Music-based neurofeedback system for stress regulation and memory stimulation
Although musical neurofeedback is used in multiple works, few systems have been developed for stress regulation, and no systems have been developed for memory stimulation. For this reason, a music-based neurofeedback system for stress regulation and memory stimulation is proposed. This system was de...
- Autores:
-
Bocanegra Pérez, Álvaro J.
Velásquez Pérez, José L.
Martínez Díaz, Valentina
Cárdenas Poveda, Carolina
Rizo Arévalo, Alejandra
López López, Juan M.
- Tipo de recurso:
- Conferencia (Ponencia)
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3329
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3329
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Memoria - Aspectos fisiológicos
Memory - Physiological aspects
Estrés (Fisiología)
Stress (Physiology)
Aparatos fisiológicos
Physiological apparatus
Electroencefalografía
Memoria
Música
Estrés
Electroencephalography
Memory
Music
Neurofeedback
Stress
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_c4d75dc5459f929facab59e00b8c4a0f |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3329 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Music-based neurofeedback system for stress regulation and memory stimulation |
title |
Music-based neurofeedback system for stress regulation and memory stimulation |
spellingShingle |
Music-based neurofeedback system for stress regulation and memory stimulation Memoria - Aspectos fisiológicos Memory - Physiological aspects Estrés (Fisiología) Stress (Physiology) Aparatos fisiológicos Physiological apparatus Electroencefalografía Memoria Música Estrés Electroencephalography Memory Music Neurofeedback Stress |
title_short |
Music-based neurofeedback system for stress regulation and memory stimulation |
title_full |
Music-based neurofeedback system for stress regulation and memory stimulation |
title_fullStr |
Music-based neurofeedback system for stress regulation and memory stimulation |
title_full_unstemmed |
Music-based neurofeedback system for stress regulation and memory stimulation |
title_sort |
Music-based neurofeedback system for stress regulation and memory stimulation |
dc.creator.fl_str_mv |
Bocanegra Pérez, Álvaro J. Velásquez Pérez, José L. Martínez Díaz, Valentina Cárdenas Poveda, Carolina Rizo Arévalo, Alejandra López López, Juan M. |
dc.contributor.author.none.fl_str_mv |
Bocanegra Pérez, Álvaro J. Velásquez Pérez, José L. Martínez Díaz, Valentina Cárdenas Poveda, Carolina Rizo Arévalo, Alejandra López López, Juan M. |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Memoria - Aspectos fisiológicos Memory - Physiological aspects Estrés (Fisiología) Stress (Physiology) Aparatos fisiológicos Physiological apparatus |
topic |
Memoria - Aspectos fisiológicos Memory - Physiological aspects Estrés (Fisiología) Stress (Physiology) Aparatos fisiológicos Physiological apparatus Electroencefalografía Memoria Música Estrés Electroencephalography Memory Music Neurofeedback Stress |
dc.subject.proposal.spa.fl_str_mv |
Electroencefalografía Memoria Música Estrés |
dc.subject.proposal.eng.fl_str_mv |
Electroencephalography Memory Music Neurofeedback Stress |
description |
Although musical neurofeedback is used in multiple works, few systems have been developed for stress regulation, and no systems have been developed for memory stimulation. For this reason, a music-based neurofeedback system for stress regulation and memory stimulation is proposed. This system was designed as a response to a previous research called “Neurophysiology of Emotions and Intimate Partner Violence (IPV) against Women”. The designed system uses 8 EEG channels to analyze alpha and theta brain-waves from 4 areas of the brain: prefrontal, frontal, temporal and central. By recording a 30 seconds baseline, the system is capable to detect changes in the EEG signal that can be used for the interaction. For feedback, three musical features are modified depending on the EEG analysis: tempo, loudness and loudness of the voice of the singer. For testing the system, two protocols were designed, these protocols focused on memory stimulation and stress regulation. They were designed specifically for each one of the three types of feedback. These protocols were applied on two women (43 and 52 years old), both had been part of the previous project. Results are promising, showing changes in the EEG signals of the participants when comparing the first session and the last one. Changes in performance of some specific tasks in the protocols, show an adequate usability of the system. Further studies will be carry on in order to evaluate long-term effects of the system with more activities. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-10-17T17:19:40Z |
dc.date.available.none.fl_str_mv |
2024-10-17T17:19:40Z |
dc.type.spa.fl_str_mv |
Documento de Conferencia |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/conferenceObject |
format |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3329 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
url |
https://repositorio.escuelaing.edu.co/handle/001/3329 https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings Of Spie |
dc.relation.conferencedate.spa.fl_str_mv |
2020 |
dc.relation.conferenceplace.spa.fl_str_mv |
Lima (Perù) |
dc.relation.ispartofconference.spa.fl_str_mv |
The 16th International Symposium on Medical Information Processing and Analysis |
dc.relation.references.spa.fl_str_mv |
Hammond, D. C., “Comprehensive neurofeedback bibliography: 2007 update,” Journal of Neurotherapy 11(3), 45–60 (2008). Fajardo, A. and Guzm´an, A. L., “Neurofeedback, aplicaciones y eficacia,” Interdisciplinaria 33(1), 81–93 (2016). Sterman, M. B. and Egner, T., “Foundation and practice of neurofeedback for the treatment of epilepsy,” Applied psychophysiology and biofeedback 31(1), 21 (2006). Myers, J. E. and Young, J. S., “Brain wave biofeedback: Benefits of integrating neurofeedback in counseling,” Journal of Counseling & Development 90(1), 20–28 (2012). Wilkinson, L., Koshy, P. J., Steel, A., Bageac, D., Schintu, S., and Wassermann, E. M., “Motor cortex inhibition by tms reduces cognitive non-motor procedural learning when immediate incentives are present,” Cortex 97, 70–80 (2017). Omejc, N., Rojc, B., Battaglini, P. P., and Marusic, U., “Review of the therapeutic neurofeedback method using electroencephalography: Eeg neurofeedback,” Bosnian journal of basic medical sciences 19(3), 213 (2019). Maes, P.-J., Buhmann, J., and Leman, M., “3mo: A model for music-based biofeedback,” Frontiers in neuroscience 10, 548 (2016). Ramirez, R., Palencia-Lefler, M., Giraldo, S., and Vamvakousis, Z., “Musical neurofeedback for treating depression in elderly people,” Frontiers in neuroscience 9, 354 (2015). Li, X., Ding, X., Cui, W., Song, X., and Shi, C., “Improving college students sub-threshold depression by music neurofeedback,” Sheng wu yi xue Gong Cheng xue za zhi= Journal of Biomedical Engineering= Shengwu Yixue Gongchengxue Zazhi 37(1), 54–60 (2020) Phneah, S. W. and Nisar, H., “Eeg-based alpha neurofeedback training for mood enhancement,” Australasian physical & engineering sciences in medicine 40(2), 325–336 (2017). Fedotchev, A., Oh, S., and Semikin, G., “Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders,” Modern technologies in medicine 6(3) (2014). Alexander, F., “Stress coping via musical neurofeedback.,” Advances in mind-body medicine 32(2), 17–20 (2018). Juster, R.-P., Bizik, G., Picard, M., Arsenault-Lapierre, G., Sindi, S., Trepanier, L., Marin, M.-F., Wan, N., Sekerovic, Z., Lord, C., et al., “A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development,” Development and psychopathology 23(3), 725–776 (2011). K. Pac´ak, M. P., “Stressor specificity of central neuroendocrine responses:implications for stressed-related disorders,” Endocrine Reviews 22, 502 – 548 (2001). Dillon, A., Kelly, M., Robertson, I. H., and Robertson, D. A., “Smartphone applications utilizing biofeedback can aid stress reduction,” Frontiers in psychology 7, 832 (2016). Chiba, T., Kanazawa, T., Koizumi, A., Ide, K., Taschereau-Dumouchel, V., Boku, S., Hishimoto, A., Shirakawa, M., Sora, I., Lau, H. C., et al., “Current status of neurofeedback for post-traumatic stress disorder: a systematic review and the possibility of decoded neurofeedback,” Frontiers in human neuroscience 13, 233 (2019). Panisch, L. S. and Hai, A. H., “The effectiveness of using neurofeedback in the treatment of post-traumatic stress disorder: a systematic review,” Trauma, Violence, & Abuse 21(3), 541–550 (2020). Peniston, E. G. and Kulkosky, P. J., “Alpha-theta brainwave neurofeedback for vietnam veterans with combat-related post-traumatic stress disorder,” Medical Psychotherapy 4(1), 47–60 (1991). Sokhadze, T. M., Stewart, C. M., and Hollifield, M., “Integrating cognitive neuroscience research and cognitive behavioral treatment with neurofeedback therapy in drug addiction comorbid with posttraumatic stress disorder: A conceptual review,” Journal of Neurotherapy 11(2), 13–44 (2007). Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Th´eberge, J., Kluetsch, R. C., Jetly, R., and Lanius, R. A., “Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder,” NeuroImage: Clinical 12, 506–516 (2016). Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., Schmahl, C., Th´eberge, J., Neufeld, R. W., McKinnon, M. C., et al., “The neurobiology of emotion regulation in posttraumatic stress disorder: amygdala downregulation via real-time fmri neurofeedback,” Human Brain Mapping 38(1), 541–560 (2017). Dupee, M. and Werthner, P., “Managing the stress response: The use of biofeedback and neurofeedback with olympic athletes,” Biofeedback 39(3), 92–94 (2011). Weon, H. W., Yi, S. G., and Kang, H. G., “Effects of a neurofeedback program on brain function and stress in high school students.,” Journal of Korean Academy of Child Health Nursing 14(3), 315–324 (2008). Bak, K.-J., “A study on the effects of neurofeedback training on the resistance stress of kids,” Journal of the Korea Academia-Industrial Cooperation Society 11(3), 1066–1070 (2010). Kum, M.-H., Kang, Y.-M., Kim, H.-K., Jung, H.-S., and Han, M.-Y., “Study on brain function enhancement and the effects of stress reduction through neuro-feedback training on nursing students of busan,” The Korean Journal of Health Service Management 6(2), 111–119 (2012) Hemmati Sabet, A. et al., “A comparative study of neurofeedback and mindfulness-based stress reduction on social anxiety,” Shenakht journal of psychology & psychiatry 4(1), 51–65 (2017). Keynan, J. N., Cohen, A., Jackont, G., Green, N., Goldway, N., Davidov, A., Meir-Hasson, Y., Raz, G., Intrator, N., Fruchter, E., et al., “Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience,” Nature human behaviour 3(1), 63–73 (2019). W. Sumrall, R. Sumrall, D. D., “A review of memory theory,” International Journal of humanities and Social Science 6(5), 23–30 (2016). Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A., McNamara, J., and Williams, S., “Neurociencias panamericana,” (2008). Hsueh, J.-J., Chen, T.-S., Chen, J.-J., and Shaw, F.-Z., “Neurofeedback training of eeg alpha rhythm enhances episodic and working memory,” Human brain mapping 37(7), 2662–2675 (2016). Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., Gordon, S., Meiran, N., and Todder, D., “Influence of electroencephalography neurofeedback training on episodic memory: A randomized, shamcontrolled, double-blind study,” Memory 23(5), 683–694 (2015). YuLeung To, E., Abbott, K., Foster, D. S., and Helmer, D., “Working memory and neurofeedback,” Applied Neuropsychology: Child 5(3), 214–222 (2016). Wei, T.-Y., Chang, D.-W., Liu, Y.-D., Liu, C.-W., Young, C.-P., Liang, S.-F., and Shaw, F.-Z., “Portable wireless neurofeedback system of eeg alpha rhythm enhances memory,” Biomedical engineering online 16(1), 1–18 (2017) Reiner, M., Rozengurt, R., and Barnea, A., “Better than sleep: theta neurofeedback training accelerates memory consolidation,” Biological psychology 95, 45–53 (2014). Rozengurt, R., Barnea, A., Uchida, S., and Levy, D. A., “Theta eeg neurofeedback benefits early consolidation of motor sequence learning,” Psychophysiology 53(7), 965–973 (2016) Rozengurt, R., Shtoots, L., Sheriff, A., Sadka, O., and Levy, D. A., “Enhancing early consolidation of human episodic memory by theta eeg neurofeedback,” Neurobiology of learning and memory 145, 165–171 (2017). Reis, J., Portugal, A. M., Fernandes, L., Afonso, N., Pereira, M., Sousa, N., and Dias, N. S., “An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training,” Frontiers in aging neuroscience 8, 157 (2016). Becerra, J., Fernandez, T., Roca-Stappung, M., Diaz-Comas, L., Galan, L., Bosch, J., Espino, M., Moreno, A. J., and Harmony, T., “Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder,” Journal of Alzheimer’s Disease 28(2), 357–367 (2012). L´opez, J. M. L., C´ardenas-Poveda, D. C., Trivi˜no, M. P. A., Gonz´alez-Alvarez, A., Rizo-Ar´evalo, A., Prado- ´ Rivera, M. A., Mej´ıa-Soto, E., Velazquez-Perez, J. L., and Espitia, C., “Induced eeg activity during the iaps tests and avemt in intimate partner violence against women,” in [14th International Symposium on Medical Information Processing and Analysis ], 10975, 1097507, International Society for Optics and Photonics (2018). J. Chrisler, S. F., “Violence against women as a public health issue,” Annals of the New York Academy of Sciences 1087, 235–249 (2006). Nieto, M., “Violencia contra la mujer es violencia contra la sociedad,” Revista de Derecho UNED 6, 555–561 (2010). Organization, W. H., “Violencia contra la mujer.” WHO, 29 Novermber 2017 http://www.who.int/es/ news-room/fact-sheets/detail/violence-against-women (2017). (Accessed: 12 June 2020). de Medicina Legal y Ciencias Forenses, I., “ Foresis. Datos para la vida.” Instituto de Medicina Legal y Ciencias Forenses, 2019 https://www.medicinalegal.gov.co/documents/20143/386932/Forensis+ 2018.pdf/be4816a4-3da3-1ff0-2779-e7b5e3962d60 (2019). (Accessed: 12 June 2020). Pico-Alfonso, M. A., “Psychological intimate partner violence: The major predictor of posttraumatic stress disorder in abused women,” Neuroscience & Biobehavioral Reviews 29(1), 181–193 (2005). Pico-Alfonso, M. A., Garcia-Linares, M. I., Celda-Navarro, N., Blasco-Ros, C., Echebur´ua, E., and Martinez, M., “The impact of physical, psychological, and sexual intimate male partner violence on women’s mental health: depressive symptoms, posttraumatic stress disorder, state anxiety, and suicide,” Journal of women’s health 15(5), 599–611 (2006). Campbell, J., Jones, A. S., Dienemann, J., Kub, J., Schollenberger, J., O’Campo, P., Gielen, A. C., and Wynne, C., “Intimate partner violence and physical health consequences,” Archives of internal medicine 162(10), 1157–1163 (2002). Hidalgo-Ruzzante, N., G´omez, P., Bueso-Izquierdo, N., Jim´enez, P., Mart´ın Del Moral, E., and P´erezGarc´ıa, M., “Secuelas cognitivas en mujeres v´ıctimas de violencia de g´enero,” in [Congreso para el estudio de la violencia contra las mujeres ], (2012). Subhani A. R., Kamel N., M. S. M. N. N. N. K. K. M. A. S., “Mitigation of stress: new treatment alternatives,” Cognitive neurodynamics. 12(1), 1–20 (2017). Selemon, L. D., Young, K. A., Cruz, D. A., and Williamson, D. E., “Frontal lobe circuitry in posttraumatic stress disorder,” Chronic Stress 3, 2470547019850166 (2019). Arnsten, A. F., “Stress signalling pathways that impair prefrontal cortex structure and function,” Nature reviews neuroscience 10(6), 410–422 (2009). Arnsten, A. F., Raskind, M. A., Taylor, F. B., and Connor, D. F., “The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiology of stress 1, 89–99 (2015). Hillary FG, D. J., [Functional Neuroimaging in Clinical Populations.], Guilford Press (2007). Kang, T., C. Y. K. D. F. S., “Eeg-based decoding of declarative memory formation.,” 2016 4th International Winter Conference on Brain-Computer Interfaces (BCI) 4 (2016). Erik K. St. Louis, L. C. F., [Electroencephalography. An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants.], American Epilepsy Society, 135 S. LaSalle St., Suite 2850, Chicago, IL 60603 (2016). A. Bluschke, F. Broschwitz, S. K. V. R. and Beste, C., “The neuronal mechanisms underlying improvement of impulsivity in adhd by theta/beta neurofeedback,” Sci. Rep 6(31178) (2016). et al., D. S., “Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity,” Transl. sychiatry 3(4) (2013). et al., A. K., “Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure,” Nat. Hum. Behav 1(1) (2017). Welch, P., “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Transactions on Audio and Electroacoustics. 15(2) (1967). M. Hengameh, H. R. Marateb, M. M., “Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications,” Basic and Clinical Neuroscience. 7(2) (2016). Pulido, S. D., Bocanegra, A. J., Cancino, S. L., and L´opez, J. M., “Serious game controlled by a human- ´ computer interface for upper limb motor rehabilitation: A feasibility study,” in [Iberian Conference on Pattern Recognition and Image Analysis ], 359–370, Springer (2019). Miranda E., C. J., [Guide to Brain-Computer Music Interfacing.], Springer-Verlag London (2014). Blood A.J., Z. R., “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” PNAS. 98(20) (2001). Nemoto I., Fujimaki T., W. L., “fmri measurement of brain activities to major and minor chords and cadence sequences,” IEEE AMBS. 32 (2010). Doskin, V., Lavrentyeva, L., Miroshnikov, M., and Sharay, V., “Test for differential self-assessment of functional state,” Psychology Questions 6, 141–146 (1973). MacDonald, R. A., “Music, health, and well-being: A review,” International journal of qualitative studies on health and well-being 8(1), 20635 (2013) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
The International Society For Optical Engineering |
dc.publisher.place.spa.fl_str_mv |
Lima (Perú) |
dc.source.spa.fl_str_mv |
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2576711/Music-based-neurofeedback-system-for-stress-regulation-and-memory-stimulation/10.1117/12.2576711.short |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3329/4/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3329/3/Portada%20Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.PNG https://repositorio.escuelaing.edu.co/bitstream/001/3329/5/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3329/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3329/1/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf |
bitstream.checksum.fl_str_mv |
ccc8fd2ef11dd46c4d6e744005ba66a4 893243ba63c303e99be7bd2bc3499dd4 1d60c9551df56f8cd07f3c02b5bb2207 5a7ca94c2e5326ee169f979d71d0f06e 973e1eb3288c4eef09ca06757794e36d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355611633057792 |
spelling |
Bocanegra Pérez, Álvaro J.3dfa7519afe34cae3d967eae744cd9deVelásquez Pérez, José L.604bc8abcdb1725df25012d43688c83eMartínez Díaz, Valentina0e207a07cf31fe0648224b3a85eec221Cárdenas Poveda, Carolinadd0ba786642fbeb3596cae17a41e4106Rizo Arévalo, Alejandraf64109d2f53cc4173841c737dbefb837López López, Juan M.b915d662905194dd50d3e3fce652c272GiBiome2024-10-17T17:19:40Z2024-10-17T17:19:40Z2020https://repositorio.escuelaing.edu.co/handle/001/3329Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Although musical neurofeedback is used in multiple works, few systems have been developed for stress regulation, and no systems have been developed for memory stimulation. For this reason, a music-based neurofeedback system for stress regulation and memory stimulation is proposed. This system was designed as a response to a previous research called “Neurophysiology of Emotions and Intimate Partner Violence (IPV) against Women”. The designed system uses 8 EEG channels to analyze alpha and theta brain-waves from 4 areas of the brain: prefrontal, frontal, temporal and central. By recording a 30 seconds baseline, the system is capable to detect changes in the EEG signal that can be used for the interaction. For feedback, three musical features are modified depending on the EEG analysis: tempo, loudness and loudness of the voice of the singer. For testing the system, two protocols were designed, these protocols focused on memory stimulation and stress regulation. They were designed specifically for each one of the three types of feedback. These protocols were applied on two women (43 and 52 years old), both had been part of the previous project. Results are promising, showing changes in the EEG signals of the participants when comparing the first session and the last one. Changes in performance of some specific tasks in the protocols, show an adequate usability of the system. Further studies will be carry on in order to evaluate long-term effects of the system with more activities.Aunque el neurofeedback musical se utiliza en múltiples trabajos, se han desarrollado pocos sistemas para la regulación del estrés, y no se han desarrollado sistemas para estimular la memoria. Por este motivo, un neurofeedback basado en música Se propone un sistema para la regulación del estrés y la estimulación de la memoria. Este sistema fue diseñado como respuesta a una investigación previa denominada “Neurofisiología de las emociones y violencia de pareja (IPV) contra las mujeres”. El sistema diseñado utiliza 8 canales EEG para analizar ondas cerebrales alfa y theta de 4 áreas del cerebro: prefrontal, frontal, temporal y central. Al registrar una línea base de 30 segundos, el sistema es capaz de detectar cambios en la señal EEG que se pueden utilizar para la interacción. Para retroalimentación, se modifican tres características musicales. Dependiendo del análisis EEG: tempo, sonoridad y sonoridad de la voz del cantante. Para probar el sistema se diseñaron dos protocolos, estos protocolos se centraron en la estimulación de la memoria y regulación del estrés. Fueron diseñados específicamente para cada uno de los tres tipos de retroalimentación. Estos protocolos Se aplicaron a dos mujeres (43 y 52 años), ambas habían sido parte del proyecto anterior. Los resultados son prometedores y muestran cambios en las señales EEG de los participantes al comparar la primera sesión y la última. Los cambios en el desempeño de algunas tareas específicas en los protocolos, muestran una adecuada usabilidad del sistema. Se llevarán a cabo más estudios para evaluar los efectos a largo plazo del sistema con más actividades.15 páginasapplication/pdfengThe International Society For Optical EngineeringLima (Perú)Proceedings Of Spie2020Lima (Perù)The 16th International Symposium on Medical Information Processing and AnalysisHammond, D. C., “Comprehensive neurofeedback bibliography: 2007 update,” Journal of Neurotherapy 11(3), 45–60 (2008).Fajardo, A. and Guzm´an, A. L., “Neurofeedback, aplicaciones y eficacia,” Interdisciplinaria 33(1), 81–93 (2016).Sterman, M. B. and Egner, T., “Foundation and practice of neurofeedback for the treatment of epilepsy,” Applied psychophysiology and biofeedback 31(1), 21 (2006).Myers, J. E. and Young, J. S., “Brain wave biofeedback: Benefits of integrating neurofeedback in counseling,” Journal of Counseling & Development 90(1), 20–28 (2012).Wilkinson, L., Koshy, P. J., Steel, A., Bageac, D., Schintu, S., and Wassermann, E. M., “Motor cortex inhibition by tms reduces cognitive non-motor procedural learning when immediate incentives are present,” Cortex 97, 70–80 (2017).Omejc, N., Rojc, B., Battaglini, P. P., and Marusic, U., “Review of the therapeutic neurofeedback method using electroencephalography: Eeg neurofeedback,” Bosnian journal of basic medical sciences 19(3), 213 (2019).Maes, P.-J., Buhmann, J., and Leman, M., “3mo: A model for music-based biofeedback,” Frontiers in neuroscience 10, 548 (2016).Ramirez, R., Palencia-Lefler, M., Giraldo, S., and Vamvakousis, Z., “Musical neurofeedback for treating depression in elderly people,” Frontiers in neuroscience 9, 354 (2015).Li, X., Ding, X., Cui, W., Song, X., and Shi, C., “Improving college students sub-threshold depression by music neurofeedback,” Sheng wu yi xue Gong Cheng xue za zhi= Journal of Biomedical Engineering= Shengwu Yixue Gongchengxue Zazhi 37(1), 54–60 (2020)Phneah, S. W. and Nisar, H., “Eeg-based alpha neurofeedback training for mood enhancement,” Australasian physical & engineering sciences in medicine 40(2), 325–336 (2017).Fedotchev, A., Oh, S., and Semikin, G., “Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders,” Modern technologies in medicine 6(3) (2014).Alexander, F., “Stress coping via musical neurofeedback.,” Advances in mind-body medicine 32(2), 17–20 (2018).Juster, R.-P., Bizik, G., Picard, M., Arsenault-Lapierre, G., Sindi, S., Trepanier, L., Marin, M.-F., Wan, N., Sekerovic, Z., Lord, C., et al., “A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development,” Development and psychopathology 23(3), 725–776 (2011).K. Pac´ak, M. P., “Stressor specificity of central neuroendocrine responses:implications for stressed-related disorders,” Endocrine Reviews 22, 502 – 548 (2001).Dillon, A., Kelly, M., Robertson, I. H., and Robertson, D. A., “Smartphone applications utilizing biofeedback can aid stress reduction,” Frontiers in psychology 7, 832 (2016).Chiba, T., Kanazawa, T., Koizumi, A., Ide, K., Taschereau-Dumouchel, V., Boku, S., Hishimoto, A., Shirakawa, M., Sora, I., Lau, H. C., et al., “Current status of neurofeedback for post-traumatic stress disorder: a systematic review and the possibility of decoded neurofeedback,” Frontiers in human neuroscience 13, 233 (2019).Panisch, L. S. and Hai, A. H., “The effectiveness of using neurofeedback in the treatment of post-traumatic stress disorder: a systematic review,” Trauma, Violence, & Abuse 21(3), 541–550 (2020).Peniston, E. G. and Kulkosky, P. J., “Alpha-theta brainwave neurofeedback for vietnam veterans with combat-related post-traumatic stress disorder,” Medical Psychotherapy 4(1), 47–60 (1991).Sokhadze, T. M., Stewart, C. M., and Hollifield, M., “Integrating cognitive neuroscience research and cognitive behavioral treatment with neurofeedback therapy in drug addiction comorbid with posttraumatic stress disorder: A conceptual review,” Journal of Neurotherapy 11(2), 13–44 (2007).Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Th´eberge, J., Kluetsch, R. C., Jetly, R., and Lanius, R. A., “Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder,” NeuroImage: Clinical 12, 506–516 (2016).Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., Schmahl, C., Th´eberge, J., Neufeld, R. W., McKinnon, M. C., et al., “The neurobiology of emotion regulation in posttraumatic stress disorder: amygdala downregulation via real-time fmri neurofeedback,” Human Brain Mapping 38(1), 541–560 (2017).Dupee, M. and Werthner, P., “Managing the stress response: The use of biofeedback and neurofeedback with olympic athletes,” Biofeedback 39(3), 92–94 (2011).Weon, H. W., Yi, S. G., and Kang, H. G., “Effects of a neurofeedback program on brain function and stress in high school students.,” Journal of Korean Academy of Child Health Nursing 14(3), 315–324 (2008).Bak, K.-J., “A study on the effects of neurofeedback training on the resistance stress of kids,” Journal of the Korea Academia-Industrial Cooperation Society 11(3), 1066–1070 (2010).Kum, M.-H., Kang, Y.-M., Kim, H.-K., Jung, H.-S., and Han, M.-Y., “Study on brain function enhancement and the effects of stress reduction through neuro-feedback training on nursing students of busan,” The Korean Journal of Health Service Management 6(2), 111–119 (2012)Hemmati Sabet, A. et al., “A comparative study of neurofeedback and mindfulness-based stress reduction on social anxiety,” Shenakht journal of psychology & psychiatry 4(1), 51–65 (2017).Keynan, J. N., Cohen, A., Jackont, G., Green, N., Goldway, N., Davidov, A., Meir-Hasson, Y., Raz, G., Intrator, N., Fruchter, E., et al., “Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience,” Nature human behaviour 3(1), 63–73 (2019).W. Sumrall, R. Sumrall, D. D., “A review of memory theory,” International Journal of humanities and Social Science 6(5), 23–30 (2016).Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A., McNamara, J., and Williams, S., “Neurociencias panamericana,” (2008).Hsueh, J.-J., Chen, T.-S., Chen, J.-J., and Shaw, F.-Z., “Neurofeedback training of eeg alpha rhythm enhances episodic and working memory,” Human brain mapping 37(7), 2662–2675 (2016).Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., Gordon, S., Meiran, N., and Todder, D., “Influence of electroencephalography neurofeedback training on episodic memory: A randomized, shamcontrolled, double-blind study,” Memory 23(5), 683–694 (2015).YuLeung To, E., Abbott, K., Foster, D. S., and Helmer, D., “Working memory and neurofeedback,” Applied Neuropsychology: Child 5(3), 214–222 (2016).Wei, T.-Y., Chang, D.-W., Liu, Y.-D., Liu, C.-W., Young, C.-P., Liang, S.-F., and Shaw, F.-Z., “Portable wireless neurofeedback system of eeg alpha rhythm enhances memory,” Biomedical engineering online 16(1), 1–18 (2017)Reiner, M., Rozengurt, R., and Barnea, A., “Better than sleep: theta neurofeedback training accelerates memory consolidation,” Biological psychology 95, 45–53 (2014).Rozengurt, R., Barnea, A., Uchida, S., and Levy, D. A., “Theta eeg neurofeedback benefits early consolidation of motor sequence learning,” Psychophysiology 53(7), 965–973 (2016)Rozengurt, R., Shtoots, L., Sheriff, A., Sadka, O., and Levy, D. A., “Enhancing early consolidation of human episodic memory by theta eeg neurofeedback,” Neurobiology of learning and memory 145, 165–171 (2017).Reis, J., Portugal, A. M., Fernandes, L., Afonso, N., Pereira, M., Sousa, N., and Dias, N. S., “An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training,” Frontiers in aging neuroscience 8, 157 (2016).Becerra, J., Fernandez, T., Roca-Stappung, M., Diaz-Comas, L., Galan, L., Bosch, J., Espino, M., Moreno, A. J., and Harmony, T., “Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder,” Journal of Alzheimer’s Disease 28(2), 357–367 (2012).L´opez, J. M. L., C´ardenas-Poveda, D. C., Trivi˜no, M. P. A., Gonz´alez-Alvarez, A., Rizo-Ar´evalo, A., Prado- ´ Rivera, M. A., Mej´ıa-Soto, E., Velazquez-Perez, J. L., and Espitia, C., “Induced eeg activity during the iaps tests and avemt in intimate partner violence against women,” in [14th International Symposium on Medical Information Processing and Analysis ], 10975, 1097507, International Society for Optics and Photonics (2018).J. Chrisler, S. F., “Violence against women as a public health issue,” Annals of the New York Academy of Sciences 1087, 235–249 (2006).Nieto, M., “Violencia contra la mujer es violencia contra la sociedad,” Revista de Derecho UNED 6, 555–561 (2010).Organization, W. H., “Violencia contra la mujer.” WHO, 29 Novermber 2017 http://www.who.int/es/ news-room/fact-sheets/detail/violence-against-women (2017). (Accessed: 12 June 2020).de Medicina Legal y Ciencias Forenses, I., “ Foresis. Datos para la vida.” Instituto de Medicina Legal y Ciencias Forenses, 2019 https://www.medicinalegal.gov.co/documents/20143/386932/Forensis+ 2018.pdf/be4816a4-3da3-1ff0-2779-e7b5e3962d60 (2019). (Accessed: 12 June 2020).Pico-Alfonso, M. A., “Psychological intimate partner violence: The major predictor of posttraumatic stress disorder in abused women,” Neuroscience & Biobehavioral Reviews 29(1), 181–193 (2005).Pico-Alfonso, M. A., Garcia-Linares, M. I., Celda-Navarro, N., Blasco-Ros, C., Echebur´ua, E., and Martinez, M., “The impact of physical, psychological, and sexual intimate male partner violence on women’s mental health: depressive symptoms, posttraumatic stress disorder, state anxiety, and suicide,” Journal of women’s health 15(5), 599–611 (2006).Campbell, J., Jones, A. S., Dienemann, J., Kub, J., Schollenberger, J., O’Campo, P., Gielen, A. C., and Wynne, C., “Intimate partner violence and physical health consequences,” Archives of internal medicine 162(10), 1157–1163 (2002).Hidalgo-Ruzzante, N., G´omez, P., Bueso-Izquierdo, N., Jim´enez, P., Mart´ın Del Moral, E., and P´erezGarc´ıa, M., “Secuelas cognitivas en mujeres v´ıctimas de violencia de g´enero,” in [Congreso para el estudio de la violencia contra las mujeres ], (2012).Subhani A. R., Kamel N., M. S. M. N. N. N. K. K. M. A. S., “Mitigation of stress: new treatment alternatives,” Cognitive neurodynamics. 12(1), 1–20 (2017).Selemon, L. D., Young, K. A., Cruz, D. A., and Williamson, D. E., “Frontal lobe circuitry in posttraumatic stress disorder,” Chronic Stress 3, 2470547019850166 (2019).Arnsten, A. F., “Stress signalling pathways that impair prefrontal cortex structure and function,” Nature reviews neuroscience 10(6), 410–422 (2009).Arnsten, A. F., Raskind, M. A., Taylor, F. B., and Connor, D. F., “The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiology of stress 1, 89–99 (2015).Hillary FG, D. J., [Functional Neuroimaging in Clinical Populations.], Guilford Press (2007).Kang, T., C. Y. K. D. F. S., “Eeg-based decoding of declarative memory formation.,” 2016 4th International Winter Conference on Brain-Computer Interfaces (BCI) 4 (2016).Erik K. St. Louis, L. C. F., [Electroencephalography. An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants.], American Epilepsy Society, 135 S. LaSalle St., Suite 2850, Chicago, IL 60603 (2016).A. Bluschke, F. Broschwitz, S. K. V. R. and Beste, C., “The neuronal mechanisms underlying improvement of impulsivity in adhd by theta/beta neurofeedback,” Sci. Rep 6(31178) (2016).et al., D. S., “Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity,” Transl. sychiatry 3(4) (2013).et al., A. K., “Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure,” Nat. Hum. Behav 1(1) (2017).Welch, P., “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Transactions on Audio and Electroacoustics. 15(2) (1967).M. Hengameh, H. R. Marateb, M. M., “Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications,” Basic and Clinical Neuroscience. 7(2) (2016).Pulido, S. D., Bocanegra, A. J., Cancino, S. L., and L´opez, J. M., “Serious game controlled by a human- ´ computer interface for upper limb motor rehabilitation: A feasibility study,” in [Iberian Conference on Pattern Recognition and Image Analysis ], 359–370, Springer (2019).Miranda E., C. J., [Guide to Brain-Computer Music Interfacing.], Springer-Verlag London (2014).Blood A.J., Z. R., “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” PNAS. 98(20) (2001).Nemoto I., Fujimaki T., W. L., “fmri measurement of brain activities to major and minor chords and cadence sequences,” IEEE AMBS. 32 (2010).Doskin, V., Lavrentyeva, L., Miroshnikov, M., and Sharay, V., “Test for differential self-assessment of functional state,” Psychology Questions 6, 141–146 (1973).MacDonald, R. A., “Music, health, and well-being: A review,” International journal of qualitative studies on health and well-being 8(1), 20635 (2013)https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2576711/Music-based-neurofeedback-system-for-stress-regulation-and-memory-stimulation/10.1117/12.2576711.shortMusic-based neurofeedback system for stress regulation and memory stimulationDocumento de Conferenciainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbMemoria - Aspectos fisiológicosMemory - Physiological aspectsEstrés (Fisiología)Stress (Physiology)Aparatos fisiológicosPhysiological apparatusElectroencefalografíaMemoriaMúsicaEstrésElectroencephalographyMemoryMusicNeurofeedbackStressTEXTMusic-based neurofeedback system for stress regulation and memory stimulation.pdf.txtMusic-based neurofeedback system for stress regulation and memory stimulation.pdf.txtExtracted texttext/plain52439https://repositorio.escuelaing.edu.co/bitstream/001/3329/4/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf.txtccc8fd2ef11dd46c4d6e744005ba66a4MD54metadata only accessTHUMBNAILPortada Music-based neurofeedback system for stress regulation and memory stimulation.PNGPortada Music-based neurofeedback system for stress regulation and memory stimulation.PNGimage/png101229https://repositorio.escuelaing.edu.co/bitstream/001/3329/3/Portada%20Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.PNG893243ba63c303e99be7bd2bc3499dd4MD53open accessMusic-based neurofeedback system for stress regulation and memory stimulation.pdf.jpgMusic-based neurofeedback system for stress regulation and memory stimulation.pdf.jpgGenerated Thumbnailimage/jpeg12589https://repositorio.escuelaing.edu.co/bitstream/001/3329/5/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf.jpg1d60c9551df56f8cd07f3c02b5bb2207MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3329/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALMusic-based neurofeedback system for stress regulation and memory stimulation.pdfMusic-based neurofeedback system for stress regulation and memory stimulation.pdfapplication/pdf794305https://repositorio.escuelaing.edu.co/bitstream/001/3329/1/Music-based%20neurofeedback%20system%20for%20stress%20regulation%20and%20memory%20stimulation.pdf973e1eb3288c4eef09ca06757794e36dMD51metadata only access001/3329oai:repositorio.escuelaing.edu.co:001/33292024-10-18 03:02:07.58metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |