Performance of Nozzle Steels in Biofuel
To evaluate the corrosion resistance of stainless-steel injection nozzles under immersion test in biodiesel and perform electrochemical characterization under HNO3 solutions. Methods and materials: Chemical characterization of biofuel was performed to analyze its stability. Immersion tests were carr...
- Autores:
-
Blanco Estupiñan, David Leonardo
Bermudez-Castañeda, Angela
Márquez, Sebastian
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3144
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3144
https://doi.org/10.11144/javeriana.iued26.pnsb
https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974
- Palabra clave:
- Biofuel
Nozzle
Stainless steel
Bicombustible
Toberas
Acero inoxidable
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_b96cf7e461f6f30773f0ed6516d9a884 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3144 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Performance of Nozzle Steels in Biofuel |
dc.title.alternative.spa.fl_str_mv |
Evaluación del comportamiento de aceros de toberas aceros de toberas en biocombustible |
title |
Performance of Nozzle Steels in Biofuel |
spellingShingle |
Performance of Nozzle Steels in Biofuel Biofuel Nozzle Stainless steel Bicombustible Toberas Acero inoxidable |
title_short |
Performance of Nozzle Steels in Biofuel |
title_full |
Performance of Nozzle Steels in Biofuel |
title_fullStr |
Performance of Nozzle Steels in Biofuel |
title_full_unstemmed |
Performance of Nozzle Steels in Biofuel |
title_sort |
Performance of Nozzle Steels in Biofuel |
dc.creator.fl_str_mv |
Blanco Estupiñan, David Leonardo Bermudez-Castañeda, Angela Márquez, Sebastian |
dc.contributor.author.none.fl_str_mv |
Blanco Estupiñan, David Leonardo Bermudez-Castañeda, Angela Márquez, Sebastian |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Diseños sostenibles en ingeniería mecánica |
dc.subject.proposal.eng.fl_str_mv |
Biofuel Nozzle Stainless steel |
topic |
Biofuel Nozzle Stainless steel Bicombustible Toberas Acero inoxidable |
dc.subject.proposal.spa.fl_str_mv |
Bicombustible Toberas Acero inoxidable |
description |
To evaluate the corrosion resistance of stainless-steel injection nozzles under immersion test in biodiesel and perform electrochemical characterization under HNO3 solutions. Methods and materials: Chemical characterization of biofuel was performed to analyze its stability. Immersion tests were carried out for 4 months, evaluating 304 stainless steel under 3 different diesel/biofuel mixtures concentrations. Additionally, polarization tests were done using NOx concentrations above the levels measured from engine emissions. Results and discussion: The use of biofuels in Colombia has been largely driven by ethanol production from vegetable sources. Their use brings some advantages related to reducing emissions of particles and toxic gases (mainly aromatic groups, NOx, and CO2). However, degradation of materials can occur when they are in direct contact with biodiesel. Furthermore, solidification into waxes, which leads to plugging of nozzles, has been reported. However, it is unknown whether this influences oxygen diffusion in the solution and, in turn, affects the corrosion resistance of stainless steel. Conclusions: The corrosion resistance of the 304 stainless steel changed under immersion conditions, even though its protective layer was not affected by the NOx concentrations registered in the biofuel mixtures. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-04T19:45:34Z |
dc.date.available.none.fl_str_mv |
2024-07-04T19:45:34Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0123-2126 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3144 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11144/javeriana.iued26.pnsb |
dc.identifier.eissn.spa.fl_str_mv |
2011-2769 |
dc.identifier.url.none.fl_str_mv |
https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974 |
identifier_str_mv |
0123-2126 2011-2769 |
url |
https://repositorio.escuelaing.edu.co/handle/001/3144 https://doi.org/10.11144/javeriana.iued26.pnsb https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
26 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Ingeniería y Universidad: Engineering for development |
dc.relation.references.spa.fl_str_mv |
A. Iversen, Sheir’s Corrosion, 1 st ed., Elsevier Science, 2010. S. Deshpande, A. Joshi, S. Vagge and N. Anekar, “Corrosion behavior of nodular cast iron in biodiesel blends”, Eng. Fail. Anal., vol. 105, pp. 1319-1327, 2019, https://doi.org/10.1016/j.engfailanal.2019.07.060 F. Anguebes-Franseschi et al., “Physical and Chemical Properties of Biodiesel Obtained from Amazon Sailfin Catfish (Pterygoplichthys pardalis) Biomass Oil,” Journal of Chemistry, vol. 2019, p. 7829630, ene. 2019, https://doi.org/10.1155/2019/7829630 E. C. Zuleta, L. Baena, L. A. Rios and J. A. Calderón, “The oxidative stability of biodiésel and its impact on the deterioration of metallic and polymeric materials: a review,” Journal of the Brazilian Chemical Society, vol. 23, no. 12, pp. 2159-2175, 2012, https://doi.org/10.1590/S0103- 50532012001200004 J. Agudelo, E. Gutiérrez y P. Benjumea, “Análisis experimental de la combustión de un motor diésel de automoción operando con mezclas diésel-biodiésel de palma” Dyna, vol. 76, no. 159, p. 103-113, 2009. P. Benjumea and J. Agudelo, “Basic properties of palm oil biodiesel – diesel blends,” vol. 87, no. 10- 11, pp. 2069-2075, 2008, https://doi.org/10.1016/j.fuel.2007.11.004 S. Lebedevas and A. Vaicekauskas, "Research into the application of biodiesel in the transport sector of Lithuania", Transport, vol. 21, no. 2, pp. 80-87, 2006, https://doi.org/10.3846/16484142.2006.9638047 G. Knothe, “‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358-1364, 2008. https://doi.org/10.1021/ef700639e A. Demirbas, “Progress and recent trends in biofuels,” Progress in Energy and Combustion Science, vol. 33, no. 1, pp. 1-18, 2007, https://doi.org/10.1016/j.pecs.2006.06.001 ASTM D6751-15 International, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, 2020. ASTM D445-17 International, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), 2019. S. García-Muentes, F. Lafargue Perez, B. Labrada, M. Díaz and A. Campo-Lafita, “Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador” Revista Cubana de Química, vol. 30, pp. 142-158, abr. 2018. ASTM D664-18 International, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titrationel Blend Stock (B100) for Middle Distillate Fuels, 2018. UNE EN 14111, Fat and oil derivatives. Fatty Acid Methyl Esters (FAME). Determination of iodine value, 2003. ASTM A570-98 International, Standard Specification for Steel, Sheet and Strip, Carbon, Hot-Rolled (Withdrawn 2000), 1998. ASTM E18-03, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, 2003. ASTM G31-72 International, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 2004. G. Dwivedi and M. Sharma, “Impact of cold flow properties of biodiesel on engine performance”, Renew. Sustain. Energy Rev., vol. 31, pp. 650-656, 2014. ASTM E3-01 International, Standard Guide for Preparation of Metallographic Specimens, 2001. ASTM E407-07 International, Standard test methods for microetching, 2007 G. F. Vander Voort et al., “ASM handbook”, Metallogr. Microstruct., vol. 9, pp. 44073-0002, 2004. O. H. Venegas and L. F. Mónico, “Estudio de la influencia del uso de combustibles alternativos en un motor de combustión interna”, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá D. C:, Informe de investigación, 2019. D. Kolman, D. Ford, D. Butt and T. Nelson, “Corrosion of 304 stainless steel exposed to nitric acidchloride environments”, Corros. Sci., vol. 39, no. 12, pp. 2067-2093, 1997. https://doi.org/10.1016/S0010-938X(97)00092-9 K. Ishimi, Y. Ida, F. Tsutaka and Y. K. Sugimoto, “Nitric Acid Passivation Treatment of Type 304 Stainless Steels with Different Surface Polishing Conditions and Changes in Pitting Inhibition Effect of The Treatment with Exposure to Corrosion Environments”, J. Surf. Finish. Soc. Jpn., vol. 66, no. 4, pp. 158-164, 2015, https://doi.org/10.4139/sfj.66.158 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Pontificia Universidad Javeriana |
dc.publisher.place.spa.fl_str_mv |
Bogotá (Colombia) |
dc.source.spa.fl_str_mv |
https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3144/4/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3144/3/Portada%20-%20Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.png https://repositorio.escuelaing.edu.co/bitstream/001/3144/5/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3144/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3144/1/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdf |
bitstream.checksum.fl_str_mv |
4b14c669a4445eca897a12ed7c55b8c1 a692c8baa740f1c4d3276092eb255786 ee398a1b0c22a600c123b53174dae21d 5a7ca94c2e5326ee169f979d71d0f06e dc388e98487b4ee03331bf2f737e2a97 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355611566997504 |
spelling |
Blanco Estupiñan, David Leonardoe3e77d874c86b16244557959bed0f93f600Bermudez-Castañeda, Angela96d4b90596f0af0bcb7715c79d59b8cd600Márquez, Sebastianaa3476afe9b5de1df4e4fc5599284a45600Grupo de Investigación en Diseños sostenibles en ingeniería mecánica2024-07-04T19:45:34Z2024-07-04T19:45:34Z20220123-2126https://repositorio.escuelaing.edu.co/handle/001/3144https://doi.org/10.11144/javeriana.iued26.pnsb2011-2769https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974To evaluate the corrosion resistance of stainless-steel injection nozzles under immersion test in biodiesel and perform electrochemical characterization under HNO3 solutions. Methods and materials: Chemical characterization of biofuel was performed to analyze its stability. Immersion tests were carried out for 4 months, evaluating 304 stainless steel under 3 different diesel/biofuel mixtures concentrations. Additionally, polarization tests were done using NOx concentrations above the levels measured from engine emissions. Results and discussion: The use of biofuels in Colombia has been largely driven by ethanol production from vegetable sources. Their use brings some advantages related to reducing emissions of particles and toxic gases (mainly aromatic groups, NOx, and CO2). However, degradation of materials can occur when they are in direct contact with biodiesel. Furthermore, solidification into waxes, which leads to plugging of nozzles, has been reported. However, it is unknown whether this influences oxygen diffusion in the solution and, in turn, affects the corrosion resistance of stainless steel. Conclusions: The corrosion resistance of the 304 stainless steel changed under immersion conditions, even though its protective layer was not affected by the NOx concentrations registered in the biofuel mixtures.Evaluar la resistencia a la corrosión de las boquillas de inyección de acero inoxidable bajo ensayo de inmersión en biodiésel, y realizar una caracterización electroquímica bajo soluciones de HNO3. Métodos y materiales: Se realizó la caracterización química del biodiésel para analizar su estabilidad. Se realizaron pruebas de inmersión durante 4 meses, evaluando el acero inoxidable 304 bajo 3 concentraciones diferentes de mezclas de diésel/biocombustible. Además, se realizaron ensayos de polarización con concentraciones de NOx superiores a los niveles medidos en las emisiones de los motores. Resultados y discusión: El uso de biocombustibles en Colombia ha sido impulsado en gran medida por la producción de etanol de origen vegetal. Su uso aporta algunas ventajas relacionadas con la reducción de las emisiones de partículas y gases tóxicos (principalmente, grupos aromáticos, NOx y CO2). Sin embargo, puede producirse una degradación de los materiales cuando están en contacto directo con el biodiésel. Además, se ha informado de solidificación de ceras, que provoca el taponamiento de las boquillas. No obstante, se desconoce si esto influye en la difusión del oxígeno en la solución y, a su vez, afecta a la resistencia a la corrosión del acero inoxidable. Conclusiones: La resistencia a la corrosión del acero inoxidable 304 cambió bajo condiciones de inmersión, aunque su capa protectora no se vio afectada por las concentraciones de NOx registradas en las mezclas de biocombustible.13 páginasapplication/pdfengPontificia Universidad JaverianaBogotá (Colombia)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.javeriana.edu.co/index.php/iyu/article/view/30974Performance of Nozzle Steels in BiofuelEvaluación del comportamiento de aceros de toberas aceros de toberas en biocombustibleArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8513126N/AIngeniería y Universidad: Engineering for developmentA. Iversen, Sheir’s Corrosion, 1 st ed., Elsevier Science, 2010.S. Deshpande, A. Joshi, S. Vagge and N. Anekar, “Corrosion behavior of nodular cast iron in biodiesel blends”, Eng. Fail. Anal., vol. 105, pp. 1319-1327, 2019, https://doi.org/10.1016/j.engfailanal.2019.07.060F. Anguebes-Franseschi et al., “Physical and Chemical Properties of Biodiesel Obtained from Amazon Sailfin Catfish (Pterygoplichthys pardalis) Biomass Oil,” Journal of Chemistry, vol. 2019, p. 7829630, ene. 2019, https://doi.org/10.1155/2019/7829630E. C. Zuleta, L. Baena, L. A. Rios and J. A. Calderón, “The oxidative stability of biodiésel and its impact on the deterioration of metallic and polymeric materials: a review,” Journal of the Brazilian Chemical Society, vol. 23, no. 12, pp. 2159-2175, 2012, https://doi.org/10.1590/S0103- 50532012001200004J. Agudelo, E. Gutiérrez y P. Benjumea, “Análisis experimental de la combustión de un motor diésel de automoción operando con mezclas diésel-biodiésel de palma” Dyna, vol. 76, no. 159, p. 103-113, 2009.P. Benjumea and J. Agudelo, “Basic properties of palm oil biodiesel – diesel blends,” vol. 87, no. 10- 11, pp. 2069-2075, 2008, https://doi.org/10.1016/j.fuel.2007.11.004S. Lebedevas and A. Vaicekauskas, "Research into the application of biodiesel in the transport sector of Lithuania", Transport, vol. 21, no. 2, pp. 80-87, 2006, https://doi.org/10.3846/16484142.2006.9638047G. Knothe, “‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358-1364, 2008. https://doi.org/10.1021/ef700639eA. Demirbas, “Progress and recent trends in biofuels,” Progress in Energy and Combustion Science, vol. 33, no. 1, pp. 1-18, 2007, https://doi.org/10.1016/j.pecs.2006.06.001ASTM D6751-15 International, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, 2020.ASTM D445-17 International, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), 2019.S. García-Muentes, F. Lafargue Perez, B. Labrada, M. Díaz and A. Campo-Lafita, “Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador” Revista Cubana de Química, vol. 30, pp. 142-158, abr. 2018.ASTM D664-18 International, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titrationel Blend Stock (B100) for Middle Distillate Fuels, 2018.UNE EN 14111, Fat and oil derivatives. Fatty Acid Methyl Esters (FAME). Determination of iodine value, 2003.ASTM A570-98 International, Standard Specification for Steel, Sheet and Strip, Carbon, Hot-Rolled (Withdrawn 2000), 1998.ASTM E18-03, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, 2003.ASTM G31-72 International, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 2004.G. Dwivedi and M. Sharma, “Impact of cold flow properties of biodiesel on engine performance”, Renew. Sustain. Energy Rev., vol. 31, pp. 650-656, 2014.ASTM E3-01 International, Standard Guide for Preparation of Metallographic Specimens, 2001.ASTM E407-07 International, Standard test methods for microetching, 2007G. F. Vander Voort et al., “ASM handbook”, Metallogr. Microstruct., vol. 9, pp. 44073-0002, 2004.O. H. Venegas and L. F. Mónico, “Estudio de la influencia del uso de combustibles alternativos en un motor de combustión interna”, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá D. C:, Informe de investigación, 2019.D. Kolman, D. Ford, D. Butt and T. Nelson, “Corrosion of 304 stainless steel exposed to nitric acidchloride environments”, Corros. Sci., vol. 39, no. 12, pp. 2067-2093, 1997. https://doi.org/10.1016/S0010-938X(97)00092-9K. Ishimi, Y. Ida, F. Tsutaka and Y. K. Sugimoto, “Nitric Acid Passivation Treatment of Type 304 Stainless Steels with Different Surface Polishing Conditions and Changes in Pitting Inhibition Effect of The Treatment with Exposure to Corrosion Environments”, J. Surf. Finish. Soc. Jpn., vol. 66, no. 4, pp. 158-164, 2015, https://doi.org/10.4139/sfj.66.158BiofuelNozzleStainless steelBicombustibleToberasAcero inoxidableTEXTPerformance of Nozzle Steels in Biofuelª.pdf.txtPerformance of Nozzle Steels in Biofuelª.pdf.txtExtracted texttext/plain26032https://repositorio.escuelaing.edu.co/bitstream/001/3144/4/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdf.txt4b14c669a4445eca897a12ed7c55b8c1MD54open accessTHUMBNAILPortada - Performance of Nozzle Steels in Biofuelª.pngPortada - Performance of Nozzle Steels in Biofuelª.pngimage/png92749https://repositorio.escuelaing.edu.co/bitstream/001/3144/3/Portada%20-%20Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pnga692c8baa740f1c4d3276092eb255786MD53open accessPerformance of Nozzle Steels in Biofuelª.pdf.jpgPerformance of Nozzle Steels in Biofuelª.pdf.jpgGenerated Thumbnailimage/jpeg9449https://repositorio.escuelaing.edu.co/bitstream/001/3144/5/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdf.jpgee398a1b0c22a600c123b53174dae21dMD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3144/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALPerformance of Nozzle Steels in Biofuelª.pdfPerformance of Nozzle Steels in Biofuelª.pdfArtículo de revistaapplication/pdf836331https://repositorio.escuelaing.edu.co/bitstream/001/3144/1/Performance%20of%20Nozzle%20Steels%20in%20Biofuel%c2%aa.pdfdc388e98487b4ee03331bf2f737e2a97MD51open access001/3144oai:repositorio.escuelaing.edu.co:001/31442024-07-05 03:00:37.37open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |