Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position

Studies based on the cardiac and respiratory system have allowed a better knowledge of their behavior to contribute with the diagnosis and treatment of diseases associated with them. The main goal of this project was to analyze the behavior of the cardiorespiratory system in healthy subjects, depend...

Full description

Autores:
Ruiz, Angel D.
Mejía, Juan S.
López, Juan M.
Giraldo, Beatriz F.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3346
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3346
https://repositorio.escuelaing.edu.co/
Palabra clave:
Electrocardiografía
Electrocardiography
Sistema cardiovascular - Diagnóstico
Cardiovascular system - diagnosis
Monitoreo del paciente - Diagnóstico
Patient monitoring - Diagnosis
Sistema cardiovascular - Modelos matemáticos
Cardiovascular system - Mathematical models
Dinámica cardíaca
Dinámica respiratoria
Modelos estadísticos
Postura supina y sentada
Cardiac dynamics
Respiratory dynamics
Statistical models
Supine and sitting posture
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_bb573ab6e746ad371a443941228b95ad
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3346
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
title Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
spellingShingle Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
Electrocardiografía
Electrocardiography
Sistema cardiovascular - Diagnóstico
Cardiovascular system - diagnosis
Monitoreo del paciente - Diagnóstico
Patient monitoring - Diagnosis
Sistema cardiovascular - Modelos matemáticos
Cardiovascular system - Mathematical models
Dinámica cardíaca
Dinámica respiratoria
Modelos estadísticos
Postura supina y sentada
Cardiac dynamics
Respiratory dynamics
Statistical models
Supine and sitting posture
title_short Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
title_full Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
title_fullStr Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
title_full_unstemmed Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
title_sort Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
dc.creator.fl_str_mv Ruiz, Angel D.
Mejía, Juan S.
López, Juan M.
Giraldo, Beatriz F.
dc.contributor.author.none.fl_str_mv Ruiz, Angel D.
Mejía, Juan S.
López, Juan M.
Giraldo, Beatriz F.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Electrocardiografía
Electrocardiography
Sistema cardiovascular - Diagnóstico
Cardiovascular system - diagnosis
Monitoreo del paciente - Diagnóstico
Patient monitoring - Diagnosis
Sistema cardiovascular - Modelos matemáticos
Cardiovascular system - Mathematical models
topic Electrocardiografía
Electrocardiography
Sistema cardiovascular - Diagnóstico
Cardiovascular system - diagnosis
Monitoreo del paciente - Diagnóstico
Patient monitoring - Diagnosis
Sistema cardiovascular - Modelos matemáticos
Cardiovascular system - Mathematical models
Dinámica cardíaca
Dinámica respiratoria
Modelos estadísticos
Postura supina y sentada
Cardiac dynamics
Respiratory dynamics
Statistical models
Supine and sitting posture
dc.subject.proposal.spa.fl_str_mv Dinámica cardíaca
Dinámica respiratoria
Modelos estadísticos
Postura supina y sentada
dc.subject.proposal.eng.fl_str_mv Cardiac dynamics
Respiratory dynamics
Statistical models
Supine and sitting posture
description Studies based on the cardiac and respiratory system have allowed a better knowledge of their behavior to contribute with the diagnosis and treatment of diseases associated with them. The main goal of this project was to analyze the behavior of the cardiorespiratory system in healthy subjects, depending on the body position. The electrocardiography and respiratory flow signals were recorded in two positions, supine and sitting. Each signal was analyzed considering sliding windows of 30 s, with and overlapping of 50%. Temporal and spectral features were extracted from each signal. A total of 187 features were extracted for each window. According to statistical analysis, 148 features showed significant differences when comparing the position of the subject. Afterwards, the classifications methods based on decision trees, knearest neighbor and support vector machines were applied to identify the best classification model. The most advantageous performance model was obtained with a linear support vector machine method, with an accuracy of 99.5%, a sensitivity of 99.2% and a specificity of 99.6%. In conclusion, we have observed that the position of the body (supine or sitting) could modulate the cardiac and respiratory system response. New statistical models might provide new tools to analyze the behavior of these systems and the cardiorespiratory interaction complexity.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2024-10-25T17:12:57Z
dc.date.available.none.fl_str_mv 2024-10-25T17:12:57Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0302-9743
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3346
dc.identifier.eissn.spa.fl_str_mv 0302-9743
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 0302-9743
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
url https://repositorio.escuelaing.edu.co/handle/001/3346
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 11867 September 2019
dc.relation.citationendpage.spa.fl_str_mv 377
dc.relation.citationstartpage.spa.fl_str_mv 367
dc.relation.citationvolume.spa.fl_str_mv 11867
dc.relation.ispartofjournal.eng.fl_str_mv Lecture Notes in Computer Science
dc.relation.references.spa.fl_str_mv Serra, M., Iturralde Torres, P., Aranda Fraustro, A.: Orígenes del conocimiento de la estructura y función del sistema cardiovascular. Arch. Cardiol. México 83(3), 225–231 (2013)
Thibodeau, A., Patton, K.T.: Structure and Function of the Body, 13th edn. Mosby/Elsevier, Missouri (2008)
Dabbagh, A., Imani, A., Rajaei, S.: Cardiac Physiology. In: Dabbagh, A., Esmailian, F., Aranki, S. (eds.) Postoperative Critical Care for Adult Cardiac Surgical Patients, pp. 25–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75747-6_3
Madias, J.E.: Comparability of the standing and supine standard electrocardiograms and standing sitting and supine stress electrocardiograms. J. Electrocardiol 39(2), 142–149 (2006)
Muehlhan, M., Marxen, M., Landsiedel, J., Malberg, H., Zaunseder, S.: The effect of body posture on cognitive performance: a question of sleep quality. Front. Hum. Neurosci. 8, 171 (2014)
El-Saadawy, H., Tantawi, M., Shedeed, Howida A., Tolba, M.F.: Diagnosing heart diseases using morphological and dynamic features of electrocardiogram (ECG). In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, Mohamed F. (eds.) AISI 2017. AISC, vol. 639, pp. 342–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_32
Tan, M.Y., Ong, T., Sivam, J., Al-Shuft, H., Sahota, O., Salem, K.: 32the role of dynamic supine-sitting spinal radiographs in the management of vertebral fragility fractures admitted to hospital. Age Ageing 47(suppl_3), iii9–iii12 (2018)
Sierra-Silvestre, E., Bosello, F., Fernández Carnero, J., Hoozemans, M.J.M., Coppieters, M. W.: Femoral nerve excursion withe knee and neck movements in supine, sitting and sidelying slump: an in vivo study using ultrasound imaging. Musculoskelet. Sci. Pract. 37, 58– 63 (2018)
Cicolini, G., et al.: Differences in blood pressure by body position (supine, fowler’s, and sitting) in hypertensive subjects. Am. J. Hypertens. 24(10), 1073–1079 (2011)
Zuttin, R.S., Moreno, M.A., César, M.C., Martins, L.E.B.: Evaluation of autonomic heart rate modulation among sedentary young men, in sitting and supine postures. Braz. J. Phys. Ther. 12(1), 7–12 (2008). Revista Brasileira de Fisioterapia, 6p. 1 Chart, 2 Graphs
Nemec, B., Petrič, T., Babič, J., Supej, M.: Estimation of alpine skier posture using machine learning techniques. Sensors 14(10), 18898–18914 (2014)
Antunes, B.O., de Souza, H.C.D., Gianinis, H.H., Passarelli-Amaro, R.D.C.V., Tambascio, J., Gastaldi, A.C.: Peak expiratory flow in healthy, young, non-active subjects in seated, supine, and prone postures. Physiother. Theory Pract. 32(6), 489–493 (2016)
Kim, Y., Son, Y., Kim, W., Jin, B., Yun, M.: Classification of children’s sitting postures using machine learning algorithms. Appl. Sci. 8(8), 1280 (2018)
Cecchin, T., Ranta, R., Koessler, L., Vespignani, H., Maillard, L., Caspary, O.: Seizure lateralization in scalp EEG using Hjorthparameters. Clin. Neurophysiol. 121(3), 290–300 (2010)
Falconer, K.: Geometría Fractal, p. 308. Wiley, Nueva York (2003). ISBN 978–0-470- 84862-3
Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985)
Liu, Y., Lin, Y., Wang, J., Shang, P.: Refined generalized multiscale entropy analysis for physiological signals. Phys. A Stat. Mech. Appl. 490, 975–985 (2018)
Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics 15(2), 70–73 (1967)
Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision trees. CEJOR 26, 135–159 (2017)
Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)
Steinwart, I., Chrismann, A.: Super Vector Machine. Information Science and Statistics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77242-4
Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B.F.: Patients on weaning trials classified with support vector machines. Physiol. Meas. 31, 979–993 (2010)
Vatavu, R.-D.: Beyond features for recognition: human-readable measures to understand users’ whole-body gesture performance. Int. J. Hum.-Comput. Interact. 33(9), 713–730 (2017)
Rasouli, M.S., Payandeh, S.: A novel depth image analysis for sleep posture estimation. J. Ambient Intell. Hum. Comput. 10(5), 1999–2014 (2019)
Zemp, R., et al.: Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors. Biomed. Res. Int. 2016, 1–9 (2016)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-31332-6_32
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3346/4/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3346/3/Portada%20Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3346/5/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3346/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3346/1/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdf
bitstream.checksum.fl_str_mv 910a3132722c6bab95dcf3f6f8da7681
b7db2760033faf1b2aa2f23e1b122f35
e0123df7d2a0ec80846f05e584599a9f
5a7ca94c2e5326ee169f979d71d0f06e
b5f0db5c8764b568fdc90d3667d8c1ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355593793634304
spelling Ruiz, Angel D.fd2966afd2441e136b9c4f1e868a3424Mejía, Juan S.c5bfa41908ddeb7667bffc700126a173López, Juan M.cf0ee56c4e7fa4d4552b7ff2619b9fe2Giraldo, Beatriz F.bc847576b2d8922bfb25e598e450d3aaGiBiome2024-10-25T17:12:57Z2024-10-25T17:12:57Z20190302-9743https://repositorio.escuelaing.edu.co/handle/001/33460302-9743Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Studies based on the cardiac and respiratory system have allowed a better knowledge of their behavior to contribute with the diagnosis and treatment of diseases associated with them. The main goal of this project was to analyze the behavior of the cardiorespiratory system in healthy subjects, depending on the body position. The electrocardiography and respiratory flow signals were recorded in two positions, supine and sitting. Each signal was analyzed considering sliding windows of 30 s, with and overlapping of 50%. Temporal and spectral features were extracted from each signal. A total of 187 features were extracted for each window. According to statistical analysis, 148 features showed significant differences when comparing the position of the subject. Afterwards, the classifications methods based on decision trees, knearest neighbor and support vector machines were applied to identify the best classification model. The most advantageous performance model was obtained with a linear support vector machine method, with an accuracy of 99.5%, a sensitivity of 99.2% and a specificity of 99.6%. In conclusion, we have observed that the position of the body (supine or sitting) could modulate the cardiac and respiratory system response. New statistical models might provide new tools to analyze the behavior of these systems and the cardiorespiratory interaction complexity.Estudios basados ​​en el sistema cardíaco y respiratorio han permitido una un mejor conocimiento de su comportamiento para contribuir con el diagnóstico y tratamiento de enfermedades asociadas a ellos. El objetivo principal de este proyecto era analizar el comportamiento del sistema cardiorrespiratorio en sujetos sanos, dependiendo de la posición del cuerpo. La electrocardiografía y el flujo respiratorio. Las señales se registraron en dos posiciones, supina y sentada. Cada señal fue analizado considerando ventanas corredizas de 30 s, con un traslape del 50%. Se extrajeron características temporales y espectrales de cada señal. Un total de 187 Se extrajeron características para cada ventana. Según el análisis estadístico, 148 características mostraron diferencias significativas al comparar la posición del sujeto. Posteriormente se aplicaron los métodos de clasificación basados ​​en árboles de decisión, máquinas de vecinos más cercanos y de vectores de soporte para identificar las mejores. modelo de clasificación. Se obtuvo el modelo de rendimiento más ventajoso. con un método de máquina de vectores de soporte lineal, con una precisión del 99,5%, un sensibilidad del 99,2% y una especificidad del 99,6%. En conclusión, hemos observado que la posición del cuerpo (decúbito supino o sentado) podría modular la función cardíaca y respuesta del sistema respiratorio. Los nuevos modelos estadísticos podrían proporcionar nuevas herramientas para analizar el comportamiento de estos sistemas y la interacción cardiorrespiratoria complejidad.11 páginasapplication/pdfengSpringer NatureSuizahttps://link.springer.com/chapter/10.1007/978-3-030-31332-6_32Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting PositionArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 11867 September 201937736711867Lecture Notes in Computer ScienceSerra, M., Iturralde Torres, P., Aranda Fraustro, A.: Orígenes del conocimiento de la estructura y función del sistema cardiovascular. Arch. Cardiol. México 83(3), 225–231 (2013)Thibodeau, A., Patton, K.T.: Structure and Function of the Body, 13th edn. Mosby/Elsevier, Missouri (2008)Dabbagh, A., Imani, A., Rajaei, S.: Cardiac Physiology. In: Dabbagh, A., Esmailian, F., Aranki, S. (eds.) Postoperative Critical Care for Adult Cardiac Surgical Patients, pp. 25–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75747-6_3Madias, J.E.: Comparability of the standing and supine standard electrocardiograms and standing sitting and supine stress electrocardiograms. J. Electrocardiol 39(2), 142–149 (2006)Muehlhan, M., Marxen, M., Landsiedel, J., Malberg, H., Zaunseder, S.: The effect of body posture on cognitive performance: a question of sleep quality. Front. Hum. Neurosci. 8, 171 (2014)El-Saadawy, H., Tantawi, M., Shedeed, Howida A., Tolba, M.F.: Diagnosing heart diseases using morphological and dynamic features of electrocardiogram (ECG). In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, Mohamed F. (eds.) AISI 2017. AISC, vol. 639, pp. 342–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_32Tan, M.Y., Ong, T., Sivam, J., Al-Shuft, H., Sahota, O., Salem, K.: 32the role of dynamic supine-sitting spinal radiographs in the management of vertebral fragility fractures admitted to hospital. Age Ageing 47(suppl_3), iii9–iii12 (2018)Sierra-Silvestre, E., Bosello, F., Fernández Carnero, J., Hoozemans, M.J.M., Coppieters, M. W.: Femoral nerve excursion withe knee and neck movements in supine, sitting and sidelying slump: an in vivo study using ultrasound imaging. Musculoskelet. Sci. Pract. 37, 58– 63 (2018)Cicolini, G., et al.: Differences in blood pressure by body position (supine, fowler’s, and sitting) in hypertensive subjects. Am. J. Hypertens. 24(10), 1073–1079 (2011)Zuttin, R.S., Moreno, M.A., César, M.C., Martins, L.E.B.: Evaluation of autonomic heart rate modulation among sedentary young men, in sitting and supine postures. Braz. J. Phys. Ther. 12(1), 7–12 (2008). Revista Brasileira de Fisioterapia, 6p. 1 Chart, 2 GraphsNemec, B., Petrič, T., Babič, J., Supej, M.: Estimation of alpine skier posture using machine learning techniques. Sensors 14(10), 18898–18914 (2014)Antunes, B.O., de Souza, H.C.D., Gianinis, H.H., Passarelli-Amaro, R.D.C.V., Tambascio, J., Gastaldi, A.C.: Peak expiratory flow in healthy, young, non-active subjects in seated, supine, and prone postures. Physiother. Theory Pract. 32(6), 489–493 (2016)Kim, Y., Son, Y., Kim, W., Jin, B., Yun, M.: Classification of children’s sitting postures using machine learning algorithms. Appl. Sci. 8(8), 1280 (2018)Cecchin, T., Ranta, R., Koessler, L., Vespignani, H., Maillard, L., Caspary, O.: Seizure lateralization in scalp EEG using Hjorthparameters. Clin. Neurophysiol. 121(3), 290–300 (2010)Falconer, K.: Geometría Fractal, p. 308. Wiley, Nueva York (2003). ISBN 978–0-470- 84862-3Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985)Liu, Y., Lin, Y., Wang, J., Shang, P.: Refined generalized multiscale entropy analysis for physiological signals. Phys. A Stat. Mech. Appl. 490, 975–985 (2018)Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics 15(2), 70–73 (1967)Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision trees. CEJOR 26, 135–159 (2017)Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)Steinwart, I., Chrismann, A.: Super Vector Machine. Information Science and Statistics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77242-4Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B.F.: Patients on weaning trials classified with support vector machines. Physiol. Meas. 31, 979–993 (2010)Vatavu, R.-D.: Beyond features for recognition: human-readable measures to understand users’ whole-body gesture performance. Int. J. Hum.-Comput. Interact. 33(9), 713–730 (2017)Rasouli, M.S., Payandeh, S.: A novel depth image analysis for sleep posture estimation. J. Ambient Intell. Hum. Comput. 10(5), 1999–2014 (2019)Zemp, R., et al.: Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors. Biomed. Res. Int. 2016, 1–9 (2016)info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbElectrocardiografíaElectrocardiographySistema cardiovascular - DiagnósticoCardiovascular system - diagnosisMonitoreo del paciente - DiagnósticoPatient monitoring - DiagnosisSistema cardiovascular - Modelos matemáticosCardiovascular system - Mathematical modelsDinámica cardíacaDinámica respiratoriaModelos estadísticosPostura supina y sentadaCardiac dynamicsRespiratory dynamicsStatistical modelsSupine and sitting postureTEXTCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdf.txtCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdf.txtExtracted texttext/plain21695https://repositorio.escuelaing.edu.co/bitstream/001/3346/4/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdf.txt910a3132722c6bab95dcf3f6f8da7681MD54metadata only accessTHUMBNAILPortada Characterization of cardiac and respiratory system of healthy subjects in supine and sitting position.PNGPortada Characterization of cardiac and respiratory system of healthy subjects in supine and sitting position.PNGimage/png154674https://repositorio.escuelaing.edu.co/bitstream/001/3346/3/Portada%20Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.PNGb7db2760033faf1b2aa2f23e1b122f35MD53open accessCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdf.jpgCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdf.jpgGenerated Thumbnailimage/jpeg11977https://repositorio.escuelaing.edu.co/bitstream/001/3346/5/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdf.jpge0123df7d2a0ec80846f05e584599a9fMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3346/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdfCharacterization of cardiac and respiratory system of healthy subjects in supine and sitting position.pdfapplication/pdf777689https://repositorio.escuelaing.edu.co/bitstream/001/3346/1/Characterization%20of%20cardiac%20and%20respiratory%20system%20of%20healthy%20subjects%20in%20supine%20and%20sitting%20position.pdfb5f0db5c8764b568fdc90d3667d8c1edMD51metadata only access001/3346oai:repositorio.escuelaing.edu.co:001/33462024-10-26 03:00:35.186metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK