The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups
We demonstrate a method for finding the decoherence-free subalgebra N(T) of a Gaussian quantum Markov semigroup on the von Neumann algebra B(Γ(Cd)) of all bounded operator on the Fock space Γ(Cd) on Cd . We show that N(T) is a type I von Neumann algebra L∞(Rdc;C)⊗¯¯¯¯B(Γ(Cdf)) determined, up to unit...
- Autores:
-
Agredo, Julián
Fagnola, Franco
Poletti, Damiano
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2334
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2334
https://link.springer.com/article/10.1007/s00032-022-00355-0
- Palabra clave:
- Matemáticas
Subálgebra
Álgebra de Von
Matemáticas
Subálgebra
Álgebra de Von
Math
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_c0ad2867028a4a1fa81536b6cbcb88f2 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2334 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
title |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
spellingShingle |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups Matemáticas Subálgebra Álgebra de Von Matemáticas Subálgebra Álgebra de Von Math |
title_short |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
title_full |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
title_fullStr |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
title_full_unstemmed |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
title_sort |
The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups |
dc.creator.fl_str_mv |
Agredo, Julián Fagnola, Franco Poletti, Damiano |
dc.contributor.author.none.fl_str_mv |
Agredo, Julián Fagnola, Franco Poletti, Damiano |
dc.contributor.researchgroup.spa.fl_str_mv |
GIMATH: Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería |
dc.subject.armarc.none.fl_str_mv |
Matemáticas Subálgebra Álgebra de Von |
topic |
Matemáticas Subálgebra Álgebra de Von Matemáticas Subálgebra Álgebra de Von Math |
dc.subject.proposal.spa.fl_str_mv |
Matemáticas Subálgebra Álgebra de Von |
dc.subject.proposal.eng.fl_str_mv |
Math |
description |
We demonstrate a method for finding the decoherence-free subalgebra N(T) of a Gaussian quantum Markov semigroup on the von Neumann algebra B(Γ(Cd)) of all bounded operator on the Fock space Γ(Cd) on Cd . We show that N(T) is a type I von Neumann algebra L∞(Rdc;C)⊗¯¯¯¯B(Γ(Cdf)) determined, up to unitary equivalence, by two natural numbers dc,df≤d . This result is illustrated by some applications and examples. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-06-03 |
dc.date.accessioned.none.fl_str_mv |
2023-05-16T14:37:49Z |
dc.date.available.none.fl_str_mv |
2023-05-16T14:37:49Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1424-9294 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2334 |
dc.identifier.url.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00032-022-00355-0 |
identifier_str_mv |
1424-9294 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2334 https://link.springer.com/article/10.1007/s00032-022-00355-0 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
33 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
vol:90 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Milan Journal Of Mathematics |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
33 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2334/4/The%20Decoherence-Free%20Subalgebra%20of.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2334/3/The%20Decoherence-Free%20Subalgebra%20of.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2334/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2334/1/The%20Decoherence-Free%20Subalgebra%20of.pdf |
bitstream.checksum.fl_str_mv |
0cc8b44d4e4c43cc42dfa80142baaf7b d1640e39b73b9f9e2bdb4232bdf562b4 5a7ca94c2e5326ee169f979d71d0f06e 2a7da3eb144ea1d9fd05affb3acf8ce8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355580982132736 |
spelling |
Agredo, Juliáneb075c3df2f17618f2993b7a55824937600Fagnola, Franco809e47e992c78b8bc708d0a6caf37bc4600Poletti, Damiano156f0b32ae95b2641357022132ae3faf600GIMATH: Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería2023-05-16T14:37:49Z2023-05-16T14:37:49Z2022-06-031424-9294https://repositorio.escuelaing.edu.co/handle/001/2334https://link.springer.com/article/10.1007/s00032-022-00355-0We demonstrate a method for finding the decoherence-free subalgebra N(T) of a Gaussian quantum Markov semigroup on the von Neumann algebra B(Γ(Cd)) of all bounded operator on the Fock space Γ(Cd) on Cd . We show that N(T) is a type I von Neumann algebra L∞(Rdc;C)⊗¯¯¯¯B(Γ(Cdf)) determined, up to unitary equivalence, by two natural numbers dc,df≤d . This result is illustrated by some applications and examples.Demostramos un método para encontrar la subálgebra libre de decoherencia N(T) de un semigrupo cuántico gaussiano de Markov en el álgebra de von Neumann B(Γ(Cd)) de todo operador acotado en el espacio de Fock Γ(Cd) en CD . Mostramos que N(T) es un álgebra de von Neumann tipo I L∞(Rdc;C)⊗¯¯¯¯B(Γ(Cdf)) determinado, hasta la equivalencia unitaria, por dos números naturales dc,df≤d . Este resultado se ilustra con algunas aplicaciones y ejemplos.33 páginasapplication/pdfengThe Decoherence-Free Subalgebra of Gaussian Quantum Markov SemigroupsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85331vol:90N/AMilan Journal Of Mathematicsinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MatemáticasSubálgebraÁlgebra de VonMatemáticasSubálgebraÁlgebra de VonMathTHUMBNAILThe Decoherence-Free Subalgebra of.pdf.jpgThe Decoherence-Free Subalgebra of.pdf.jpgGenerated Thumbnailimage/jpeg12289https://repositorio.escuelaing.edu.co/bitstream/001/2334/4/The%20Decoherence-Free%20Subalgebra%20of.pdf.jpg0cc8b44d4e4c43cc42dfa80142baaf7bMD54open accessTEXTThe Decoherence-Free Subalgebra of.pdf.txtThe Decoherence-Free Subalgebra of.pdf.txtExtracted texttext/plain72787https://repositorio.escuelaing.edu.co/bitstream/001/2334/3/The%20Decoherence-Free%20Subalgebra%20of.pdf.txtd1640e39b73b9f9e2bdb4232bdf562b4MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2334/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALThe Decoherence-Free Subalgebra of.pdfThe Decoherence-Free Subalgebra of.pdfapplication/pdf567681https://repositorio.escuelaing.edu.co/bitstream/001/2334/1/The%20Decoherence-Free%20Subalgebra%20of.pdf2a7da3eb144ea1d9fd05affb3acf8ce8MD51open access001/2334oai:repositorio.escuelaing.edu.co:001/23342023-05-17 03:00:14.107open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |