Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions

A series of experiments were made in order to compare the removal efficiency of a mixture of four PAHs (naphthalene, phenanthrene, pyrene, and benzo[a]pyrene), under different electron acceptor (NO3 −, SO4 −2) and hydrodynamic conditions (stagnation and high shear). In all cases naphthalene showed t...

Full description

Autores:
Uribe-Jongbloed, Alberto
Bishop, Paul L.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2007
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2228
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2228
Palabra clave:
Biodegradación
Hidrocarburos aromáticos policíclicos
Biodegradation
Polycyclic aromatic hydrocarbons
Anaerobic systems
Biodegradation
Denitrification
Hydrodynamic conditions
PAH
Sulfate reduction
Systèmes anaérobies
Biodégradation
Dénitrification
Conditions hydrodynamiques
HAP
Sulfatoréduction
Rights
closedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id ESCUELAIG2_bd6ef6adfabfb39d91454f5283827d2b
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2228
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
title Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
spellingShingle Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
Biodegradación
Hidrocarburos aromáticos policíclicos
Biodegradation
Polycyclic aromatic hydrocarbons
Anaerobic systems
Biodegradation
Denitrification
Hydrodynamic conditions
PAH
Sulfate reduction
Systèmes anaérobies
Biodégradation
Dénitrification
Conditions hydrodynamiques
HAP
Sulfatoréduction
title_short Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
title_full Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
title_fullStr Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
title_full_unstemmed Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
title_sort Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions
dc.creator.fl_str_mv Uribe-Jongbloed, Alberto
Bishop, Paul L.
dc.contributor.author.none.fl_str_mv Uribe-Jongbloed, Alberto
Bishop, Paul L.
dc.contributor.researchgroup.spa.fl_str_mv Centro de Estudios Ambientales
dc.subject.armarc.spa.fl_str_mv Biodegradación
Hidrocarburos aromáticos policíclicos
topic Biodegradación
Hidrocarburos aromáticos policíclicos
Biodegradation
Polycyclic aromatic hydrocarbons
Anaerobic systems
Biodegradation
Denitrification
Hydrodynamic conditions
PAH
Sulfate reduction
Systèmes anaérobies
Biodégradation
Dénitrification
Conditions hydrodynamiques
HAP
Sulfatoréduction
dc.subject.armarc.eng.fl_str_mv Biodegradation
Polycyclic aromatic hydrocarbons
dc.subject.proposal.eng.fl_str_mv Anaerobic systems
Biodegradation
Denitrification
Hydrodynamic conditions
PAH
Sulfate reduction
dc.subject.proposal.fra.fl_str_mv Systèmes anaérobies
Biodégradation
Dénitrification
Conditions hydrodynamiques
HAP
Sulfatoréduction
description A series of experiments were made in order to compare the removal efficiency of a mixture of four PAHs (naphthalene, phenanthrene, pyrene, and benzo[a]pyrene), under different electron acceptor (NO3 −, SO4 −2) and hydrodynamic conditions (stagnation and high shear). In all cases naphthalene showed the highest removal efficiency (from 69% up to 100%) as compared with the other PAHs. The fastest rate was obtained for the denitrifying-high shear condition followed by denitrification-no shear, sulfate-reduction-high shear and the lowest for sulfate reduction-no shear. However, most of the perceived removal of the heavier PAHs could be due to aging. No lag time was observed for the denitrifying experiments, and the denitrification rate was the same regardless of the hydrodynamic condition. A lag time of 64 d was observed under conditions of sulfate reduction and high shear. Sulfate reduction did not commence under no shear conditions. No toxic effect was observed for the four PAH mixture under all the conditions tested.
publishDate 2007
dc.date.issued.none.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2023-03-28T21:22:52Z
dc.date.available.none.fl_str_mv 2023-03-28T21:22:52Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1496-2551
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2228
dc.identifier.doi.none.fl_str_mv 10.1139/s06-057
dc.identifier.eissn.spa.fl_str_mv 1496-256X
identifier_str_mv 1496-2551
10.1139/s06-057
1496-256X
url https://repositorio.escuelaing.edu.co/handle/001/2228
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 376
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationstartpage.spa.fl_str_mv 367
dc.relation.citationvolume.spa.fl_str_mv 6
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Environmental Engineering and Science
dc.relation.references.spa.fl_str_mv AWWA, APHA, and WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington D.C.
Bedessem, M.E., Swoboda-Colberg, N.G., and Colberg, P.J.S. 1997. Naphthalene mineralization coupled to sulfate reduction in aquiferderived enrichments. FEMS Microbiol. Lett. 152: 213–218.
Bishop, P.L. 2000. Pollution prevention: fundamentals and practice. McGraw-Hill, New York, N.Y.
Bispo,A., Jourdain, M.J., and Jauzein, M. 1999. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org. Geochem. 30: 947–952.
Chang, C.C., Tseng, S.K., and Huang, H.K. 1999. Hydrogenotrophic denitrification with immobilizedAlcaligenes eutrophus for drinking water treatment. Bioresour. Technol. 69(1): 53–58.
Chang, B.V., Chang, J.S., andYuan, S.Y. 2001. Degradation of phenanthrene in river sediment under nitrate-reducing conditions. Bull. Environ. Contam. Toxicol. 67: 898–905.
Coates, J.D., Anderson, R.T., and Lovley, D.R. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62(3): 1099–1101.
Coates, J.D., Woodward, J., Allen, J., Philp, P., and Lovley, D.R. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63(9): 3589–3593.
Eriksson, M., Sodersten, E., Yu, Z., Dalhammar, G., and Mohn, W.W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69(1): 275–284.
Flere, J.M., and Zhang, T.C. 1999. Nitrate removal with sulfurlimestone autotrophic denitrification processes. J. Environ. Eng. 125(8): 721–729.
Galushko, A., Minz, D., Schink, B., and Widdel, F. 1999. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1(5): 415–420.
Grosser, R.J., Friederich, M., Ward, D.M., and Inskeep, W.P. 2000. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl. Environ. Microbiol. 66(7): 2695–2702.
Hatzinger, P.B., and Alexander, M. 1995. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29(2): 537–545.
Hayes, L.A., Nevin, K.P., and Lovley, D.R. 1999. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org. Geochem. 30: 937–945.
Johnson, K., and Ghosh, S. 1998. Feasibility of anaerobic biodegradation of PAHs in dredged river sediments. Water Sci. Technol. 38(7): 41–48.
Kilbane, J.J., II. 1998. Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut. 104: 285–304.
Koenig, A., and Liu, L.H. 2001. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors.Water Res. 35(8) 1969–1978.
LaGrega, M.D. 2001. Hazardous waste management. McGraw-Hill, Boston, Mass.
Lampe, D.G., and Zhang, T.C. 1996. Evaluation of sulfur-based autotrophic denitrification. HSRC/WERC Joint Conference on the Environment, Albuquerque, N.M., 21–23 May 1996.
Lei, L., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H. 2005. Biodegradation of sediment-bound PAHs in field contaminated sediment. Water Res. 39(2–3): 349–361.
MacRae, J.D., and Hall, K.J. 1998. Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci. Technol. 38(11): 177–185.
McNally, D.L., Mihelcic, J.R., and Lueking, D.R. 1999. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38(6): 1313–1321.
Meckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H., and Schink, B. 2000. Anaerobic naphthalene degradation by sulfatereducing enrichment culture. Appl. Environ. Microbiol. 66(7): 2743–2747.
Mihelcic, J.R., and Luthy, R.G. 1988. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soilwater systems. Appl. Environ. Microbiol. 54(5): 1188–1198.
Quantin, C., Joner, E.J., Portal, J.M., and Berthelin, J. 2005. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ. Poll. 134(2): 315–322.
Randerath, K., Randerath, E., Zhou, G.D., Supunpong, N., He, L.Y., McDonald, T.J., and Donnelly, K.C. 1999. Genotoxicity of complex PAH mixtures recovered from contaminated lake sediments as assessed by three different methods. Environ. Mol. Mutagen. 33: 303–312.
Rockne, K.J., Stensel, H.D., Herwig, R.P., and Strand, S.E. 1998. PAH degradation and bioaugmentation by a marine mathanotrophic enrichment. Bioremediation J. 3: 209–222.
Rockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.
Rockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.
Schmitt, R., Langguth, H.R., Püttmann, W., Rohns, H.P., Eckert, P., and Schubert, J. 1996. Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the lower Rhine Valley, Germany. Org. Geochem. 25(1/2): 41–50.
Tabak, H.H., Lazorchak, J.M., Lei, L., Khodadoust, A.P., Antia, J.E., Bagchi, R., and Suidan, M.T. 2003. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ. Toxicol. Chem. 22(3): 473–482.
Watts, R.J. 1998. Hazardous wastes: sources, pathways, receptors. Wiley, New York, N.Y., USA.
White, P.A. 2002. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Generic Toxicol. Environ. Mutagen. 515: 85–98.
Zhang, X., and Young, L.Y. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulidogenic consortia. Appl. Environ. Microbiol. 63(12): 4759– 4764.
Zhang, X., Sullivan, E.R., and Young, L.Y. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation, 11: 117–124.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
eu_rights_str_mv closedAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Canadá
dc.source.spa.fl_str_mv https://www.icevirtuallibrary.com/doi/epdf/10.1139/s06-057
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2228/4/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2228/3/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2228/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2228/1/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdf
bitstream.checksum.fl_str_mv e8f57e2daf92f38769f311978fe934c1
72b1907b3b4b202f76961b140cf04894
5a7ca94c2e5326ee169f979d71d0f06e
ad3ecfb56d24ad90f26797455374eb97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355589919145984
spelling Uribe-Jongbloed, Alberto67d0e12c899d12e1ef50e472bec286a5600Bishop, Paul L.5da8172b3c181a533e73be764097db8a600Centro de Estudios Ambientales2023-03-28T21:22:52Z2023-03-28T21:22:52Z20071496-2551https://repositorio.escuelaing.edu.co/handle/001/222810.1139/s06-0571496-256XA series of experiments were made in order to compare the removal efficiency of a mixture of four PAHs (naphthalene, phenanthrene, pyrene, and benzo[a]pyrene), under different electron acceptor (NO3 −, SO4 −2) and hydrodynamic conditions (stagnation and high shear). In all cases naphthalene showed the highest removal efficiency (from 69% up to 100%) as compared with the other PAHs. The fastest rate was obtained for the denitrifying-high shear condition followed by denitrification-no shear, sulfate-reduction-high shear and the lowest for sulfate reduction-no shear. However, most of the perceived removal of the heavier PAHs could be due to aging. No lag time was observed for the denitrifying experiments, and the denitrification rate was the same regardless of the hydrodynamic condition. A lag time of 64 d was observed under conditions of sulfate reduction and high shear. Sulfate reduction did not commence under no shear conditions. No toxic effect was observed for the four PAH mixture under all the conditions tested.Des essais ont été effectués pour comparer l’efficacité d’élimination d’un mélange de quatre HAP (naphtalène, phénanthrène, pyrène et benzo[a]pyrène) sous différentes conditions d’accepteur d’électrons (NO3 −, SO4 −2) et hydrodynamiques (stagnation et fort cisaillement). Dans tous les cas, le naphtalène montrait la meilleure efficacité d’élimination (de 69 % à 100 %) par rapport aux autres HAP. Le taux le plus rapide a été obtenu pour la condition de dénitrification à fort cisaillement, suivie par la dénitrification sans cisaillement, la sulfatoréduction à fort cisaillement et, le plus lent, pour la sulfatoréduction sans cisaillement. Cependant, la plus grande part de l’élimination détectée des HAP les plus lourds pourrait être causée par le vieillissement. Aucun temps mort n’a été observé lors des expériences de dénitrification et le taux de dénitrification était le même, peu importe la condition hydrodynamique. Un temps mort de 64 jours a été remarqué en conditions de sulfatoréduction avec fort cisaillement. La sulfatoréduction doit présenter des conditions de cisaillement pour être effective. Aucun effet toxique n’a été observé pour le mélange des quatre HAP sous toutes les conditions d’essais.Se realizó una serie de experimentos para comparar la eficacia de eliminación de una mezcla de cuatro HAPs (naftaleno, fenantreno, pireno y benzo[a]pireno), bajo diferentes aceptores de electrones (NO3 -, SO4 -2) y condiciones hidrodinámicas (estancamiento y alto cizallamiento). En todos los casos, el naftaleno mostró la mayor eficacia de eliminación (desde el 69% hasta el 100%) en comparación con los demás HAP. La tasa más rápida se obtuvo en la condición de desnitrificación-alto cizallamiento seguida de desnitrificación-sin cizalla, sulfato-reducción-alta cizalla y la más baja para sulfato-reducción-sin cizalla. Sin embargo la mayor parte de la eliminación percibida de los HAP más pesados podría deberse al envejecimiento. No se observó ningún retraso en los experimentos de desnitrificación. y la tasa de desnitrificación fue la misma independientemente de la condición hidrodinámica. Se observó un tiempo de retraso de 64 d en condiciones de reducción de sulfato y alto cizallamiento. La reducción de sulfato no comenzó en condiciones sin cizallamiento. de cizallamiento. No se observó ningún efecto tóxico para la mezcla de cuatro HAP en todas las condiciones probadas.9 páginasapplication/pdfenghttps://www.icevirtuallibrary.com/doi/epdf/10.1139/s06-057Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditionsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Canadá37643676N/AJournal of Environmental Engineering and ScienceAWWA, APHA, and WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington D.C.Bedessem, M.E., Swoboda-Colberg, N.G., and Colberg, P.J.S. 1997. Naphthalene mineralization coupled to sulfate reduction in aquiferderived enrichments. FEMS Microbiol. Lett. 152: 213–218.Bishop, P.L. 2000. Pollution prevention: fundamentals and practice. McGraw-Hill, New York, N.Y.Bispo,A., Jourdain, M.J., and Jauzein, M. 1999. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org. Geochem. 30: 947–952.Chang, C.C., Tseng, S.K., and Huang, H.K. 1999. Hydrogenotrophic denitrification with immobilizedAlcaligenes eutrophus for drinking water treatment. Bioresour. Technol. 69(1): 53–58.Chang, B.V., Chang, J.S., andYuan, S.Y. 2001. Degradation of phenanthrene in river sediment under nitrate-reducing conditions. Bull. Environ. Contam. Toxicol. 67: 898–905.Coates, J.D., Anderson, R.T., and Lovley, D.R. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62(3): 1099–1101.Coates, J.D., Woodward, J., Allen, J., Philp, P., and Lovley, D.R. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63(9): 3589–3593.Eriksson, M., Sodersten, E., Yu, Z., Dalhammar, G., and Mohn, W.W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69(1): 275–284.Flere, J.M., and Zhang, T.C. 1999. Nitrate removal with sulfurlimestone autotrophic denitrification processes. J. Environ. Eng. 125(8): 721–729.Galushko, A., Minz, D., Schink, B., and Widdel, F. 1999. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1(5): 415–420.Grosser, R.J., Friederich, M., Ward, D.M., and Inskeep, W.P. 2000. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl. Environ. Microbiol. 66(7): 2695–2702.Hatzinger, P.B., and Alexander, M. 1995. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29(2): 537–545.Hayes, L.A., Nevin, K.P., and Lovley, D.R. 1999. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org. Geochem. 30: 937–945.Johnson, K., and Ghosh, S. 1998. Feasibility of anaerobic biodegradation of PAHs in dredged river sediments. Water Sci. Technol. 38(7): 41–48.Kilbane, J.J., II. 1998. Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut. 104: 285–304.Koenig, A., and Liu, L.H. 2001. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors.Water Res. 35(8) 1969–1978.LaGrega, M.D. 2001. Hazardous waste management. McGraw-Hill, Boston, Mass.Lampe, D.G., and Zhang, T.C. 1996. Evaluation of sulfur-based autotrophic denitrification. HSRC/WERC Joint Conference on the Environment, Albuquerque, N.M., 21–23 May 1996.Lei, L., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H. 2005. Biodegradation of sediment-bound PAHs in field contaminated sediment. Water Res. 39(2–3): 349–361.MacRae, J.D., and Hall, K.J. 1998. Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci. Technol. 38(11): 177–185.McNally, D.L., Mihelcic, J.R., and Lueking, D.R. 1999. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38(6): 1313–1321.Meckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H., and Schink, B. 2000. Anaerobic naphthalene degradation by sulfatereducing enrichment culture. Appl. Environ. Microbiol. 66(7): 2743–2747.Mihelcic, J.R., and Luthy, R.G. 1988. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soilwater systems. Appl. Environ. Microbiol. 54(5): 1188–1198.Quantin, C., Joner, E.J., Portal, J.M., and Berthelin, J. 2005. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ. Poll. 134(2): 315–322.Randerath, K., Randerath, E., Zhou, G.D., Supunpong, N., He, L.Y., McDonald, T.J., and Donnelly, K.C. 1999. Genotoxicity of complex PAH mixtures recovered from contaminated lake sediments as assessed by three different methods. Environ. Mol. Mutagen. 33: 303–312.Rockne, K.J., Stensel, H.D., Herwig, R.P., and Strand, S.E. 1998. PAH degradation and bioaugmentation by a marine mathanotrophic enrichment. Bioremediation J. 3: 209–222.Rockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.Rockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.Schmitt, R., Langguth, H.R., Püttmann, W., Rohns, H.P., Eckert, P., and Schubert, J. 1996. Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the lower Rhine Valley, Germany. Org. Geochem. 25(1/2): 41–50.Tabak, H.H., Lazorchak, J.M., Lei, L., Khodadoust, A.P., Antia, J.E., Bagchi, R., and Suidan, M.T. 2003. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ. Toxicol. Chem. 22(3): 473–482.Watts, R.J. 1998. Hazardous wastes: sources, pathways, receptors. Wiley, New York, N.Y., USA.White, P.A. 2002. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Generic Toxicol. Environ. Mutagen. 515: 85–98.Zhang, X., and Young, L.Y. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulidogenic consortia. Appl. Environ. Microbiol. 63(12): 4759– 4764.Zhang, X., Sullivan, E.R., and Young, L.Y. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation, 11: 117–124.info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbBiodegradaciónHidrocarburos aromáticos policíclicosBiodegradationPolycyclic aromatic hydrocarbonsAnaerobic systemsBiodegradationDenitrificationHydrodynamic conditionsPAHSulfate reductionSystèmes anaérobiesBiodégradationDénitrificationConditions hydrodynamiquesHAPSulfatoréductionTHUMBNAILComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdf.jpgComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdf.jpgGenerated Thumbnailimage/jpeg18328https://repositorio.escuelaing.edu.co/bitstream/001/2228/4/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdf.jpge8f57e2daf92f38769f311978fe934c1MD54open accessTEXTComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdf.txtComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdf.txtExtracted texttext/plain27877https://repositorio.escuelaing.edu.co/bitstream/001/2228/3/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdf.txt72b1907b3b4b202f76961b140cf04894MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2228/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdfComparative Study of PAH Removal Efficiency under Absence of Molecular Oxygen Effect of Electron Acceptor and Hydrodynamic Conditions.pdfArtículo de revistaapplication/pdf394193https://repositorio.escuelaing.edu.co/bitstream/001/2228/1/Comparative%20Study%20of%20PAH%20Removal%20Efficiency%20under%20Absence%20of%20Molecular%20Oxygen%20Effect%20of%20Electron%20Acceptor%20and%20Hydrodynamic%20Conditions.pdfad3ecfb56d24ad90f26797455374eb97MD51open access001/2228oai:repositorio.escuelaing.edu.co:001/22282023-08-04 11:44:41.215open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK