Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum

Mathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Ric...

Full description

Autores:
Ortiz Moreno, Martha Lucia
Cárdenas Poblador, Jaleydi
Agredo, Julián
Solarte Murillo, Laura Vanessa
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1389
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1389
https://doi.org/10.11144/Javeriana.SC25-1.mte
Palabra clave:
cyanobacteria
light
mathematical model
microbial growth.
cianobacterias
luz
modelo matemático
crecimiento microbiano.
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_d6a5d198548bbe9401c6cc84fde439e5
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1389
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
title Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
spellingShingle Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
cyanobacteria
light
mathematical model
microbial growth.
cianobacterias
luz
modelo matemático
crecimiento microbiano.
title_short Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
title_full Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
title_fullStr Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
title_full_unstemmed Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
title_sort Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum
dc.creator.fl_str_mv Ortiz Moreno, Martha Lucia
Cárdenas Poblador, Jaleydi
Agredo, Julián
Solarte Murillo, Laura Vanessa
dc.contributor.author.none.fl_str_mv Ortiz Moreno, Martha Lucia
Cárdenas Poblador, Jaleydi
Agredo, Julián
Solarte Murillo, Laura Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Matemáticas
dc.subject.proposal.eng.fl_str_mv cyanobacteria
light
mathematical model
microbial growth.
topic cyanobacteria
light
mathematical model
microbial growth.
cianobacterias
luz
modelo matemático
crecimiento microbiano.
dc.subject.proposal.spa.fl_str_mv cianobacterias
luz
modelo matemático
crecimiento microbiano.
description Mathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. N. ellipsosporum was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD650 : 0.090 ± 0.008), followed by the yellow light (OD650 : 0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of N. ellipsosporum (OD650 : 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from N. ellipsosporum growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the production of N. ellipsosporum and its bioproducts.
publishDate 2020
dc.date.available.none.fl_str_mv 2020
2021-05-05T03:50:45Z
2021-10-01T17:20:49Z
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-05-05T03:50:45Z
2021-10-01T17:20:49Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-7483
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1389
dc.identifier.doi.none.fl_str_mv 10.11144/Javeriana.SC25-1.mte
dc.identifier.url.none.fl_str_mv https://doi.org/10.11144/Javeriana.SC25-1.mte
identifier_str_mv 0122-7483
10.11144/Javeriana.SC25-1.mte
url https://repositorio.escuelaing.edu.co/handle/001/1389
https://doi.org/10.11144/Javeriana.SC25-1.mte
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Universitas Scientiarum Vol. 25 (1): 113-148
dc.relation.citationendpage.spa.fl_str_mv 148
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 113
dc.relation.citationvolume.spa.fl_str_mv 25
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Universitas Scientiarum
dc.relation.references.spa.fl_str_mv Abed RMM, Dobretsov S, & Sudesh K. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12, 2009.
Benítez REH, Vidal DRA, & Guerrero JV. Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira-Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31, 2018. doi: 10.23850/24220582.889
Trejos VM, Alzate JF, Garcia MÁG. Descripción matemática y análisis de estabilidad de procesos fermentativos, text, 76 (158): 111-121, 2009.
Castillo CMN, Rivera FCR, Díaz LE, Díaz AGL. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis, Nova, 15 (28): 19-31, 2017.
Cayré ME, Vignolo GM, Garro OA. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y Brochothrix thermosphacta sobre emulsiones cárnicas cocidas, Información Tecnológica, 18(3): 23-29, 2007. doi: 10.4067/S0718-07642007000300004
Crettaz Minaglia MC, Rosso L, Aranda O, Sedan D, Juárez I, Ventosi E, Gian-nuzzi LJI. Modelado matemático del crecimiento de Microcystis aeruginosa en condiciones de laboratorio bajo diferentes temperaturas. Ingeniería Sanitaria y Ambiental, 61-67, 2017.
Santiesteban-López N, López-Malo A. Descripción e importancia de algunos modelos predictivos utilizados como herramienta para la conservación de alimentos. Temas Selectos de Ingeniería de Alimentos, 2 (2): 14-26, 2008.
dc.relation.references.eng.fl_str_mv Ahmad SA, Shukor MS, Masdor NA, Shamaan NA, Roslan MAH, Shukor MY. The growth of Paracoccus sp. SKG on acetonitrile is best modelled using the Buchanan three phase model. Journal of Environmental Bioremediation and Toxicology, 3 (1): 1-5, 2015.
Algal culturing techniques. (R.A. Andersen Ed.). Burlington: Phycological society of America, 2005.
Andersen RA. Algal culturing techniques, Phycological society of America, Burlington, USA, 2005.
Arteni AA, Ajlani G, & Boekema EJ. Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787 (4), 272-279, 2009. doi: 10.1016/j.bbabio.2009.01.009
Atta M, Idris A, Bukhari A, & Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373378, 2013. doi: 10.1016/j.biortech.2013.08.162
Baranyi J, & Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294, 1994. doi: 10.1016/0168-1605(94)90157-0
Baranyi J, & Roberts TA. Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26(2), 199218, 1995. doi: 10.1016/0168-1605(94)00121-L
Baranyi J, Robinson TP, Kaloti A, & Mackey BM. Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27(1), 61-75, 1995. doi: 10.1016/0168-1605(94)00154-X
Barsanti L, & Gualtieri P. Algae: anatomy, biochemistry and biotechnology. Boca Raton: CRC Press Taylor & Francis group, 2006.
Belda-Galbis CM, Martínez A, Rodrigo D. Antimicrobial effect of carvacrol on Escherichia coli K12 growth at different temperatures, 2011. doi: 10.1142/9789814354868_0015
Silva APR, Longhi DA, Dalcanton F, Aragão GMF. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian archives of biology and technology, 61: e18160159, 2018. doi: 10.1590/1678-4324-2018160159
Singh NK, Sonani RR, Rastogi RP, & Madamwar D. The phycobilisomes: an early requisite for effcient photosynthesis in cyanobacteria. EXCLI journal, 14, 268, 2015. doi: 10.17179/excli2014-723
Singh RS, Walia AK, Khattar JS, Singh DP, & Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496, 2017. doi: 10.1016/j.ijbiomac.2017.04.041
Singh S, & Singh P. Effect of temperature and light on the growth of algae species: a review. Renewable and Sustainable Energy Reviews, 50, 431-444, 2015. doi: 10.1016/j.rser.2015.05.024
Sinha RP, Ambasht NK, Sinha JP, & Ha¨der DP. Wavelengthdependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochemical and Photobiological Sciences, 2, 171-6, 2003. doi: 10.1039/b204167g
Solhaug KA, Xie L, Gauslaa Y. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant and Cell Physiology, 55: 1404-1414, 2014. doi: 10.1093/pcp/pcu065
Supriyanto, Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, & Watanabe MM. Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosystems Engineering, 177, 122-129, 2019. doi: 10.1016/j.biosystemseng.2018.10.002
Swinnen IAM, Bernaerts K, Dens EJ, Geeraerd AH, & Van Impe JF. Predictive modelling of the microbial lag phase: a review. International journal of food microbiology, 94(2), 137-159. 2004. doi: 10.1016/j.ijfoodmicro.2004.01.006
Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, & Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. doi: 10.1016/j.biortech.2014.03.113
Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresource Technology, 119: 419-424, 2012. doi: 10.1016/j.biortech.2012.05.124
Tiwari ON, Devi WI, Silvia C, Devi AT, Oinam G, Singh OA, Singh KO, Indrama T, Sharma AS, Khangembam R, Shamjetshaban M, Miranda L, & Prasanna R. Modula-tion of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology, 3(04), 011-016, 2015. doi: 10.7324/JABB.2015.3403
Tóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Gombos ZJB. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847(10), 1153-1165, 2015. doi: 10.1016/j.bbabio.2015.05.020
Vanegas DM, Ramírez ME. Correlación del crecimiento de Pseudomonas fluorescens en la producción de polihidroxialcanoatos de cadena media (PHAMCL) mediante modelos primarios de Gompertz, Logístico y Baranyi.Información tecnológica, 27 (2): 87-96, 2016. doi: 10.4067/S0718-07642016000200011
Xiong S, Fan J, & Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology, 86, 805-812, 2010. doi: 10.1007/s00253-010-2470-1
Xu L, Yong H, Tu X, Wanga Q, & Fan J. Physiological and proteomic analysis of Nostoc flagelliforme in response to alkaline pH shift for polysaccharide accumulation. Algal Research, 39, 101444, 2019. doi: 10.1016/j.algal.2019.101444
Yang YW, Yin YC, Li ZK, Huang D, Shang JL, Chen M, & Qiu BS. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc agelliforme to desiccation. Photosynthesis Research, 140 (1), 103-113, 2019. doi: 10.1007/s11120-019-00629-6
You Z, Xu H, Zhang S, Kim H, Chiang PC, Yun W, Zhang L, He M. Comparison of petroleum hydrocarbons degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Applied Sciences, 8: 2551, 2018. doi: 10.3390/app8122551
Zhao X, Ma R, Liu X, Ho SH, Xie Y, & Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42 (3), 435-443, 2019. doi: 10.1007/s00449-018-2047-4
Znad H, Al Ketife AM, & Judd S. Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology, 1-7, 2018. doi: 10.1080/09593330.2018.1437778
Bland E, & Angenent LTJ. Pigment-targeted light wavelength and intensity promotes effcient photoautotrophic growth of Cyanobacteria. Bioresource technology, 216, 579-586, 2016. doi: 10.1016/j.biortech.2016.05.116
Zwietering MH, Jongenburger I, Rombouts FM, & Van’t Riet K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881, 1990. doi: 0099-2240/90/061875-07$02.00/0
Camargo EC, & Lombardi AT. Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana. Journal of Ap-plied Phycology, 30 (2), 861-871, 2018. doi: 10.1007/s10811-017-1291-3
Celekli A, Yavuzatmaca M, & Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresource Technology, 100, 3625-3629, 2009. doi: 10.1016/j.biortech.2009.02.055
Cepoi L. Chapter 11: Environmental and Technological Stresses and Their Management in Cyanobacteria. In: Cyanobacteria From Basic Science to Applications. Mishra AK, Tiwari DN, & Rai AN (Eds.). Elsevier, 217-244, 2019.
Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biology, 13 (1-2): 21-39, 2019. doi: 10.3233/ISB-180470
Chen Q, Montesarchio D, & Hellingwerf KJ. ‘Direct conversion’: artificial photosynthesis with cyanobacteria. In Advances in Botanical Research, 79, 43-62, 2016. doi: 10.1016/bs.abr.2016.03.001
Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, & Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396, 2008. doi: 10.1016/j.biortech.2007.08.013
Cibichakravarthy B, Venkatachalam S, & Prabagaran SR. Chapter 9: Unleashing Extremophilic Metabolites and Its Industrial Perspectives. In: Gupta BK, & Pande A (Eds). New and Future Developments in Microbial Biotechnology and Bioengineering. 119-130, 2019. doi: 10.1016/B978-0-444-63504-4.00009-8
Crnkovic CM, May DS, & Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 1-10, 2017. doi: 10.1007/s10811-017-1275-3
Cui L, Xu H, Zhu Z, & Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biology open, 6(9), 1329-1335, 2017. doi: 10.1242/bio.026955
Dalgaard P, Koutsoumanis K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43: 183-196, 2001. doi: 10.1016/s0167-7012(00)00219-0
Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology, 23: 391-404, 1994. doi: 10.1016/0168-1605(94)90165-1
Das P, Lei W, Aziz SS, & Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883-3887, 2011. doi: 10.1016/j.biortech.2010.11.102
Da Silva Ferreira V, & Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 33(1), 20, 2017. doi: 10.1007/s11274-016-2181-6
De Oliveira CA, Castro-Oliveira W, & Rocha SM. Effect of light intensity on the production of pigments in Nostoc spp. European Journal of Biology and Medical Science Research, 2(1), 23-36, 2014.
Delattre C, Pierre G, Laroche C, & Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 34(7), 1159-1179, 2016. doi: 10.1016/j.biotechadv.2016.08.001
Dhar DW, Prasanna R, Pabbi S, & Vishwakarma R. Significance of cyanobacteria as inoculants in agriculture. In Algal Biorefinery: An Integrated Approach (pp. 339-374): Springer. 2015. doi: 10.1007/978-3-319-22813-6_16
Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, & Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14 (5), 100, 2016. doi: 10.3390/md14050100
Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, & Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103 (12), 4709-4721, 2019. doi: 10.1007/s00253-019-09811-1
Gaytán-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, PérezMartínez AS, Alpuche-Solís Á, & Soria-Guerra RE. Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Prog, 32(6), 1404-1411, 2016. doi: 10.1002/btpr.2368
Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583, 1825. doi: 10.1098/rstl.1825.0026
Griffiths MJ, Garcin C, Van Hille RP, & Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119-123, 2011. doi: 10.1016/j.mimet.2011.02.005
Guo F, Zhao JAL, & Yang X. Life cycle assessment of microalgaebased aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects. Bioresource Technology, 221, 350-357, 2016. doi: 10.1016/j.biortech.2016.09.044
Gupta S, Cox S, Rajauria G, Jaiswal AK, Abu-Ghannam N. Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts, Food and Bioprocess Technology, 5: 1907-1916, 2012. doi: 10.1007/s11947-010-0502-6
Hagemann M, Kern R, Maurino VG, Hanson DT, Weber AP, Sage RF, & Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of experi-mental botany, 67(10), 2963-2976, 2016. doi: 10.1093/jxb/erw063
Hai T, Ahlers H, Gorenflo V, & Steinbüchel A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Applied Microbiology and Biotechnology, 53, 383-389, 2000. doi: 10.1007/s002530051630
Halmi MIE, Shukor MS, Johari WLW, & Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2(1), 1-6. 2014.
Han PP, Guo RJ, Shen SG, Yan RR, Wu YK, Yao SY, Wang HY, & Jia SR. Proteomic profiling of Nostoc flagelliforme reveals the common mechanism in promoting polysaccharide production by different light qualities. Biochemical Engineering Journal, 132, 68-78, 2018. doi: 10.1016/j.bej.2017.12.006
Han PP, Shen SG, Wang HY, Sun Y, Dai YJ, & Jia SR. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Research, 9, 143-150, 2015. doi: 10.1016/j.algal.2015.02.019
Han PP, Shen SG, Guo RJ, Zhao DX, Lin YJ, Jia S, Yan RR, & Wu YK. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium Nostoc flagelliforme. Journal of Agricultural and Food Chemistry, 67 (8), 2235-2244, 2019. doi: 10.1021/acs.jafc.8b06176
Han PP, Shen SG, Wang HY, Yao SY, Tan ZL, Zhong C, & Jia SR. Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. Journal of Applied Phycology, 29 (496), 55-65, 2017a. doi: 10.1007/s10811-016-0963-8
Han PP, Sun Y, Jia SR, Zhong C, & Tan ZLJC. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydrate polymers, 105, 145-151, 2014. doi: 10.1016/j.carbpol.2014.01.061
Han PP, Yao SY, Guo RJ, Yan RR, Wu YK, Shen SG, & Jia SR. Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Advances, 7, 45075-45084, 2017b. doi: 10.1039/C7RA07982F
Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, & Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282, 2014. doi: 10.1016/j.biortech.2013.11.031
Ho MY, Soulier NT, Canniffe DP, Shen G, & Bryant DAJ. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. 37, 24-33, 2017. doi: 10.1016/j.pbi.2017.03.006
Huang L. Optimization of a new mathematical model for bacterial growth. Food Control, 32(1), 283-288, 2013. doi: 10.1016/j.foodcont.2012.11.019
Ibrahim S, Mansur A, Ahmad SA. Mathematical modelling of the growth of Caulobacter crescentus on caffeine. Journal of Environmental Microbiology and Toxicology, 6 (2): 13-17, 2018.
Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, & Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3(2), 2012.
Itoh KI, Nakamura K, Aoyama T, Kakimoto T, Murakami M, & Takido T. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Letters, 55(2), 435-437, 2014. doi: 10.1016/j.tetlet.2013.11.049
Johnson EM, Kumar K, & Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresource technology, 166, 541-547, 2014. doi: 10.1016/j.biortech.2014.05.097
Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, & Kim HS. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. 2015. doi: 10.4014/jmb.1409.09019
Khajepour F, Hosseini SA, Nasrabadi RG, & Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied biochemistry and biotechnology, 176(8), 2279-2289, 2015. doi: 10.1007/s12010-015-1717-9
Khanna P, Kaur A, & Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, 105656, 2019. doi: 10.1016/j.mimet.2019.105656
Kim TH, Lee Y, Han SH, & Hwang SJ. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75-80, 2013. doi: 10.1016/j.biortech.2012.11.134
Kim YS, & Lee SH. Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration. Environmental Engineering Research, 23(2), 216-222, 2018. doi: 10.4491/eer.2017.193
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis Research, 126: 3-17, 2015. doi: 10.1007/s11120-014-0031-7
Kokabi M, Yousefzadi M, Soltani M, & Arman M. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot-spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67 (3), 215-220, 2019. doi: 10.1111/pre.12374
Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, & Franco TT. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. Journal of petroleum science and en-gineering, 78(3-4), 679-686, 2011. doi: 10.1016/j.petrol.2011.07.003
Li H, Xie G, & Edmondson A. Evolution and limitations of primary mathematical models in predictive microbiology. British food journal, 109(8), 608-626, 2007. doi: 10.1108/00070700710772408
Liu X, Sheng J, & Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 2011. doi: 10.1073/pnas.1103014108
Loaiza NR, Vera P, Aiello-Mazzarri C, & Morales EJA. Comparación del crecimiento y composición bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales) en relación con el nitrato de sodio. Acta Biológica Colombiana, 21(2), 347-354, 2016. doi: 10.15446/abc.v21n2.48883
Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, & Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol (Noisy-le-grand), 63(9), 96-105, 2017. doi: 10.14715/cmb/2017.63.9.17
Luimstra VM, Schuurmans JM, Verschoor AM et al. Blue light reduces photosynthetic effciency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138, 177-189, 2018. doi: 10.1007/s11120-018-0561-5
Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic effciency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research, 1-11, 2019. doi: 10.1007/s11120-019-00630-z
Ma R, Lu F, Bi Y, & Hu Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37, 1663-1669, 2015. doi: 10.1007/s10529-015-1831-3
Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, & Cowan DAJ. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24(4), 819-840, 2015. doi: 10.1007/s10531-015-0902-z
Margarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, & Costa JA. Spirulina platensis is more effcient than Chlorella homosphaera in carbohydrate productivity. Environ Technol, 1-8, 2016. doi: 10.1080/09593330.2016.1254685
McBride RC, Smith VH, Carney LT, & Lane TW. Crop protection in open ponds. In: Slocombe SP, & Benemann JR (Eds.). Microalgal Production for Biomass and High-Value Products, 1st ed., CRC Press, 165-182, 2016.
Merli GO, Perazzi JR. Modelos de crecimiento en microbiología predictiva (Ecología microbiana cuantitativa). Estimación de modelos y simulación mediante dinámica de sistemas, XXVII Simposio Internacional de Estadística 5th International Workshop on Applied Statistics, Medellín, Colombia, 2017.
Mohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, & Ariff AB. Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochemical engineering journal, 88, 30-41, 2014. doi: 10.1016/j.bej.2014.04.002
Morales E, Luna V, Navarro L, Santana V, Gordillo A, & Arévalo AJRE. Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34(1-2), 129-149, 2017. doi: 10.26807/remcb.v34i1-2.240
Motulsky HJ, & Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB journal, 1(5), 365-374, 1987. doi: 10.1096/fasebj.1.5.3315805
Mytilinaios I, Bernigaud I, Belot V, & Lambert RJW. Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of applied microbiology, 118(1), 161-174, 2014. doi: 10.1111/jam.12695
Novoveska L, Franks DT, Wulfers TA, & Henley WJ. Stabilizing continuous mixed cultures of microalgae. Algal Research, 13(C), 126-133. 2016. doi: 10.1016/j.algal.2015.11.021
Nozzi NE, Oliver JW, & Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 1(7), 2013 doi: 10.3389/fbioe.2013.00007
Oldenhof H, Zachleder V, & Van Den Ende H. Blue-and redlight regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3), 313-320, 2006. doi: 10.1080/09670260600699920
Ojit S, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi AS, Silvia CH, Indira DW, Romi KH, Minerva SH, & Thadoi DA. The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology and Biotechnology, 3, 1-6, 2015. doi: 10.7324/JABB.2015.3301
Ooms MD, Graham PJ, Nguyen B, Sargent EH, & Sinton D. Light dilution via wave-length management for effcient high-density photobioreactors. Biotechnology and bioengineering, 114(6), 1160-1169, 2017. doi: 10.1002/bit.26261
Pagels F, Guedes AC, Amaro HM, Kijjoa A, & Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37 (3), 422-443, 2019. doi: 10.1016/j.biotechadv.2019.02.010
Pang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, & Xiao S. NitrogenFixing heterocystous cyanobacteria in the Tonian period. Current Biology, 28(4), 616-622, 2018. doi: 10.1016/j.cub.2018.01.008
Park H, & Lee CG. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnol J, 11(11), 1461-1470, 2016. doi: 10.1002/biot.201600041
Pereyra DSV, & Ferrari SG. Extracellular Polymeric Substance (EPS) Production by Nostoc minutum under Different Laboratory Conditions. Advances in Microbiology, 6(05), 374, 2016. doi: 10.4236/aim.2016.65036
Perni S, Andrew PW, Shama G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food microbiology, 22 (6): 491-495, 2005. doi: 10.1016/j.fm.2004.11.014
Pla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of primary models to predict microbial growth by the plate count and absorbance methods. BioMed Research International, 365025, 2015. doi: 10.1155/2015/365025
Rather AH, & Singh S. Preliminary evaluation of impact of monochromatic light on the biosynthesis of astaxanthin in green alga Haematococcus pluvialis. World News of Natural Sciences, 19, 45-50, 2018.
Rehman NNMA, & Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonas aeruginosa NR1. Journal of King Saud University Science. doi: 10.1016/j.jksus.2019.01.004
Richards FJ. A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301, 1959. doi: 10.1093/jxb/10.2.290
Richmond A. Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell publishing. 2004.
Rivera-González MV, Gómez-Gómez L, & Cubillos-Hinojosa JG. Effect of humic acids on the growth and the biochemical composition of Arthrospira platensis. Revista Colombiana de Biotecnología, 19(1), 71-81, 2017. doi: 10.15446/rev.colomb.biote.v19n1.58316
Ryu BG, Kim J, Han JI, & Yang JW. Feasibility of using a microalgalbacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresource Technology, 225, 58-66, 2017. doi: 10.1016/j.biortech.2016.11.029
Sanmartín P, Vázquez-Nion D, Arines J, Cabo-Domínguez L, & Prieto B. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. International Biodeterioration and Biodegradation, 122, 107-115, 2017. doi: 10.1016/j.ibiod.2017.05.003
Schuurman R, Matthijs J, & Hellingwerf K. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. Photosynthesis research, 132(1), 69-82. 2017. doi: 10.1007/s11120-016-0329-8
Shalaby EA, Atta MB, Sleem IA, Mohamed MA, Lightfoot DA, & El-Shemy HA. Cytotoxicity, antioxidant and antiviral potential of aqueous extract from Nostoc muscorum cultivated in various inexpensive media. Waste and Biomass Valorization, 10(5), 1419-1431, 2019. doi: 10.1007/s12649-017-0188-3
Shukla M, Tabassum R, Singh R, & Dhar DW. Influence of light intensity, temperature and CO2 concentration on growth and lipids in green algae and cyanobacteria. Indian Journal of experimental biology, 54, 482-487, 2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 36 páginas.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pontificia Universidad Javeriana
Juan Carlos Salcedo-Reyes (salcedo.juan@javeriana.edu.co)
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.source.spa.fl_str_mv https://revistas.javeriana.edu.co/index.php/scientarium/article/view/23864
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1389/4/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1389/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1389/3/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1389/5/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdf.jpg
bitstream.checksum.fl_str_mv 8e4b37ba783b788c064d49ddf6a0cc9f
5a7ca94c2e5326ee169f979d71d0f06e
f1435349b8527c53d24054df13036e46
649873e0c564ff746b7fd435a7d2c8a4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355629978943488
spelling Ortiz Moreno, Martha Lucia341583fd04a0e0e02f4172ede72a16f6600Cárdenas Poblador, Jaleydidaa05c9f35011db16a492f205f563e70600Agredo, Juliánf359d805b6098afe2ba1906a6022f546600Solarte Murillo, Laura Vanessa5089b85cfd972404c2954ee99706eff3600Matemáticas2021-05-05T03:50:45Z2021-10-01T17:20:49Z20202021-05-05T03:50:45Z2021-10-01T17:20:49Z20200122-7483https://repositorio.escuelaing.edu.co/handle/001/138910.11144/Javeriana.SC25-1.mtehttps://doi.org/10.11144/Javeriana.SC25-1.mteMathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. N. ellipsosporum was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD650 : 0.090 ± 0.008), followed by the yellow light (OD650 : 0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of N. ellipsosporum (OD650 : 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from N. ellipsosporum growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the production of N. ellipsosporum and its bioproducts.Los modelos matemáticos proveen información sobre las dinámicas poblacionales bajo diferentes condiciones. En el presente estudio, se evaluaron cuatro modelos (Baranyi-Roberts, Gompertz Modificado, Logístico Modificado y Richards) y se emplearon para describir la cinética de crecimiento de Nostoc ellipsosporum con diferentes longitudes de onda de luz. N. ellipsosporum creció en medio líquido BG-11 por 9 días, usando un fotoperiodo de 12 horas y los siguientes tratamientos: luz blanca (400-800 nm), luz roja (650-800 nm), luz amarilla (550-580 nm) y luz azul (460-480 nm). Cada experimento se llevó a cabo por triplicado. La densidad óptica (OD) se midió en los días 1, 3, 5, 7 y 9 usando un espectrofotómetro a 650 nm. El máximo crecimiento celular se obtuvo con la longitud de onda de la luz blanca (OD650 : 0.090 ± 0.008), seguido de la luz amarilla (OD650 : 0.057 ± 0.004). Por el contrario, la luz azul mostró un marcado efecto inhibitorio en el crecimiento de N. ellipsosporum (OD650 : 0.009 ± 0.001). Los resultados revelaron que el modelo Baranyi-Roberts se ajustó mejor a los datos experimentales de crecimiento de N. ellipsosporum en los cuatro tratamientos. Los hallazgos de este estudio de modelación se pueden usar en diversas aplicaciones biotecnológicas que requieran la producción de N. ellipsosporum y sus bioproductos.1. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Biology and Chemistry, Biorinoquia and SUSA Groups, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745.2. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Mathematics and Physics, Sistemas Dinámicos Group, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745.3. Escuela Colombiana de Ingeniería Julio Garavito, Department of Mathematics, GIMATH (Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería) Group, Autopista Norte AK 45 No. 205-59, Bogotá - Colombia, zip code 111166.4. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Biology and Chemistry, Biorinoquia Group, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745. * mlortiz@unillanos.edu.co36 páginas.application/pdfengPontificia Universidad JaverianaJuan Carlos Salcedo-Reyes (salcedo.juan@javeriana.edu.co)Bogotá, Colombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.javeriana.edu.co/index.php/scientarium/article/view/23864Modeling the effects of light wavelength on the growth of Nostoc ellipsosporumArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Universitas Scientiarum Vol. 25 (1): 113-148148111325N/AUniversitas ScientiarumAbed RMM, Dobretsov S, & Sudesh K. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12, 2009.Benítez REH, Vidal DRA, & Guerrero JV. Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira-Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31, 2018. doi: 10.23850/24220582.889Trejos VM, Alzate JF, Garcia MÁG. Descripción matemática y análisis de estabilidad de procesos fermentativos, text, 76 (158): 111-121, 2009.Castillo CMN, Rivera FCR, Díaz LE, Díaz AGL. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis, Nova, 15 (28): 19-31, 2017.Cayré ME, Vignolo GM, Garro OA. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y Brochothrix thermosphacta sobre emulsiones cárnicas cocidas, Información Tecnológica, 18(3): 23-29, 2007. doi: 10.4067/S0718-07642007000300004Crettaz Minaglia MC, Rosso L, Aranda O, Sedan D, Juárez I, Ventosi E, Gian-nuzzi LJI. Modelado matemático del crecimiento de Microcystis aeruginosa en condiciones de laboratorio bajo diferentes temperaturas. Ingeniería Sanitaria y Ambiental, 61-67, 2017.Santiesteban-López N, López-Malo A. Descripción e importancia de algunos modelos predictivos utilizados como herramienta para la conservación de alimentos. Temas Selectos de Ingeniería de Alimentos, 2 (2): 14-26, 2008.Ahmad SA, Shukor MS, Masdor NA, Shamaan NA, Roslan MAH, Shukor MY. The growth of Paracoccus sp. SKG on acetonitrile is best modelled using the Buchanan three phase model. Journal of Environmental Bioremediation and Toxicology, 3 (1): 1-5, 2015.Algal culturing techniques. (R.A. Andersen Ed.). Burlington: Phycological society of America, 2005.Andersen RA. Algal culturing techniques, Phycological society of America, Burlington, USA, 2005.Arteni AA, Ajlani G, & Boekema EJ. Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787 (4), 272-279, 2009. doi: 10.1016/j.bbabio.2009.01.009Atta M, Idris A, Bukhari A, & Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373378, 2013. doi: 10.1016/j.biortech.2013.08.162Baranyi J, & Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294, 1994. doi: 10.1016/0168-1605(94)90157-0Baranyi J, & Roberts TA. Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26(2), 199218, 1995. doi: 10.1016/0168-1605(94)00121-LBaranyi J, Robinson TP, Kaloti A, & Mackey BM. Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27(1), 61-75, 1995. doi: 10.1016/0168-1605(94)00154-XBarsanti L, & Gualtieri P. Algae: anatomy, biochemistry and biotechnology. Boca Raton: CRC Press Taylor & Francis group, 2006.Belda-Galbis CM, Martínez A, Rodrigo D. Antimicrobial effect of carvacrol on Escherichia coli K12 growth at different temperatures, 2011. doi: 10.1142/9789814354868_0015Silva APR, Longhi DA, Dalcanton F, Aragão GMF. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian archives of biology and technology, 61: e18160159, 2018. doi: 10.1590/1678-4324-2018160159Singh NK, Sonani RR, Rastogi RP, & Madamwar D. The phycobilisomes: an early requisite for effcient photosynthesis in cyanobacteria. EXCLI journal, 14, 268, 2015. doi: 10.17179/excli2014-723Singh RS, Walia AK, Khattar JS, Singh DP, & Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496, 2017. doi: 10.1016/j.ijbiomac.2017.04.041Singh S, & Singh P. Effect of temperature and light on the growth of algae species: a review. Renewable and Sustainable Energy Reviews, 50, 431-444, 2015. doi: 10.1016/j.rser.2015.05.024Sinha RP, Ambasht NK, Sinha JP, & Ha¨der DP. Wavelengthdependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochemical and Photobiological Sciences, 2, 171-6, 2003. doi: 10.1039/b204167gSolhaug KA, Xie L, Gauslaa Y. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant and Cell Physiology, 55: 1404-1414, 2014. doi: 10.1093/pcp/pcu065Supriyanto, Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, & Watanabe MM. Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosystems Engineering, 177, 122-129, 2019. doi: 10.1016/j.biosystemseng.2018.10.002Swinnen IAM, Bernaerts K, Dens EJ, Geeraerd AH, & Van Impe JF. Predictive modelling of the microbial lag phase: a review. International journal of food microbiology, 94(2), 137-159. 2004. doi: 10.1016/j.ijfoodmicro.2004.01.006Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, & Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. doi: 10.1016/j.biortech.2014.03.113Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresource Technology, 119: 419-424, 2012. doi: 10.1016/j.biortech.2012.05.124Tiwari ON, Devi WI, Silvia C, Devi AT, Oinam G, Singh OA, Singh KO, Indrama T, Sharma AS, Khangembam R, Shamjetshaban M, Miranda L, & Prasanna R. Modula-tion of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology, 3(04), 011-016, 2015. doi: 10.7324/JABB.2015.3403Tóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Gombos ZJB. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847(10), 1153-1165, 2015. doi: 10.1016/j.bbabio.2015.05.020Vanegas DM, Ramírez ME. Correlación del crecimiento de Pseudomonas fluorescens en la producción de polihidroxialcanoatos de cadena media (PHAMCL) mediante modelos primarios de Gompertz, Logístico y Baranyi.Información tecnológica, 27 (2): 87-96, 2016. doi: 10.4067/S0718-07642016000200011Xiong S, Fan J, & Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology, 86, 805-812, 2010. doi: 10.1007/s00253-010-2470-1Xu L, Yong H, Tu X, Wanga Q, & Fan J. Physiological and proteomic analysis of Nostoc flagelliforme in response to alkaline pH shift for polysaccharide accumulation. Algal Research, 39, 101444, 2019. doi: 10.1016/j.algal.2019.101444Yang YW, Yin YC, Li ZK, Huang D, Shang JL, Chen M, & Qiu BS. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc agelliforme to desiccation. Photosynthesis Research, 140 (1), 103-113, 2019. doi: 10.1007/s11120-019-00629-6You Z, Xu H, Zhang S, Kim H, Chiang PC, Yun W, Zhang L, He M. Comparison of petroleum hydrocarbons degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Applied Sciences, 8: 2551, 2018. doi: 10.3390/app8122551Zhao X, Ma R, Liu X, Ho SH, Xie Y, & Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42 (3), 435-443, 2019. doi: 10.1007/s00449-018-2047-4Znad H, Al Ketife AM, & Judd S. Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology, 1-7, 2018. doi: 10.1080/09593330.2018.1437778Bland E, & Angenent LTJ. Pigment-targeted light wavelength and intensity promotes effcient photoautotrophic growth of Cyanobacteria. Bioresource technology, 216, 579-586, 2016. doi: 10.1016/j.biortech.2016.05.116Zwietering MH, Jongenburger I, Rombouts FM, & Van’t Riet K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881, 1990. doi: 0099-2240/90/061875-07$02.00/0Camargo EC, & Lombardi AT. Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana. Journal of Ap-plied Phycology, 30 (2), 861-871, 2018. doi: 10.1007/s10811-017-1291-3Celekli A, Yavuzatmaca M, & Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresource Technology, 100, 3625-3629, 2009. doi: 10.1016/j.biortech.2009.02.055Cepoi L. Chapter 11: Environmental and Technological Stresses and Their Management in Cyanobacteria. In: Cyanobacteria From Basic Science to Applications. Mishra AK, Tiwari DN, & Rai AN (Eds.). Elsevier, 217-244, 2019.Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biology, 13 (1-2): 21-39, 2019. doi: 10.3233/ISB-180470Chen Q, Montesarchio D, & Hellingwerf KJ. ‘Direct conversion’: artificial photosynthesis with cyanobacteria. In Advances in Botanical Research, 79, 43-62, 2016. doi: 10.1016/bs.abr.2016.03.001Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, & Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396, 2008. doi: 10.1016/j.biortech.2007.08.013Cibichakravarthy B, Venkatachalam S, & Prabagaran SR. Chapter 9: Unleashing Extremophilic Metabolites and Its Industrial Perspectives. In: Gupta BK, & Pande A (Eds). New and Future Developments in Microbial Biotechnology and Bioengineering. 119-130, 2019. doi: 10.1016/B978-0-444-63504-4.00009-8Crnkovic CM, May DS, & Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 1-10, 2017. doi: 10.1007/s10811-017-1275-3Cui L, Xu H, Zhu Z, & Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biology open, 6(9), 1329-1335, 2017. doi: 10.1242/bio.026955Dalgaard P, Koutsoumanis K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43: 183-196, 2001. doi: 10.1016/s0167-7012(00)00219-0Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology, 23: 391-404, 1994. doi: 10.1016/0168-1605(94)90165-1Das P, Lei W, Aziz SS, & Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883-3887, 2011. doi: 10.1016/j.biortech.2010.11.102Da Silva Ferreira V, & Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 33(1), 20, 2017. doi: 10.1007/s11274-016-2181-6De Oliveira CA, Castro-Oliveira W, & Rocha SM. Effect of light intensity on the production of pigments in Nostoc spp. European Journal of Biology and Medical Science Research, 2(1), 23-36, 2014.Delattre C, Pierre G, Laroche C, & Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 34(7), 1159-1179, 2016. doi: 10.1016/j.biotechadv.2016.08.001Dhar DW, Prasanna R, Pabbi S, & Vishwakarma R. Significance of cyanobacteria as inoculants in agriculture. In Algal Biorefinery: An Integrated Approach (pp. 339-374): Springer. 2015. doi: 10.1007/978-3-319-22813-6_16Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, & Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14 (5), 100, 2016. doi: 10.3390/md14050100Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, & Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103 (12), 4709-4721, 2019. doi: 10.1007/s00253-019-09811-1Gaytán-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, PérezMartínez AS, Alpuche-Solís Á, & Soria-Guerra RE. Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Prog, 32(6), 1404-1411, 2016. doi: 10.1002/btpr.2368Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583, 1825. doi: 10.1098/rstl.1825.0026Griffiths MJ, Garcin C, Van Hille RP, & Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119-123, 2011. doi: 10.1016/j.mimet.2011.02.005Guo F, Zhao JAL, & Yang X. Life cycle assessment of microalgaebased aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects. Bioresource Technology, 221, 350-357, 2016. doi: 10.1016/j.biortech.2016.09.044Gupta S, Cox S, Rajauria G, Jaiswal AK, Abu-Ghannam N. Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts, Food and Bioprocess Technology, 5: 1907-1916, 2012. doi: 10.1007/s11947-010-0502-6Hagemann M, Kern R, Maurino VG, Hanson DT, Weber AP, Sage RF, & Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of experi-mental botany, 67(10), 2963-2976, 2016. doi: 10.1093/jxb/erw063Hai T, Ahlers H, Gorenflo V, & Steinbüchel A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Applied Microbiology and Biotechnology, 53, 383-389, 2000. doi: 10.1007/s002530051630Halmi MIE, Shukor MS, Johari WLW, & Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2(1), 1-6. 2014.Han PP, Guo RJ, Shen SG, Yan RR, Wu YK, Yao SY, Wang HY, & Jia SR. Proteomic profiling of Nostoc flagelliforme reveals the common mechanism in promoting polysaccharide production by different light qualities. Biochemical Engineering Journal, 132, 68-78, 2018. doi: 10.1016/j.bej.2017.12.006Han PP, Shen SG, Wang HY, Sun Y, Dai YJ, & Jia SR. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Research, 9, 143-150, 2015. doi: 10.1016/j.algal.2015.02.019Han PP, Shen SG, Guo RJ, Zhao DX, Lin YJ, Jia S, Yan RR, & Wu YK. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium Nostoc flagelliforme. Journal of Agricultural and Food Chemistry, 67 (8), 2235-2244, 2019. doi: 10.1021/acs.jafc.8b06176Han PP, Shen SG, Wang HY, Yao SY, Tan ZL, Zhong C, & Jia SR. Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. Journal of Applied Phycology, 29 (496), 55-65, 2017a. doi: 10.1007/s10811-016-0963-8Han PP, Sun Y, Jia SR, Zhong C, & Tan ZLJC. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydrate polymers, 105, 145-151, 2014. doi: 10.1016/j.carbpol.2014.01.061Han PP, Yao SY, Guo RJ, Yan RR, Wu YK, Shen SG, & Jia SR. Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Advances, 7, 45075-45084, 2017b. doi: 10.1039/C7RA07982FHo SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, & Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282, 2014. doi: 10.1016/j.biortech.2013.11.031Ho MY, Soulier NT, Canniffe DP, Shen G, & Bryant DAJ. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. 37, 24-33, 2017. doi: 10.1016/j.pbi.2017.03.006Huang L. Optimization of a new mathematical model for bacterial growth. Food Control, 32(1), 283-288, 2013. doi: 10.1016/j.foodcont.2012.11.019Ibrahim S, Mansur A, Ahmad SA. Mathematical modelling of the growth of Caulobacter crescentus on caffeine. Journal of Environmental Microbiology and Toxicology, 6 (2): 13-17, 2018.Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, & Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3(2), 2012.Itoh KI, Nakamura K, Aoyama T, Kakimoto T, Murakami M, & Takido T. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Letters, 55(2), 435-437, 2014. doi: 10.1016/j.tetlet.2013.11.049Johnson EM, Kumar K, & Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresource technology, 166, 541-547, 2014. doi: 10.1016/j.biortech.2014.05.097Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, & Kim HS. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. 2015. doi: 10.4014/jmb.1409.09019Khajepour F, Hosseini SA, Nasrabadi RG, & Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied biochemistry and biotechnology, 176(8), 2279-2289, 2015. doi: 10.1007/s12010-015-1717-9Khanna P, Kaur A, & Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, 105656, 2019. doi: 10.1016/j.mimet.2019.105656Kim TH, Lee Y, Han SH, & Hwang SJ. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75-80, 2013. doi: 10.1016/j.biortech.2012.11.134Kim YS, & Lee SH. Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration. Environmental Engineering Research, 23(2), 216-222, 2018. doi: 10.4491/eer.2017.193Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis Research, 126: 3-17, 2015. doi: 10.1007/s11120-014-0031-7Kokabi M, Yousefzadi M, Soltani M, & Arman M. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot-spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67 (3), 215-220, 2019. doi: 10.1111/pre.12374Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, & Franco TT. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. Journal of petroleum science and en-gineering, 78(3-4), 679-686, 2011. doi: 10.1016/j.petrol.2011.07.003Li H, Xie G, & Edmondson A. Evolution and limitations of primary mathematical models in predictive microbiology. British food journal, 109(8), 608-626, 2007. doi: 10.1108/00070700710772408Liu X, Sheng J, & Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 2011. doi: 10.1073/pnas.1103014108Loaiza NR, Vera P, Aiello-Mazzarri C, & Morales EJA. Comparación del crecimiento y composición bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales) en relación con el nitrato de sodio. Acta Biológica Colombiana, 21(2), 347-354, 2016. doi: 10.15446/abc.v21n2.48883Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, & Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol (Noisy-le-grand), 63(9), 96-105, 2017. doi: 10.14715/cmb/2017.63.9.17Luimstra VM, Schuurmans JM, Verschoor AM et al. Blue light reduces photosynthetic effciency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138, 177-189, 2018. doi: 10.1007/s11120-018-0561-5Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic effciency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research, 1-11, 2019. doi: 10.1007/s11120-019-00630-zMa R, Lu F, Bi Y, & Hu Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37, 1663-1669, 2015. doi: 10.1007/s10529-015-1831-3Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, & Cowan DAJ. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24(4), 819-840, 2015. doi: 10.1007/s10531-015-0902-zMargarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, & Costa JA. Spirulina platensis is more effcient than Chlorella homosphaera in carbohydrate productivity. Environ Technol, 1-8, 2016. doi: 10.1080/09593330.2016.1254685McBride RC, Smith VH, Carney LT, & Lane TW. Crop protection in open ponds. In: Slocombe SP, & Benemann JR (Eds.). Microalgal Production for Biomass and High-Value Products, 1st ed., CRC Press, 165-182, 2016.Merli GO, Perazzi JR. Modelos de crecimiento en microbiología predictiva (Ecología microbiana cuantitativa). Estimación de modelos y simulación mediante dinámica de sistemas, XXVII Simposio Internacional de Estadística 5th International Workshop on Applied Statistics, Medellín, Colombia, 2017.Mohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, & Ariff AB. Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochemical engineering journal, 88, 30-41, 2014. doi: 10.1016/j.bej.2014.04.002Morales E, Luna V, Navarro L, Santana V, Gordillo A, & Arévalo AJRE. Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34(1-2), 129-149, 2017. doi: 10.26807/remcb.v34i1-2.240Motulsky HJ, & Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB journal, 1(5), 365-374, 1987. doi: 10.1096/fasebj.1.5.3315805Mytilinaios I, Bernigaud I, Belot V, & Lambert RJW. Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of applied microbiology, 118(1), 161-174, 2014. doi: 10.1111/jam.12695Novoveska L, Franks DT, Wulfers TA, & Henley WJ. Stabilizing continuous mixed cultures of microalgae. Algal Research, 13(C), 126-133. 2016. doi: 10.1016/j.algal.2015.11.021Nozzi NE, Oliver JW, & Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 1(7), 2013 doi: 10.3389/fbioe.2013.00007Oldenhof H, Zachleder V, & Van Den Ende H. Blue-and redlight regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3), 313-320, 2006. doi: 10.1080/09670260600699920Ojit S, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi AS, Silvia CH, Indira DW, Romi KH, Minerva SH, & Thadoi DA. The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology and Biotechnology, 3, 1-6, 2015. doi: 10.7324/JABB.2015.3301Ooms MD, Graham PJ, Nguyen B, Sargent EH, & Sinton D. Light dilution via wave-length management for effcient high-density photobioreactors. Biotechnology and bioengineering, 114(6), 1160-1169, 2017. doi: 10.1002/bit.26261Pagels F, Guedes AC, Amaro HM, Kijjoa A, & Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37 (3), 422-443, 2019. doi: 10.1016/j.biotechadv.2019.02.010Pang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, & Xiao S. NitrogenFixing heterocystous cyanobacteria in the Tonian period. Current Biology, 28(4), 616-622, 2018. doi: 10.1016/j.cub.2018.01.008Park H, & Lee CG. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnol J, 11(11), 1461-1470, 2016. doi: 10.1002/biot.201600041Pereyra DSV, & Ferrari SG. Extracellular Polymeric Substance (EPS) Production by Nostoc minutum under Different Laboratory Conditions. Advances in Microbiology, 6(05), 374, 2016. doi: 10.4236/aim.2016.65036Perni S, Andrew PW, Shama G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food microbiology, 22 (6): 491-495, 2005. doi: 10.1016/j.fm.2004.11.014Pla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of primary models to predict microbial growth by the plate count and absorbance methods. BioMed Research International, 365025, 2015. doi: 10.1155/2015/365025Rather AH, & Singh S. Preliminary evaluation of impact of monochromatic light on the biosynthesis of astaxanthin in green alga Haematococcus pluvialis. World News of Natural Sciences, 19, 45-50, 2018.Rehman NNMA, & Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonas aeruginosa NR1. Journal of King Saud University Science. doi: 10.1016/j.jksus.2019.01.004Richards FJ. A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301, 1959. doi: 10.1093/jxb/10.2.290Richmond A. Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell publishing. 2004.Rivera-González MV, Gómez-Gómez L, & Cubillos-Hinojosa JG. Effect of humic acids on the growth and the biochemical composition of Arthrospira platensis. Revista Colombiana de Biotecnología, 19(1), 71-81, 2017. doi: 10.15446/rev.colomb.biote.v19n1.58316Ryu BG, Kim J, Han JI, & Yang JW. Feasibility of using a microalgalbacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresource Technology, 225, 58-66, 2017. doi: 10.1016/j.biortech.2016.11.029Sanmartín P, Vázquez-Nion D, Arines J, Cabo-Domínguez L, & Prieto B. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. International Biodeterioration and Biodegradation, 122, 107-115, 2017. doi: 10.1016/j.ibiod.2017.05.003Schuurman R, Matthijs J, & Hellingwerf K. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. Photosynthesis research, 132(1), 69-82. 2017. doi: 10.1007/s11120-016-0329-8Shalaby EA, Atta MB, Sleem IA, Mohamed MA, Lightfoot DA, & El-Shemy HA. Cytotoxicity, antioxidant and antiviral potential of aqueous extract from Nostoc muscorum cultivated in various inexpensive media. Waste and Biomass Valorization, 10(5), 1419-1431, 2019. doi: 10.1007/s12649-017-0188-3Shukla M, Tabassum R, Singh R, & Dhar DW. Influence of light intensity, temperature and CO2 concentration on growth and lipids in green algae and cyanobacteria. Indian Journal of experimental biology, 54, 482-487, 2016.cyanobacterialightmathematical modelmicrobial growth.cianobacteriasluzmodelo matemáticocrecimiento microbiano.TEXTModeling the effects of light wavelength on the growth.pdf.txtModeling the effects of light wavelength on the growth.pdf.txtExtracted texttext/plain78391https://repositorio.escuelaing.edu.co/bitstream/001/1389/4/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdf.txt8e4b37ba783b788c064d49ddf6a0cc9fMD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1389/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALModeling the effects of light wavelength on the growth.pdfapplication/pdf1710826https://repositorio.escuelaing.edu.co/bitstream/001/1389/3/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdff1435349b8527c53d24054df13036e46MD53open accessTHUMBNAILModeling the effects of light wavelength on the growth.pdf.jpgModeling the effects of light wavelength on the growth.pdf.jpgGenerated Thumbnailimage/jpeg15254https://repositorio.escuelaing.edu.co/bitstream/001/1389/5/Modeling%20the%20effects%20of%20light%20wavelength%20on%20the%20growth.pdf.jpg649873e0c564ff746b7fd435a7d2c8a4MD55open access001/1389oai:repositorio.escuelaing.edu.co:001/13892021-10-01 17:32:30.619open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK