), pp. 443-448, 2013. Zhou, W., Lou, C., Li, Z., Lu, L. and Yang, H., Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems, Appl. Energy, 87(2), pp. 380-389, 2010. Rodrigues, S., Bauer, P. and Bosman, P.A.N., Multi-objective optimization of wind farm layouts - Complexity, constraint handling and scalability, Renew. Sustain. Energy Rev., 65, pp. 587-609, 2016. Yang, J., Feng, X., Tang, Y., Yan, J., He, H. and Luo, C., A power system optimal dispatch strategy considering the flow of carbon emissions and large consumers, Energies, 8(9), pp. 9087-9106, 2015. DOI: 10.3390/en8099087 Summers, T., Warrington, J., Morari, M. and Lygeros, J., Stochastic optimal power flow based on conditional value at risk and distributional robustness, Int. J. Electr. Power Energy Syst., 72, pp. 116-125, 2015. DOI: 10.1016/j.ijepes.2015.02.024 Dufo-López, R. and Bernal-Agustín, J.L., Multi-objective design of PV-wind-diesel-hydrogen-battery systems, Renew. Energy, 33(12), pp. 2559-2572, 2008. Ould-Bilal, B., Sambou, V., Ndiaye, P.A., Kébé, C.M.F. and Ndongo, M., Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP), Renew. Energy, 35(10), pp. 2388-2390, DOI: 2010. 10.1016/j.renene.2010.03.004 Martinez, G., Anderson, L.C., Anderson, L. and Martínez, G., Toward a scalable chance-constrained formulation for unit commitment to manage high penetration of variable generation, en 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014, pp. 723-730, 2014. Taghavi, R., Reza, A. and Samet, H., Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation, 89, 2015. Atwa, Y.M. and El-Saadany, E.F., Probabilistic approach for optimal allocate on of wind-based distributed generation in distribution systems, IET Renew. Power Gener., 5(1), pp. 79-88, 2011. DOI: 10.1049/iet-rpg.2009.0011 Peng, X., Lin, L., Zheng, W. and Liu, Y., Crisscross optimization algorithm and monte carlo simulation for solving optimal distributed generation allocation problem, Energies, 8(12), pp. 13641-13659, 2015. Shahzad, M., Ahmad, I., Gawlik, W. and Palensky, P., Load concentration factor based analytical method for optimal placement of multiple distribution generators for loss minimization and voltage profile improvement, Energies, 9(4), 2016. Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H. and Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods, Renew. Sustain. Energy Rev., 67, pp. 531-573, 2017. DOI: 10.1016/j.rser.2016.09.063 Ansarian, M., Sadeghzadeh, S.M. and Fotuhi-firuzabad, M., Optimum generation dispatching of distributed resources in smart grids, 2014. Lasseter R., et al., The CERTS MicroGrid Concept, 2002. Bhuiyan, F.A., Yazdani, A. and Primak, S.L., Optimal sizing approach for islanded microgrids, IET Renew. Power Gener., 9(2), pp. 166-175, 2015. Ma, Y., Ji, J. and Tang, X., Triple-objective optimal sizing based on dynamic strategy for an islanded hybrid energy microgrid, Int. J. Green Energy, November, 2016. Fossati, J.P., Galarza, A., Martín-Villate, A. and Fontán, L., A method for optimal sizing energy storage systems for microgrids, Renew. Energy, 77, pp. 539-549, 2015. Ghiani, E., Vertuccio, C. and Pilo, F., Optimal sizing and management of a smart Microgrid for prevailing self-consumption, 2015 IEEE Eindhoven Power Tech. pp. 1-6, 2015. DOI: 10.1109/PTC.2015.7232554 |
dc.rights.spa.fl_str_mv |
The author; licensee Universidad Nacional de Colombia. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
The author; licensee Universidad Nacional de Colombia. https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.place.spa.fl_str_mv |
Medellin, Colombia. |
dc.source.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/63354/62427 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1403/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1403/2/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1403/3/10.15446dyna.v84n202.63354.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1403/5/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1403/4/10.15446dyna.v84n202.63354.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1403/6/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a7ca94c2e5326ee169f979d71d0f06e 9ffb1ab20c9f77927fb9d5dd40a87ff0 0b1dcff2ffb75f4aad2adeab16221842 0b1dcff2ffb75f4aad2adeab16221842 d4fadf02c072f67d2ee04e3bfa43353e d4fadf02c072f67d2ee04e3bfa43353e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355637651374080 |
spelling |
Tello Maita, Josimarf598676c3d8942f8a3ae2d39bddaacfd600Marulanda Guerra, Agustín92272fe631b59c5ab46aafe2f81739a7600Grupo de Modelación Estratégica en Energía y Potencia2021-05-06T15:09:37Z2021-10-01T17:24:41Z2021-05-06T15:09:37Z2021-10-01T17:24:41Z20170012-7353https://repositorio.escuelaing.edu.co/handle/001/140310.15446/dyna.v84n202.63354https://doi.org/10.15446/dyna.v84n202.63354El presente artículo describe los modelos de optimización recientemente aplicados al diseño y operación de los sistemas de potencia hacia la conformación de las redes inteligentes e identifica las tendencias, barreras y posibles brechas en esta área. Se describen modelos para optimizar el diseño y la operación de los sistemas de potencia considerando las energías renovables, la generación distribuida, las micro redes, la gestión de la demanda y los sistemas de almacenamiento de energía. Se concluyó que es necesario validar muchos de los modelos que se han formulado recientemente para la optimización de la operación mediante pruebas con datos reales y a gran escala. Además, la gestión de la demanda y las micro redes son aspectos en los cuales se requieren desarrollar modelos para el flujo óptimo de potencia. Finalmente, es necesario predecir con mayor precisión las variables estocásticas para que estos modelos se adapten al comportamiento real del sistema.The present paper aims to describe the optimization models recently applied to the design and operation of power systems in the road to the formation of smart grids and to identify the trends, challenges and possible gaps existing in this field of study. The models described allow performing optimization of the design and operation of power systems considering aspects as renewable energies and its related variability, distributed generation and micro grids, demand-site management and energy storage systems. Conclusions point out that several of the models recently formulated need to be validated with real data and large-scale systems tests. Moreover, demand-site management and micro grids are aspects that lack of the development of complete optimal power flow models. Finally, the accurate forecasting of stochastic variables is necessary to accomplish a better adaptation of models to real behavior of the power system.a Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela. jtello@fing.luz.edu.ve b Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia. agustin.marulanda@escuelaing.edu.co10 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellin, Colombia.The author; licensee Universidad Nacional de Colombia.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/dyna/article/view/63354/62427Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisiónOptimization models for power systems in the evolution to smart grids: A reviewArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Revista DYNA, 84(202), pp. 102-111, September, 2017.11120210284N/ADynaBorlase, S., Smart grids: Infrastructure, technology, and solutions. CRC Press, 2016.Electric Power Research Institute (EPRI), Report to NIST on the smart grid interoperability standards roadmap, EPRI, Contract No. SB1341-09-CN-0031-Deliverable, pp. 1-167, 2009.National Institute of Standards and Technology, NIST Special Publication 1108 NIST Framework and roadmap for smart grid interoperability standards, 2010.Pappu, V., Carvalho, M. and Pardalos, P.M., Optimization and security challenges in smart power grids. Springer, 2013.Momoh, J.A., Electric power system applications of optimization, 53, 2001.Calafiore, G.C. and Ghaoui, LE., Optimization models. Cambridge University Press, 2014.Sánchez, P. et al., Modelos matemáticos de optimización, Madrid, 2010.Renewable Energy Policy Network for the 21st Century (REN21), Renewables 2016: Global status report. 2016.Arrillaga, J., Watson, N. and Liu, Y., Flexible power transmission the HVDC Options. John Wiley & Sons, Ltd, 2007.European Technology Platform on Smartgrids, Consolidated view of the european platform on smartgrids, 2015.U.S. Department of Energy, 2014 Smart grid system report(August. 2014.Holttinen, H., Meibom, P. and Orths, A., Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration, Wind Energy, 14(2), pp. 179-192, 2011. DOI: 10.1109/TPWRS.2010.2070848Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B. and Loehr, J., Impact of increased penetration of photovoltaic generation on power systems, Power Syst. IEEE Trans., 28(2), pp. 893-901, 2013. DOI: 10.1109/TPWRS.2012.2216294Mahmoud, M.S. and AL-Sunni, F.M., Control and optimization of distributed generation systems, 2015.Ackermann, T., Andersson, G. and Söder, L., Distributed generation: A definition, Electr. Power Syst. Res., 57(3), pp. 195-204, 2001. DOI: 10.1016/S0378-7796(01)00101-8Li, R. and Zhou, F., Microgrid technology and engineering application. Elsevier Science & Technology Books, 2015.Vanitha, R., Baskaran, J. and Sudhakaran, M., Multi Objective Optimal Power Flow with STATCOM using DE in WAFGP, Indian J. Sci. Technol., 8(2, pp. 191-198, 2015. DOI: 10.17485/ijst/2015/v8i1/56654Kim, C.K., Sood, V.K., Jang, G.S., Lim, S.J. and Lee, S.J., HVDC Transmission: Power Conversion Applications in Power Systems. Wiley, 2009.Carrizosa, M.J.J., Navas, F.D., Damm, G. and Lamnabhi-Lagarrigue, F.F., Optimal power flow in multi-terminal HVDC grids with offshore wind farms and storage devices, Int. J. Electr. Power Energy Syst., 65, pp. 291-298, 2015. DOI: 10.1016/j.ijepes.2014.10.016Kondoh, J. et al., Electrical energy storage systems for energy networks, Energy Convers. Manag., 41(17), pp. 1863-1874, 2000.Luo, X., Wang, J., Dooner, M. and Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, pp. 511-536, 2015. DOI: 10.1016/j.apenergy.2014.09.081Zhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C.N. and Nygaard, C., Review of energy storage system for wind power integration support, Appl. Energy, 137, pp. 545-553, DOI: 2014. 10.1016/j.apenergy.2014.04.103Losi, A., Mancarella, P. and Vicino, A., Integration of demand response into the electricity chain: Challenges, opportunities and smart grid solutions. Wiley, 2015.U.S. Department of Energy, Benefits of demand response in electricity markets and recommendations for achieving them, 2009.Cappers, P., Goldman, C. and Kathan, D., Demand response in U.S. electricity markets: Empirical Evidence, Berkeley, U.S.A., 2009.Siano, P., Demand response and smart grids - A survey, renew. Sustain. Energy Rev., 30, pp. 461-478, 2014.Fathima, A.H. and Palanisamy, K., Optimization in microgrids with hybrid energy systems - A review, renew. Sustain. Energy Rev., 45, pp. 431-446, 2015. DOI: 10.1016/j.rser.2015.01.059Sinha, S. and Chandel, S.S., Review of software tools for hybrid renewable energy systems, renew. Sustain. Energy Rev., 32, pp. 192-205, 2014. DOI: 10.1016/j.rser.2014.01.035Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M. and Ahn, S.-H., Optimization of hybrid renewable energy systems: A review, Int. J. Precis. Eng. Manuf. Technol., 2(1), pp. 99-112, 2015.Sinha, S. and Chandel, S.S., Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems, Renew. Sustain. Energy Rev., 50, pp. 755-769, 2015. DOI: 10.1016/j.rser.2015.05.040Camargo, L.A.S., Ramos, D.S., Guarnier, E., Ishida, S. and Matsudo, E., Alternative generation sources portfolio: Optimal resource allocation and risk analysis supported by genetics algorithms, IEEE Lat. Am. Trans., 14(7), pp. 3232-3241, 2016.Abdelaziz, A.Y., Hegazy, Y.G., El-Khattam, W. and Othman, M.M., Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks, Electr. Power Syst. Res., 119, pp. 34-44, 2015. DOI: 10.1016/j.epsr.2014.09.005Wang, J. and Yang, F., Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm, IET Renew. Power Gener., 7(5), pp. 443-448, 2013.Zhou, W., Lou, C., Li, Z., Lu, L. and Yang, H., Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems, Appl. Energy, 87(2), pp. 380-389, 2010.Rodrigues, S., Bauer, P. and Bosman, P.A.N., Multi-objective optimization of wind farm layouts - Complexity, constraint handling and scalability, Renew. Sustain. Energy Rev., 65, pp. 587-609, 2016.Yang, J., Feng, X., Tang, Y., Yan, J., He, H. and Luo, C., A power system optimal dispatch strategy considering the flow of carbon emissions and large consumers, Energies, 8(9), pp. 9087-9106, 2015. DOI: 10.3390/en8099087Summers, T., Warrington, J., Morari, M. and Lygeros, J., Stochastic optimal power flow based on conditional value at risk and distributional robustness, Int. J. Electr. Power Energy Syst., 72, pp. 116-125, 2015. DOI: 10.1016/j.ijepes.2015.02.024Dufo-López, R. and Bernal-Agustín, J.L., Multi-objective design of PV-wind-diesel-hydrogen-battery systems, Renew. Energy, 33(12), pp. 2559-2572, 2008.Ould-Bilal, B., Sambou, V., Ndiaye, P.A., Kébé, C.M.F. and Ndongo, M., Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP), Renew. Energy, 35(10), pp. 2388-2390, DOI: 2010. 10.1016/j.renene.2010.03.004Martinez, G., Anderson, L.C., Anderson, L. and Martínez, G., Toward a scalable chance-constrained formulation for unit commitment to manage high penetration of variable generation, en 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014, pp. 723-730, 2014.Taghavi, R., Reza, A. and Samet, H., Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation, 89, 2015.Atwa, Y.M. and El-Saadany, E.F., Probabilistic approach for optimal allocate on of wind-based distributed generation in distribution systems, IET Renew. Power Gener., 5(1), pp. 79-88, 2011. DOI: 10.1049/iet-rpg.2009.0011Peng, X., Lin, L., Zheng, W. and Liu, Y., Crisscross optimization algorithm and monte carlo simulation for solving optimal distributed generation allocation problem, Energies, 8(12), pp. 13641-13659, 2015.Shahzad, M., Ahmad, I., Gawlik, W. and Palensky, P., Load concentration factor based analytical method for optimal placement of multiple distribution generators for loss minimization and voltage profile improvement, Energies, 9(4), 2016.Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H. and Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods, Renew. Sustain. Energy Rev., 67, pp. 531-573, 2017. DOI: 10.1016/j.rser.2016.09.063Ansarian, M., Sadeghzadeh, S.M. and Fotuhi-firuzabad, M., Optimum generation dispatching of distributed resources in smart grids, 2014.Lasseter R., et al., The CERTS MicroGrid Concept, 2002.Bhuiyan, F.A., Yazdani, A. and Primak, S.L., Optimal sizing approach for islanded microgrids, IET Renew. Power Gener., 9(2), pp. 166-175, 2015.Ma, Y., Ji, J. and Tang, X., Triple-objective optimal sizing based on dynamic strategy for an islanded hybrid energy microgrid, Int. J. Green Energy, November, 2016.Fossati, J.P., Galarza, A., Martín-Villate, A. and Fontán, L., A method for optimal sizing energy storage systems for microgrids, Renew. Energy, 77, pp. 539-549, 2015.Ghiani, E., Vertuccio, C. and Pilo, F., Optimal sizing and management of a smart Microgrid for prevailing self-consumption, 2015 IEEE Eindhoven Power Tech. pp. 1-6, 2015. DOI: 10.1109/PTC.2015.7232554Sistemas híbridos de energíaHybrid power systemsOptimizaciónEnergías renovablesRedes inteligentesFlujo óptimo de potenciaOptimizationRenewable energiesSmart gridsOptimal power flowLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1403/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión.pdfapplication/pdf844897https://repositorio.escuelaing.edu.co/bitstream/001/1403/2/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf9ffb1ab20c9f77927fb9d5dd40a87ff0MD52metadata only accessTEXT10.15446dyna.v84n202.63354.pdf.txt10.15446dyna.v84n202.63354.pdf.txtExtracted texttext/plain61923https://repositorio.escuelaing.edu.co/bitstream/001/1403/3/10.15446dyna.v84n202.63354.pdf.txt0b1dcff2ffb75f4aad2adeab16221842MD53open accessModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión.pdf.txtModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión.pdf.txtExtracted texttext/plain61923https://repositorio.escuelaing.edu.co/bitstream/001/1403/5/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf.txt0b1dcff2ffb75f4aad2adeab16221842MD55metadata only accessTHUMBNAIL10.15446dyna.v84n202.63354.pdf.jpg10.15446dyna.v84n202.63354.pdf.jpgGenerated Thumbnailimage/jpeg14820https://repositorio.escuelaing.edu.co/bitstream/001/1403/4/10.15446dyna.v84n202.63354.pdf.jpgd4fadf02c072f67d2ee04e3bfa43353eMD54open accessModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión.pdf.jpgModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión.pdf.jpgGenerated Thumbnailimage/jpeg14820https://repositorio.escuelaing.edu.co/bitstream/001/1403/6/Modelos%20de%20optimizaci%c3%b3n%20para%20sistemas%20de%20potencia%20en%20la%20evoluci%c3%b3n%20hacia%20redes%20inteligentes%3a%20Una%20revisi%c3%b3n.pdf.jpgd4fadf02c072f67d2ee04e3bfa43353eMD56metadata only access001/1403oai:repositorio.escuelaing.edu.co:001/14032022-07-19 03:03:13.307metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |