Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass

Ultra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial bypr...

Full description

Autores:
Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2403
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2403
https://doi.org/10.15446/dyna.v86n211.79596
https://revistas.unal.edu.co/index.php/dyna/article/view/79596
Palabra clave:
Ultra-high performance concrete
Sustainable construction materials
Waste management
Concreto de ultra altas prestaciones
Construcción sostenible
Gestión de residuos
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_b59186174de893e8b73ab18c9bc93c54
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2403
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
dc.title.alternative.spa.fl_str_mv Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado
title Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
spellingShingle Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
Ultra-high performance concrete
Sustainable construction materials
Waste management
Concreto de ultra altas prestaciones
Construcción sostenible
Gestión de residuos
title_short Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
title_full Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
title_fullStr Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
title_full_unstemmed Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
title_sort Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass
dc.creator.fl_str_mv Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
dc.contributor.author.none.fl_str_mv Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Estructuras y Materiales - Gimeci
dc.subject.proposal.eng.fl_str_mv Ultra-high performance concrete
Sustainable construction materials
Waste management
topic Ultra-high performance concrete
Sustainable construction materials
Waste management
Concreto de ultra altas prestaciones
Construcción sostenible
Gestión de residuos
dc.subject.proposal.spa.fl_str_mv Concreto de ultra altas prestaciones
Construcción sostenible
Gestión de residuos
description Ultra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial byproducts as supplementary cementitious materials, in the case of recycled glass powder and fluid catalytic cracking catalyst residue (FC3R), as partial substitution of cement and silica fume allows to create a more ecological and cost-efficient UHPC. This research presents a study to determine the possibility of partial substitution of cement by FC3R in a previously optimized mixture of ultra-high-performance concrete with recycled glass. The results demonstrate that compressive strength values of 150 and 151 MPa without any heat treatment can be achieved, respectively, when replacing 11% and 15% of the cement with FC3R, for a determined amount of water and superplasticizer, compared to 158 MPa obtained for the reference UHPC without any FC3R content. The rheology of fresh UHPC is highly decreased by replacing cement particles with FC3R.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-06-09T16:53:53Z
dc.date.available.none.fl_str_mv 2023-06-09T16:53:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0012-7353
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2403
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15446/dyna.v86n211.79596
dc.identifier.eissn.spa.fl_str_mv 2346-2183
dc.identifier.url.none.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/79596
identifier_str_mv 0012-7353
2346-2183
url https://repositorio.escuelaing.edu.co/handle/001/2403
https://doi.org/10.15446/dyna.v86n211.79596
https://revistas.unal.edu.co/index.php/dyna/article/view/79596
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 93
dc.relation.citationissue.spa.fl_str_mv 211
dc.relation.citationstartpage.spa.fl_str_mv 84
dc.relation.citationvolume.spa.fl_str_mv 86
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv DYNA
dc.relation.references.spa.fl_str_mv Abellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingenieria Civil, 2018.
Soliman, N.A. and Tagnit-Hamou, A., Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete, ACI Mater. J., 114(6), pp. 847-858, 2017. DOI: 10.14359/51701001.
Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064
Schmidt, C. and Schmidt, M., Whitetopping of asphalt and concrete pavements with thin layers of ultra-high-performance concrete - Construction and economic efficiency, in: 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, no. 19, M.S.E.F.C.G.S. Fröhlich and S. Piotrowski, Eds. Kassel University, Kassel, Germany: 2012, pp. 921-927.
Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016.
Nehdi, M., Abbas, S. and Soliman, A., Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages, Eng. Struct., 101(March), pp. 733-742, 2015. DOI: 10.1016/j.engstruct.2015.07.012.
Toledo-Filho, R.D., Koenders, E.A., Formagini, S. and Fairbairn, E.M., Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability performance assessment of ultra high performance fiber reinforced, Mater. Des., 36, pp. 880-888, 2012. DOI: 10.1016/j.matdes.2011.09.022
Abellan, J., Torres, N., Núñez, A. and Fernández, J., Ultra high preformance fiber reinforced concrete: state of the art, applications and possibilities into the Latin American market, in: XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, 2018.
Tayeh, B.A., Abu-Bakar, B.H., Megat-Johari, M.A. and Voo, Y.L., Utilization of Ultra-High Performance Fibre Concrete (UHPFC) for rehabilitation - A review, Procedia Eng., 54(December) 2013, pp. 525- 538, 2013.
Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187
Kalny, M., Kvasnicka, V. and Komanec, J., First practical applications of UHPC in the Czech Republic, in: Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, 2016, pp. 147-148.
Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-HighPerformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35
Richard, P. and Cheyrezy, M., Composition of reactive powder concretes Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.
De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002.
Kou, S.C. and Xing, F., The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced Ultrahigh Performance Concrete, Hindawi Publ. Corp. Adv. Mater. Sci. Eng.,(May), 2012. DOI: 10.1155/2012/263243
Abdulkareem, O.M., Ben-Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018.
Ghafari, E., Costa, H. and Júlio, E., Statistical mixture design approach for eco- efficient UHPC, Cem. Concr. Compos., 55(September), pp. 17-25, 2015. DOI: 10.1016/j.cemconcomp.2014.07.016
Meng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J., (February), 2018. DOI: 10.14359/51700995
Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, Thesis Dr., Polytechnic University of Valencia, Spain, 2013.
Ahmad, S., Hakeem, I. and Maslehuddin, M., Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand, The Scientific World Journal, vol. 2014, pp. 1-8, 2014. DOI: 10.1155/2014/713531
Vaitkevicius, V., Šerelis, E. and Hilbig, H., The effect of glass powder on the microstructure of ultra high performance concrete, 68, pp. 102- 109, 2014. DOI: 10.1016/j.conbuildmat.2014.05.101
Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943- 5533.0001327
Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报B:研究篇, 26(9), pp. 136-141, 2012.
Šerelis, E., Vaitkevičius, V. and Kerševičius, V., Mechanical properties and microstructural investigation of Ultra-High Performance Glass Powder Concrete. Journal of Sustainable Architecture and Civil Engineering, 14(1), pp. 5-11, 2016. DOI: 10.5755/j01.sace.14.1.14478
Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.084
Arizzi, A. and Cultrone, G., Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue : a petrographic and physical-mechanical study, Constr. Build. Mater., 184, pp. 382-390, 2018. DOI: 10.1016/j.conbuildmat.2018.07.002
Cosa, J., Soriano, L., Borrachero, M.V., Reig, L., Payá, J. and Monzó, J.M., Influence of addition of Fluid Catalytic Cracking residue (FCC) and the SiO2 concentration in alkali-activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), pp. 1-18, 2018. DOI: 10.3390/min8040123
Torres-Castellanos, N., Izquierdo-Garcia, S., Torres-Agredo, J. and Mejia-de Gutierrez, R., Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation, Ingeniería e Investigación, 34(1), pp. 11-16, 2014. DOI: 10.15446/ing.investig.v34n1.38730
Torres-Castellanos, N. and Torres-Agredo, J., Uso del catalizador gastado de craqueo catalítico (FCC) como adición puzolánica - revisión, Ingeniería e Investigación, 30(2), pp. 35-42, 2010.
Torres-Castellanos, N., Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catalítico usado (FCC). Tesis Dr., Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia, 2014
Eriksson, L., Johansson, E., Kettaneh-Wold, N., WikstrÄom, C. and Wold, S., Design of experiments: principles and applications. UMEA University, Sweden, 2000.
Upasani, R.S. and Banga, A.K., Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride, Pharm. Res., 21(12), pp. 2293-2299, 2004.
Lenth, R.V., Response-surface methods in R, using RSM. J. Stat. Softw., 32(7), pp. 1-17, 2012.
Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.
Mosaberpanah, M.A. and Eren, O., Statistical models for mechanical properties of UHPC using response surface methodology, Comput. Concr., 19(6), pp. 667-675, 2017.
Mosaberpanah, M.A. and Eren, O., Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modeling. Adv. Concr. Constr., 5(5), pp. 481- 492, 2017. DOI: 10.12989/acc.2017.5.5.481
Shaaban, M. and Ahmed, S., Development of Ultra-High Performance concrete jointed precast decks and concrete piles in integral abutment bridges, in: The First International Symposium on Jointless & Sustainable Bridges, May, 2016.
Shaaban, M. and Ahmed, S., Mechanical behaviour of Ultra-High Performance concrete obtained with different concrete constituents and mix designs, in: Resilient Infrastructure, June, 2016, pp. 702-1, 702-10.
Viet-Thein-An, V. and Ludwig, H.M., Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag, in: Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Schmidt, M., Fehling, E., Glotzbach, C., Fröhlich, S. and Piotrowski, S., Eds., Kassel University, Kassel, Germany, 2012, pp. 197-205.
R Core Team, R: a language and environment for statistical computing. Vienna, Austria, [online]. 2018. Available at: https://www.Rproject.org/.
Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing. 1994.
ASTM and ASTM C1437, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C-1437, no. C1437. ASTM, Conshohocken, PA, pp. 1-2, 2016.
ASTM, Standard test method for compressive strength of hydraulic cement mortars (Using 2-in . or [50-mm] Cube Specimens), American Society for Testing and Materials C-109/C109M, no. C109/C109M - 11b. ASTM, pp. 1-9, 2010.
The European Project Group, ‘The european guidelines for selfcompacting concrete,’ The European Guidelines for Self Compacting Concrete, no. May. EFNARC, 2005, 63 P.
Gómez, E. and Zornoza, M., El papel del catalizador usado de Craqueo Catalítico (FCC) como material puzolánico en el proceso de corrosión de armaduras de hormigón., Valencia, España, 2007.
Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res., 17(2), pp. 77-89, 2005
Kubens, S., Interaction of cement and admixtures and its influence on rheological properties. Thesis, Universität Weimar, Göttingen, Germany, 2010, 192 P.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/79596
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2403/4/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2403/3/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2403/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2403/1/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf
bitstream.checksum.fl_str_mv c28d1bc355ea9e7d7add3b2b3f04a16d
df77daf2d46c6658cd420d2bd265b2fa
5a7ca94c2e5326ee169f979d71d0f06e
501df454216cba8911b458f4e3779b5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355628278153216
spelling Abellán-García, Joaquín276478eb5b6920fa9e5175b8a1bf29d7600Núñez López, Andrés Mauricio068c9f93a2962a9f8d667a5e7f926db8600Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Fernández Gómez, Jaimeec32ba58ee62c351e245c1fcf77e84f9600Grupo de Investigación Estructuras y Materiales - Gimeci2023-06-09T16:53:53Z2023-06-09T16:53:53Z20190012-7353https://repositorio.escuelaing.edu.co/handle/001/2403https://doi.org/10.15446/dyna.v86n211.795962346-2183https://revistas.unal.edu.co/index.php/dyna/article/view/79596Ultra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial byproducts as supplementary cementitious materials, in the case of recycled glass powder and fluid catalytic cracking catalyst residue (FC3R), as partial substitution of cement and silica fume allows to create a more ecological and cost-efficient UHPC. This research presents a study to determine the possibility of partial substitution of cement by FC3R in a previously optimized mixture of ultra-high-performance concrete with recycled glass. The results demonstrate that compressive strength values of 150 and 151 MPa without any heat treatment can be achieved, respectively, when replacing 11% and 15% of the cement with FC3R, for a determined amount of water and superplasticizer, compared to 158 MPa obtained for the reference UHPC without any FC3R content. The rheology of fresh UHPC is highly decreased by replacing cement particles with FC3R.El concreto de ultra altas prestaciones (UHPC) supone el máximo exponente en la investigación sobre concretos especiales en las últimas décadas. Sin embargo, debido a su elevado contenido en cemento y humo de sílice, el costo e impacto ambiental del UHPC es considerablemente superior al del concreto convencional. El empleo de co-productos industriales como materiales cementantes suplementarios, caso del polvo de vidrio reciclado y el residuo de craqueo catalítico (FC3R), en sustitución parcial del cemento y del humo de sílice permite crear un UHPC más respetuoso con el medioambiente y más eficiente en costo. Esta investigación presenta un estudio para determinar la posibilidad de sustitución parcial de cemento por FC3R en una mezcla previamente optimizada de UHPC que incorpora polvo de vidrio en su composición. Los resultados muestran que es posible alcanzar una resistencia de 150 y 151 MPa sin ningún tratamiento térmico al reemplazar un 11% y 15% del peso de cemento por FC3R respectivamente para una cantidad de agua y superplastificante determinadas, en comparación con los 158 MPa obtenidos para la muestra de referencia sin FC3R. La reología del UHPC se ve fuertemente afectada cuando se sustituye cemento por FC3R.10 páginasapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/dyna/article/view/79596Effect of FC3R on the properties of ultra-high-performance concrete with recycled glassEfecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio recicladoArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85932118486N/ADYNAAbellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingenieria Civil, 2018.Soliman, N.A. and Tagnit-Hamou, A., Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete, ACI Mater. J., 114(6), pp. 847-858, 2017. DOI: 10.14359/51701001.Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064Schmidt, C. and Schmidt, M., Whitetopping of asphalt and concrete pavements with thin layers of ultra-high-performance concrete - Construction and economic efficiency, in: 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, no. 19, M.S.E.F.C.G.S. Fröhlich and S. Piotrowski, Eds. Kassel University, Kassel, Germany: 2012, pp. 921-927.Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016.Nehdi, M., Abbas, S. and Soliman, A., Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages, Eng. Struct., 101(March), pp. 733-742, 2015. DOI: 10.1016/j.engstruct.2015.07.012.Toledo-Filho, R.D., Koenders, E.A., Formagini, S. and Fairbairn, E.M., Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability performance assessment of ultra high performance fiber reinforced, Mater. Des., 36, pp. 880-888, 2012. DOI: 10.1016/j.matdes.2011.09.022Abellan, J., Torres, N., Núñez, A. and Fernández, J., Ultra high preformance fiber reinforced concrete: state of the art, applications and possibilities into the Latin American market, in: XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, 2018.Tayeh, B.A., Abu-Bakar, B.H., Megat-Johari, M.A. and Voo, Y.L., Utilization of Ultra-High Performance Fibre Concrete (UHPFC) for rehabilitation - A review, Procedia Eng., 54(December) 2013, pp. 525- 538, 2013.Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187Kalny, M., Kvasnicka, V. and Komanec, J., First practical applications of UHPC in the Czech Republic, in: Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, 2016, pp. 147-148.Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-HighPerformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35Richard, P. and Cheyrezy, M., Composition of reactive powder concretes Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002.Kou, S.C. and Xing, F., The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced Ultrahigh Performance Concrete, Hindawi Publ. Corp. Adv. Mater. Sci. Eng.,(May), 2012. DOI: 10.1155/2012/263243Abdulkareem, O.M., Ben-Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018.Ghafari, E., Costa, H. and Júlio, E., Statistical mixture design approach for eco- efficient UHPC, Cem. Concr. Compos., 55(September), pp. 17-25, 2015. DOI: 10.1016/j.cemconcomp.2014.07.016Meng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J., (February), 2018. DOI: 10.14359/51700995Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, Thesis Dr., Polytechnic University of Valencia, Spain, 2013.Ahmad, S., Hakeem, I. and Maslehuddin, M., Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand, The Scientific World Journal, vol. 2014, pp. 1-8, 2014. DOI: 10.1155/2014/713531Vaitkevicius, V., Šerelis, E. and Hilbig, H., The effect of glass powder on the microstructure of ultra high performance concrete, 68, pp. 102- 109, 2014. DOI: 10.1016/j.conbuildmat.2014.05.101Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943- 5533.0001327Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报B:研究篇, 26(9), pp. 136-141, 2012.Šerelis, E., Vaitkevičius, V. and Kerševičius, V., Mechanical properties and microstructural investigation of Ultra-High Performance Glass Powder Concrete. Journal of Sustainable Architecture and Civil Engineering, 14(1), pp. 5-11, 2016. DOI: 10.5755/j01.sace.14.1.14478Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.084Arizzi, A. and Cultrone, G., Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue : a petrographic and physical-mechanical study, Constr. Build. Mater., 184, pp. 382-390, 2018. DOI: 10.1016/j.conbuildmat.2018.07.002Cosa, J., Soriano, L., Borrachero, M.V., Reig, L., Payá, J. and Monzó, J.M., Influence of addition of Fluid Catalytic Cracking residue (FCC) and the SiO2 concentration in alkali-activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), pp. 1-18, 2018. DOI: 10.3390/min8040123Torres-Castellanos, N., Izquierdo-Garcia, S., Torres-Agredo, J. and Mejia-de Gutierrez, R., Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation, Ingeniería e Investigación, 34(1), pp. 11-16, 2014. DOI: 10.15446/ing.investig.v34n1.38730Torres-Castellanos, N. and Torres-Agredo, J., Uso del catalizador gastado de craqueo catalítico (FCC) como adición puzolánica - revisión, Ingeniería e Investigación, 30(2), pp. 35-42, 2010.Torres-Castellanos, N., Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catalítico usado (FCC). Tesis Dr., Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia, 2014Eriksson, L., Johansson, E., Kettaneh-Wold, N., WikstrÄom, C. and Wold, S., Design of experiments: principles and applications. UMEA University, Sweden, 2000.Upasani, R.S. and Banga, A.K., Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride, Pharm. Res., 21(12), pp. 2293-2299, 2004.Lenth, R.V., Response-surface methods in R, using RSM. J. Stat. Softw., 32(7), pp. 1-17, 2012.Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.Mosaberpanah, M.A. and Eren, O., Statistical models for mechanical properties of UHPC using response surface methodology, Comput. Concr., 19(6), pp. 667-675, 2017.Mosaberpanah, M.A. and Eren, O., Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modeling. Adv. Concr. Constr., 5(5), pp. 481- 492, 2017. DOI: 10.12989/acc.2017.5.5.481Shaaban, M. and Ahmed, S., Development of Ultra-High Performance concrete jointed precast decks and concrete piles in integral abutment bridges, in: The First International Symposium on Jointless & Sustainable Bridges, May, 2016.Shaaban, M. and Ahmed, S., Mechanical behaviour of Ultra-High Performance concrete obtained with different concrete constituents and mix designs, in: Resilient Infrastructure, June, 2016, pp. 702-1, 702-10.Viet-Thein-An, V. and Ludwig, H.M., Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag, in: Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Schmidt, M., Fehling, E., Glotzbach, C., Fröhlich, S. and Piotrowski, S., Eds., Kassel University, Kassel, Germany, 2012, pp. 197-205.R Core Team, R: a language and environment for statistical computing. Vienna, Austria, [online]. 2018. Available at: https://www.Rproject.org/.Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing. 1994.ASTM and ASTM C1437, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C-1437, no. C1437. ASTM, Conshohocken, PA, pp. 1-2, 2016.ASTM, Standard test method for compressive strength of hydraulic cement mortars (Using 2-in . or [50-mm] Cube Specimens), American Society for Testing and Materials C-109/C109M, no. C109/C109M - 11b. ASTM, pp. 1-9, 2010.The European Project Group, ‘The european guidelines for selfcompacting concrete,’ The European Guidelines for Self Compacting Concrete, no. May. EFNARC, 2005, 63 P.Gómez, E. and Zornoza, M., El papel del catalizador usado de Craqueo Catalítico (FCC) como material puzolánico en el proceso de corrosión de armaduras de hormigón., Valencia, España, 2007.Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res., 17(2), pp. 77-89, 2005Kubens, S., Interaction of cement and admixtures and its influence on rheological properties. Thesis, Universität Weimar, Göttingen, Germany, 2010, 192 P.Ultra-high performance concreteSustainable construction materialsWaste managementConcreto de ultra altas prestacionesConstrucción sostenibleGestión de residuosTHUMBNAILEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdf.jpgEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdf.jpgGenerated Thumbnailimage/jpeg15107https://repositorio.escuelaing.edu.co/bitstream/001/2403/4/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf.jpgc28d1bc355ea9e7d7add3b2b3f04a16dMD54open accessTEXTEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdf.txtEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdf.txtExtracted texttext/plain49672https://repositorio.escuelaing.edu.co/bitstream/001/2403/3/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf.txtdf77daf2d46c6658cd420d2bd265b2faMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2403/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdfEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass ¿ Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado.pdfArtículo de revistaapplication/pdf1676071https://repositorio.escuelaing.edu.co/bitstream/001/2403/1/Effect%20of%20FC3R%20on%20the%20properties%20of%20ultra-high-performance%20concrete%20with%20recycled%20glass%20%c2%bf%20Efecto%20del%20FC3R%20en%20las%20propiedades%20del%20concreto%20de%20ultra%20altas%20prestaciones%20con%20vidrio%20reciclado.pdf501df454216cba8911b458f4e3779b5eMD51open access001/2403oai:repositorio.escuelaing.edu.co:001/24032023-06-10 03:01:20.405open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK