Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero

Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otra...

Full description

Autores:
Lancheros Vega, María Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
spa
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1535
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1535
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22638
Palabra clave:
Puntos de carbono- Células
Ingeniería Biomédica
Lineas celulares
Citotoxicidad
Puntos de carbono
Cellular lines
Cytotoxicity
Carbon dots
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_bec3e4bb659637934171c93bd18d844d
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1535
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
title Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
spellingShingle Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
Puntos de carbono- Células
Ingeniería Biomédica
Lineas celulares
Citotoxicidad
Puntos de carbono
Cellular lines
Cytotoxicity
Carbon dots
title_short Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
title_full Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
title_fullStr Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
title_full_unstemmed Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
title_sort Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
dc.creator.fl_str_mv Lancheros Vega, María Camila
dc.contributor.advisor.none.fl_str_mv Rodríguez Burbano, Diana Consuelo
Ondo Méndez, Alejandro Oyono
dc.contributor.author.none.fl_str_mv Lancheros Vega, María Camila
dc.subject.armarc.none.fl_str_mv Puntos de carbono- Células
Ingeniería Biomédica
topic Puntos de carbono- Células
Ingeniería Biomédica
Lineas celulares
Citotoxicidad
Puntos de carbono
Cellular lines
Cytotoxicity
Carbon dots
dc.subject.proposal.spa.fl_str_mv Lineas celulares
Citotoxicidad
Puntos de carbono
dc.subject.proposal.eng.fl_str_mv Cellular lines
Cytotoxicity
Carbon dots
description Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otras aplicaciones como la liberación controlada de fármacos y los biosensores. Dado su alto valor en técnicas de diagnóstico y tratamiento del cáncer, cuando se habla de la toxicidad intrínseca de este material, la literatura se ha preocupado mayormente por determinar su citotoxicidad en células cancerosas. Sin embargo, teniendo en cuenta que los PC podrían acumularse también en órganos sanos o en tejido sano que rodea el tumor, resulta de capital importancia determinar su toxicidad en células sanas. En consecuencia, como objetivo de este proyecto se planteó sintetizar PC y determinar citotoxicidad en las líneas celulares derivadas de tejido sano 3T3-L1 (preadipocitos) y Vero (riñón). Para ello se sintetizaron puntos de carbono a partir de ácido cítrico como precursor y etanol y N, N-Dimetilformamida. La citotoxicidad se determinó con los ensayos de Azul Tripán y MTT. Se establecieron dos controles uno positivo (tóxico) y uno negativo (no tóxico). Las pruebas estadísticas indicaron que los PC no mostraron citotoxicidad detectable en las células tumores a concentraciones entre 50 y 500 μg/mL. Con la realización de este trabajo se establecieron las bases de la citotoxicidad de una nanoplataforma de PC en su primera etapa de desarrollo, cuyo fin último será la aplicación de radioterapia.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T20:13:22Z
2021-10-01T14:29:56Z
dc.date.available.none.fl_str_mv 2021-05-31
2021-10-01T14:29:56Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1535
dc.identifier.url.none.fl_str_mv https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22638
url https://repositorio.escuelaing.edu.co/handle/001/1535
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22638
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.references.spa.fl_str_mv J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.
G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.
V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.
V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634
C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.
J. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ï
X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.
Y. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.
M. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.
T. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.
S. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.
L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.
L. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.
V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.
X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.
F. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.
M. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.
J. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860
F. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.
C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.
Y.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.
“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).
“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).
J. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.
F. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.
B. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.
A. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.
Ö. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923
J. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.
T. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.
P. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.
S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.
Y. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678k
M. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.
J.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.
A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.
N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.
S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.
C. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.
S. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112
Ashmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.
N. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11
R. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.
“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.
J. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.
L. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.
C. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 32 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1535/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1535/2/Autorizacion.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1535/3/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1535/4/Autorizacion.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1535/6/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1535/5/Autorizacion.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1535/7/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
c06e09b6152e9862659b9e2111237ba6
bef132a4f048a5944a14af04a73cdbb1
f313facfbae31b430a724a0d88e59610
bce0aca447a2efd4930bf215653c8608
f5eaaa784fb603bb09411534e593f3e0
615668ab126cd7f4d62b659aab842e61
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355622499450880
spelling Rodríguez Burbano, Diana Consuelocb61f73e8b008cae082ca7db0b1cc60d300Ondo Méndez, Alejandro Oyonoff4d79b010dec1da57890f36e7c49b31300Lancheros Vega, María Camila83dafe66960f825f516c199df223be486002021-05-31T20:13:22Z2021-10-01T14:29:56Z2021-05-312021-10-01T14:29:56Z2021https://repositorio.escuelaing.edu.co/handle/001/1535https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22638Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otras aplicaciones como la liberación controlada de fármacos y los biosensores. Dado su alto valor en técnicas de diagnóstico y tratamiento del cáncer, cuando se habla de la toxicidad intrínseca de este material, la literatura se ha preocupado mayormente por determinar su citotoxicidad en células cancerosas. Sin embargo, teniendo en cuenta que los PC podrían acumularse también en órganos sanos o en tejido sano que rodea el tumor, resulta de capital importancia determinar su toxicidad en células sanas. En consecuencia, como objetivo de este proyecto se planteó sintetizar PC y determinar citotoxicidad en las líneas celulares derivadas de tejido sano 3T3-L1 (preadipocitos) y Vero (riñón). Para ello se sintetizaron puntos de carbono a partir de ácido cítrico como precursor y etanol y N, N-Dimetilformamida. La citotoxicidad se determinó con los ensayos de Azul Tripán y MTT. Se establecieron dos controles uno positivo (tóxico) y uno negativo (no tóxico). Las pruebas estadísticas indicaron que los PC no mostraron citotoxicidad detectable en las células tumores a concentraciones entre 50 y 500 μg/mL. Con la realización de este trabajo se establecieron las bases de la citotoxicidad de una nanoplataforma de PC en su primera etapa de desarrollo, cuyo fin último será la aplicación de radioterapia.Carbon Dots (CDs) are carbon based nanoparticles with average diameters of 10 nm. They are distinguished for their fluorescent properties, which has allowed their application in the development of techniques for bioimage and radiotherapy. Nevertheless they have other applications such as controlled drug release and biosensors. Given their importance in techniques for treatment and diagnostic, when it comes to their intrinsic toxicity literature has worried more about determining cytotoxicity on cancer cell lines. Taking into account that CDs may accumulate in healthy organs or tissue that surrounds tumors, it is of great importance to determine their cytotoxicity on healthy cell lines. As a consequence, the objective of this project was to determine the cytotoxicity of CDs on the two cell lineages derived from healthy tissue 3T3-L1 (preadipocytes) and Vero (Kidney). For this purpose, carbon dots were synthesized using citric acid as precursor and ethanol and N, N-Dimethylformamide as solvents, cytotoxicity was measured using the Trypan Blue and MTT assays, two controls were stablished a positive control (toxic) and a negative control (non-toxic). The statistical analysis did not show detectable cytotoxicity at concentrations of CDs in the range from 50 to 500 μg/mL. With this thesis work the bases of the cytotoxicity of a nanoplatform of carbon dots in the first stage of development were established, whose final purpose is to create a theranostic platform for radiotherapy.1. INTRODUCCIÓN ........................................................................................................ 4 1.1. Principales aplicaciones biomédicas de los puntos de carbono ........................... 6 1.1.1. Puntos de carbono para bioimagen .............................................................. 7 1.1.2. Puntos de carbono para liberación de fármacos ........................................... 8 1.1.3. Puntos de carbono para radioterapia ............................................................ 9 1.2. Ensayos de citotoxicidad ................................................................................... 10 1.2.1. Ensayos de exclusión de colorante ................................................................. 10 1.2.2. Ensayos colorimétricos ................................................................................... 10 1.2.3. Ensayos fluorométricos ................................................................................... 11 1.2.4. Ensayos luminométricos de ATP .................................................................... 11 1.3. Citotoxicidad de los puntos de carbono ............................................................. 11 2. OBJETIVOS ............................................................................................................. 16 2.1. General .............................................................................................................. 16 2.2. Específicos ........................................................................................................ 16 3. METODOLOGÍA EXPERIMENTAL ........................................................................... 17 3.1. Síntesis de puntos de carbono........................................................................... 17 3.2. Evaluación de la citotoxicidad de los puntos de carbono ................................... 18 3.2.1. Líneas celulares ......................................................................................... 18 3.2.2. Exposición de líneas celulares a puntos de carbono................................... 18 3.2.3. Ensayo de citotoxicidad por Azul Tripán ..................................................... 19 3.2.4. Ensayo de citotoxicidad por MTT ................................................................ 19 3.3. Análisis estadístico ............................................................................................ 20 4. RESULTADOS ......................................................................................................... 21 4.1. Síntesis de puntos de carbono ....................................................................... 21 4.2. Ensayo de citotoxicidad por Azul Tripán ......................................................... 21 4.3. Ensayo de citotoxicidad por MTT ................................................................... 24 5. DISCUSIÓN .............................................................................................................. 26 6. RECOMENDACIONES Y TRABAJOS FUTUROS .................................................... 28 7. CONCLUSIONES ..................................................................................................... 29PregradoIngeniero(a) Biomédico(a)Radioterapia y nanomateriales32 páginasapplication/pdfspaEvaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y veroTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería BiomédicaN/AJ. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.J. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ïX. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.Y. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.M. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.T. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.S. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.L. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.F. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.M. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.J. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860F. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.Y.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).J. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.F. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.B. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.A. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.Ö. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923J. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.T. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.P. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.Y. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678kM. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.J.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.C. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.S. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112Ashmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.N. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11R. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.J. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.L. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.C. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Puntos de carbono- CélulasIngeniería BiomédicaLineas celularesCitotoxicidadPuntos de carbonoCellular linesCytotoxicityCarbon dotsLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1535/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALAutorizacion.pdfapplication/pdf926718https://repositorio.escuelaing.edu.co/bitstream/001/1535/2/Autorizacion.pdfc06e09b6152e9862659b9e2111237ba6MD52metadata only accessLancheros Vega, María Camila-2021.pdfapplication/pdf868473https://repositorio.escuelaing.edu.co/bitstream/001/1535/3/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdfbef132a4f048a5944a14af04a73cdbb1MD53open accessTEXTAutorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain3411https://repositorio.escuelaing.edu.co/bitstream/001/1535/4/Autorizacion.pdf.txtf313facfbae31b430a724a0d88e59610MD54metadata only accessLancheros Vega, María Camila-2021.pdf.txtLancheros Vega, María Camila-2021.pdf.txtExtracted texttext/plain72273https://repositorio.escuelaing.edu.co/bitstream/001/1535/6/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdf.txtbce0aca447a2efd4930bf215653c8608MD56open accessTHUMBNAILAutorizacion.pdf.jpgAutorizacion.pdf.jpgGenerated Thumbnailimage/jpeg13290https://repositorio.escuelaing.edu.co/bitstream/001/1535/5/Autorizacion.pdf.jpgf5eaaa784fb603bb09411534e593f3e0MD55metadata only accessLancheros Vega, María Camila-2021.pdf.jpgLancheros Vega, María Camila-2021.pdf.jpgGenerated Thumbnailimage/jpeg7146https://repositorio.escuelaing.edu.co/bitstream/001/1535/7/Lancheros%20Vega%2c%20Mar%c3%ada%20Camila-2021.pdf.jpg615668ab126cd7f4d62b659aab842e61MD57open access001/1535oai:repositorio.escuelaing.edu.co:001/15352022-04-28 13:37:50.804open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK