Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial

En este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desem...

Full description

Autores:
Burgos Galindo, Diana Marcela
Guzmán Aponte, Alvaro
Torres Castellanos, Nancy
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
spa
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2407
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2407
https://doi.org/10.24050/reia.v16i32.1210
https://revistas.eia.edu.co/index.php/reveia/article/view/1210
Palabra clave:
Agregado reciclado fino
Concreto
Durabilidad
Propiedades mecánicas
Resistencia a cloruros
Sorptividad
Concrete
Chloride resistance
Durability
Fine recycled aggregates
Mechanical properties
Sorptivity
Concreto
Resistência a cloretos
Durabilidade
Agregados reciclados finos
Propriedades mecânicas
Sorvitividade
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_aed5a2790f6334adf91d4718a2f79031
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2407
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
dc.title.alternative.eng.fl_str_mv Mechanical and durable performance of concrete that incorporates commercial fine recycled aggregate
dc.title.alternative.por.fl_str_mv Desempenho mecânico e durável de concreto que incorpora agregado reciclado fino comercial
title Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
spellingShingle Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
Agregado reciclado fino
Concreto
Durabilidad
Propiedades mecánicas
Resistencia a cloruros
Sorptividad
Concrete
Chloride resistance
Durability
Fine recycled aggregates
Mechanical properties
Sorptivity
Concreto
Resistência a cloretos
Durabilidade
Agregados reciclados finos
Propriedades mecânicas
Sorvitividade
title_short Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
title_full Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
title_fullStr Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
title_full_unstemmed Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
title_sort Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial
dc.creator.fl_str_mv Burgos Galindo, Diana Marcela
Guzmán Aponte, Alvaro
Torres Castellanos, Nancy
dc.contributor.author.none.fl_str_mv Burgos Galindo, Diana Marcela
Guzmán Aponte, Alvaro
Torres Castellanos, Nancy
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Estructuras y Materiales - Gimeci
dc.subject.proposal.spa.fl_str_mv Agregado reciclado fino
Concreto
Durabilidad
Propiedades mecánicas
Resistencia a cloruros
Sorptividad
topic Agregado reciclado fino
Concreto
Durabilidad
Propiedades mecánicas
Resistencia a cloruros
Sorptividad
Concrete
Chloride resistance
Durability
Fine recycled aggregates
Mechanical properties
Sorptivity
Concreto
Resistência a cloretos
Durabilidade
Agregados reciclados finos
Propriedades mecânicas
Sorvitividade
dc.subject.proposal.eng.fl_str_mv Concrete
Chloride resistance
Durability
Fine recycled aggregates
Mechanical properties
Sorptivity
dc.subject.proposal.por.fl_str_mv Concreto
Resistência a cloretos
Durabilidade
Agregados reciclados finos
Propriedades mecânicas
Sorvitividade
description En este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desempeño mecánico y durable de los concretos, se estudiaron diferentes propiedades como la densidad, absorción, sorptividad, resistencia mecánica, tracción indirecta y permeabilidad al ion cloruro, de concretos con incorporación de 20% y 40% de ARF (ARF20% y ARF40%, respectivamente) en reemplazo del agregado fino natural. Los resultados se compararon con un concreto de referencia incorporando agregado fino natural (ARF0%). Se encontró que la incorporación de ARF hasta un 40% en los concretos, no causa un detrimento marcado en la consistencia del concreto en estado fresco. En términos generales, a pesar de que las propiedades físicas, mecánicas y de durabilidad de los concretos en estado endurecido disminuyen con el incremento en la incorporación de ARF en reemplazo del agregado fino natural; los valores de las propiedades alcanzadas por los concretos ARF20% y ARF40%, fueron comprables a aquellas alcanzadas por el concreto de referencia ARF0%, y aptas para la construcción de concretos de mediana resistencia.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-06-09T21:08:19Z
dc.date.available.none.fl_str_mv 2023-06-09T21:08:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2407
dc.identifier.doi.none.fl_str_mv https://doi.org/10.24050/reia.v16i32.1210
dc.identifier.eissn.spa.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1210
identifier_str_mv 1794-1237
2463-0950
url https://repositorio.escuelaing.edu.co/handle/001/2407
https://doi.org/10.24050/reia.v16i32.1210
https://revistas.eia.edu.co/index.php/reveia/article/view/1210
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 179
dc.relation.citationissue.spa.fl_str_mv 32
dc.relation.citationstartpage.spa.fl_str_mv 167
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.relation.references.spa.fl_str_mv Abdurrahmaan, L., & Al-Fayez, M. (2015). Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cement and Concrete Composites, 61, 36-43. doi: 10.1016/j.cemconcomp.2015.02.009.
Akbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T., & Foo, T.W.J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25(8), 3469-3479. doi: 10.1016/j.conbuildmat.2011.03.038
American Society for Testing and Materials, 2016. ASTM C33-16 Standard Specification for Concrete Aggregates. West Conshohocken, PA: ASTM.
American Society for Testing and Materials, 2017. ASTM C39-17 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.
American Society for Testing and Materials, 2011. ASTM C496-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.
American Society for Testing and Materials, 2013. ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM.
Ann, K.Y., Ahn, J.H., & Ryou, J.S. (2009) The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23(1), 239–45. doi: 10.1016/j.conbuildmat.2007.12.014.
Braga, M., De Brito, J., & Veiga, R. (2014). Reduction of the cement content in mortar made with fine concrete aggregates. Materials and Structures, 47(1-2), 171- 182.
Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357- 369.doi: 10.1016/j.conbuildmat.2014.12.103.
De Brito, J., & Saikia, N. (2013). Recycled aggregate in concrete: Use of industrial, construction and demolition waste. London, UK: Springer.
Delay, M., Lager, T., Schulz, H.D., & Frimmel, F.H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27(2), 248-255. doi: https://doi.org/10.1016/j.wasman.2006.01.013.
Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42. doi: 10.3151/jact.5.27.
EMPA-SIA 162/1, 1989. Test No. 5- Water conductivity, Suiza.
European Aggregates Association. (2012). Annual review. Brussels, Belgium.
Evangelista, L., & De Brito, J. (2004). Criteria for the use of fine recycled concrete aggregates in concrete production. Conference: Conference on the Use of Recycled Materials in Building and Structures, RILEM, At Barcelona, Spain.
Evangelista, L., & De Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement & Concrete Composites, 32(1), 9–14. doi: 10.1016/j.cemconcomp.2009.09.005.
González-Fonteboa, B., Martínez-Abella, F., Herrador, M.F., & Seara-Paz, S. (2012). Structural recycled concrete: Behaviour under low loading rate. Construction and Building Materials, 28(1): 111-116. doi: 10.1016/j. conbuildmat.2011.08.010.
Hongru, Z., & Yuxi, Z. (2015). Integrated interface parameters of recycled aggregate concrete. Construction and Building Materials, 101, 861–877. doi: 10.1016/j.conbuildmat.2015.10.084.
Howland, J.J., & Martín, A.R. (2013). Estudio de la absorción capilar y la sorptividad de hormigones con áridos calizos cubanos. Materiales de construcción, 312, 515-527.
Khatib, J.M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete Research, 35(4), 763-769. doi: 10.1016/j.cemconres.2004.06.017.
Kosmatka, S., Kherkhoff, B., & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5. Publisher: Portland Cement Association.
Kou, S., & C, Poon. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76. doi: 0.1016/j.conbuildmat.2012.02.032.
Kou, S.C., Zhan, B., & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28. doi: 10.1016/j.cemconcomp.2013.09.008.
Levy, S., & Helene, P. (2004). Durability of recycled aggregates concrete: a safe way to sustainable development. Cement and Concrete Research, 34(11), 1975– 1980. doi: 10.1016/j.cemconres.2004.02.009.
Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Department of Building and Real Estate. (M.Sc Thesis). The Hong Kong Polytechnic University: Hong Kong, China.
Liu, Q., Xiao, J., & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete Research, 41(10), 1050-1057. doi: 10.1016/j.cemconres.2011.06.007.
Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. doi: https://doi. org/10.1016/j.jclepro.2012.07.020.
Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255-2264. doi:10.1016/j.wasman.2010.04.012.
Medina, C., Banfill, P. F. G., Sanchez de Rojas, M., & Frías, M. (2013). Rheological behaviour of cements blended with containing ceramic wastes. In N. Roussel, & H. Bessaies-Bey (Eds.), Rheology and processing of construction materials: 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials (1 ed., Vol. PRO90, pp. 65-74). Paris: RILEM. Recuperado de https://pureapps2.hw.ac.uk/ws/portalfiles/portal/7700978.
Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina GRAL”.
Mindess, S., Young, J.F., & Darwin, D. (2003). Concrete. 2nd ed. Upper Saddle River, N.J: Prentice Hall.
Otsuki, N.M., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–51. doi: 10.1061/(ASCE)0899- 1561(2003)15:5(443).
Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. (Tesis de especialización, Universidad Militar Nueva Granada). Universidad Militar Nueva Granada: Bogotá, Colombia. Recuperado de http://repository.unimilitar.edu.co/ bitstream/10654/11004/1/TRABAJO%20DE%20 GRADO%20ADRIANA%20ISABEL%20PINZON%20 M..pdf.
Poon, C., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293–305. doi: 10.1016/j.resconrec.2006.06.005.
Ravindrarajah, R.S., & Tam, C.T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29- 38.
Ravindrarajah, R.S., Loo, Y.H., & Tam, C.T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 39(141), 214–220.
Roussat, N., Dujet, C., & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20. doi:10.1016/j.wasman.2008.04.010.
Vázquez, E., Barra, M., Aponte, D., Jiménez, C., & Valls, S. (2014). Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Construction and Building Materials, 67, 61–67. doi: 10.1016/j.conbuildmat.2013.11.028.
Wirquin, E., Hahdjeva-Zahaarieva, R., & Buyle-Bodin, F. (2000). Use of water absorption by concrete as a criterion of the durability of concrete – application to recycled aggregate concrete. Materials and Structures, 33(6), 403-408.
Xuan, D., Zhan, B., & Poon, C. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67-74. doi: 10.1016/j.cemconcomp.2015.10.018.
Zega, C.J., & Di Maio, A.A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. doi: 10.1016/j.wasman.2011.06.011.
Zhan, B., Poon, C., Liu, Q., Kou, S., & Shi, C. (2014). Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 67, 3–7. doi: 10.1016/j.conbuildmat.2013.09.008.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EIA
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1210
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2407/4/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2407/3/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2407/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2407/1/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf
bitstream.checksum.fl_str_mv f3e46abda681b6526001d4becfb93b9a
8c26b71aa15c2cd16705035f7fde74f1
5a7ca94c2e5326ee169f979d71d0f06e
7147b65720a4869f777fd70b2e0f3c56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355590176047104
spelling Burgos Galindo, Diana Marcela4ce62f466541245472da2aaec3f029db600Guzmán Aponte, Alvaroe18a1f2d6308043784df9c4ddbc2e6a7600Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Grupo de Investigación Estructuras y Materiales - Gimeci2023-06-09T21:08:19Z2023-06-09T21:08:19Z20191794-1237https://repositorio.escuelaing.edu.co/handle/001/2407https://doi.org/10.24050/reia.v16i32.12102463-0950https://revistas.eia.edu.co/index.php/reveia/article/view/1210En este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desempeño mecánico y durable de los concretos, se estudiaron diferentes propiedades como la densidad, absorción, sorptividad, resistencia mecánica, tracción indirecta y permeabilidad al ion cloruro, de concretos con incorporación de 20% y 40% de ARF (ARF20% y ARF40%, respectivamente) en reemplazo del agregado fino natural. Los resultados se compararon con un concreto de referencia incorporando agregado fino natural (ARF0%). Se encontró que la incorporación de ARF hasta un 40% en los concretos, no causa un detrimento marcado en la consistencia del concreto en estado fresco. En términos generales, a pesar de que las propiedades físicas, mecánicas y de durabilidad de los concretos en estado endurecido disminuyen con el incremento en la incorporación de ARF en reemplazo del agregado fino natural; los valores de las propiedades alcanzadas por los concretos ARF20% y ARF40%, fueron comprables a aquellas alcanzadas por el concreto de referencia ARF0%, y aptas para la construcción de concretos de mediana resistencia.This paper presents the results of a technical feasibility study about the use of fine commercial recycled aggregate (ARF) from the construction and demolition wastes (RC&D), in the manufacture of concrete of medium strength. In order to evaluate the mechanical and durable performance of the concretes, different properties such as density, absorption, sorptivity, mechanical strength, indirect traction and chloride ion permeability were studied in a series of concretes incorporating 20% and 40% of the ARF (ARF20% and ARF40%, respectively) replacing the natural fine aggregate (AFN). The results were compared with a standard concrete incorporating natural fine aggregate (ARF0%). It was found that using up to 40% of ARF in the concrete there is no cause adverse effects on fresh concrete consistency. Although the physical, mechanical and durability properties of concretes in hardened state decrease with the increase in the incorporation of ARF in replacement of the natural fine aggregate; the values of the properties achieved by the concretes ARF20% and ARF40% were affordable to those achieved by the standard concrete ARF0%, and suitable for the manufacture of medium strength concretes.Este artigo apresenta os resultados de um estudo de viabilidade técnica sobre o uso de agregados reciclados comerciais (ARF) de resíduos de construção e demolição (RC & D), na fabricação de concreto de média resistência. Com o objetivo de avaliar o desempenho mecânico e durável dos concretos, diferentes propriedades como densidade, absorção, sorveteria, resistência mecânica, tração indireta e permeabilidade a íons cloreto foram estudadas em uma série de concretos incorporando 20% e 40% do ARF (ARF20 % e ARF40%, respectivamente) substituindo o agregado fino natural (AFN). Os resultados foram comparados com um concreto padrão incorporando agregado fino natural (ARF0%). Descobriu-se que usando até 40% de ARF no concreto, não há nenhum efeito adverso na consistência do concreto fresco. Embora as propriedades físicas, mecânicas e de durabilidade dos concretos em estado endurecido diminuam com o aumento da incorporação de ARF em substituição ao agregado natural fino; os valores das propriedades obtidas pelos concretos ARF20% e ARF40% foram acessíveis àqueles alcançados pelo concreto padrão ARF0%, e adequados para a fabricação de concretos de média resistência.13 páginasapplication/pdfspaUniversidad EIAColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1210Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercialMechanical and durable performance of concrete that incorporates commercial fine recycled aggregateDesempenho mecânico e durável de concreto que incorpora agregado reciclado fino comercialArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a851793216716N/ARevista EIAAbdurrahmaan, L., & Al-Fayez, M. (2015). Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cement and Concrete Composites, 61, 36-43. doi: 10.1016/j.cemconcomp.2015.02.009.Akbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T., & Foo, T.W.J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25(8), 3469-3479. doi: 10.1016/j.conbuildmat.2011.03.038American Society for Testing and Materials, 2016. ASTM C33-16 Standard Specification for Concrete Aggregates. West Conshohocken, PA: ASTM.American Society for Testing and Materials, 2017. ASTM C39-17 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.American Society for Testing and Materials, 2011. ASTM C496-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.American Society for Testing and Materials, 2013. ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM.Ann, K.Y., Ahn, J.H., & Ryou, J.S. (2009) The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23(1), 239–45. doi: 10.1016/j.conbuildmat.2007.12.014.Braga, M., De Brito, J., & Veiga, R. (2014). Reduction of the cement content in mortar made with fine concrete aggregates. Materials and Structures, 47(1-2), 171- 182.Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357- 369.doi: 10.1016/j.conbuildmat.2014.12.103.De Brito, J., & Saikia, N. (2013). Recycled aggregate in concrete: Use of industrial, construction and demolition waste. London, UK: Springer.Delay, M., Lager, T., Schulz, H.D., & Frimmel, F.H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27(2), 248-255. doi: https://doi.org/10.1016/j.wasman.2006.01.013.Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42. doi: 10.3151/jact.5.27.EMPA-SIA 162/1, 1989. Test No. 5- Water conductivity, Suiza.European Aggregates Association. (2012). Annual review. Brussels, Belgium.Evangelista, L., & De Brito, J. (2004). Criteria for the use of fine recycled concrete aggregates in concrete production. Conference: Conference on the Use of Recycled Materials in Building and Structures, RILEM, At Barcelona, Spain.Evangelista, L., & De Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement & Concrete Composites, 32(1), 9–14. doi: 10.1016/j.cemconcomp.2009.09.005.González-Fonteboa, B., Martínez-Abella, F., Herrador, M.F., & Seara-Paz, S. (2012). Structural recycled concrete: Behaviour under low loading rate. Construction and Building Materials, 28(1): 111-116. doi: 10.1016/j. conbuildmat.2011.08.010.Hongru, Z., & Yuxi, Z. (2015). Integrated interface parameters of recycled aggregate concrete. Construction and Building Materials, 101, 861–877. doi: 10.1016/j.conbuildmat.2015.10.084.Howland, J.J., & Martín, A.R. (2013). Estudio de la absorción capilar y la sorptividad de hormigones con áridos calizos cubanos. Materiales de construcción, 312, 515-527.Khatib, J.M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete Research, 35(4), 763-769. doi: 10.1016/j.cemconres.2004.06.017.Kosmatka, S., Kherkhoff, B., & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5. Publisher: Portland Cement Association.Kou, S., & C, Poon. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76. doi: 0.1016/j.conbuildmat.2012.02.032.Kou, S.C., Zhan, B., & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28. doi: 10.1016/j.cemconcomp.2013.09.008.Levy, S., & Helene, P. (2004). Durability of recycled aggregates concrete: a safe way to sustainable development. Cement and Concrete Research, 34(11), 1975– 1980. doi: 10.1016/j.cemconres.2004.02.009.Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Department of Building and Real Estate. (M.Sc Thesis). The Hong Kong Polytechnic University: Hong Kong, China.Liu, Q., Xiao, J., & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete Research, 41(10), 1050-1057. doi: 10.1016/j.cemconres.2011.06.007.Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. doi: https://doi. org/10.1016/j.jclepro.2012.07.020.Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255-2264. doi:10.1016/j.wasman.2010.04.012.Medina, C., Banfill, P. F. G., Sanchez de Rojas, M., & Frías, M. (2013). Rheological behaviour of cements blended with containing ceramic wastes. In N. Roussel, & H. Bessaies-Bey (Eds.), Rheology and processing of construction materials: 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials (1 ed., Vol. PRO90, pp. 65-74). Paris: RILEM. Recuperado de https://pureapps2.hw.ac.uk/ws/portalfiles/portal/7700978.Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina GRAL”.Mindess, S., Young, J.F., & Darwin, D. (2003). Concrete. 2nd ed. Upper Saddle River, N.J: Prentice Hall.Otsuki, N.M., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–51. doi: 10.1061/(ASCE)0899- 1561(2003)15:5(443).Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. (Tesis de especialización, Universidad Militar Nueva Granada). Universidad Militar Nueva Granada: Bogotá, Colombia. Recuperado de http://repository.unimilitar.edu.co/ bitstream/10654/11004/1/TRABAJO%20DE%20 GRADO%20ADRIANA%20ISABEL%20PINZON%20 M..pdf.Poon, C., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293–305. doi: 10.1016/j.resconrec.2006.06.005.Ravindrarajah, R.S., & Tam, C.T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29- 38.Ravindrarajah, R.S., Loo, Y.H., & Tam, C.T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 39(141), 214–220.Roussat, N., Dujet, C., & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20. doi:10.1016/j.wasman.2008.04.010.Vázquez, E., Barra, M., Aponte, D., Jiménez, C., & Valls, S. (2014). Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Construction and Building Materials, 67, 61–67. doi: 10.1016/j.conbuildmat.2013.11.028.Wirquin, E., Hahdjeva-Zahaarieva, R., & Buyle-Bodin, F. (2000). Use of water absorption by concrete as a criterion of the durability of concrete – application to recycled aggregate concrete. Materials and Structures, 33(6), 403-408.Xuan, D., Zhan, B., & Poon, C. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67-74. doi: 10.1016/j.cemconcomp.2015.10.018.Zega, C.J., & Di Maio, A.A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. doi: 10.1016/j.wasman.2011.06.011.Zhan, B., Poon, C., Liu, Q., Kou, S., & Shi, C. (2014). Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 67, 3–7. doi: 10.1016/j.conbuildmat.2013.09.008.Agregado reciclado finoConcretoDurabilidadPropiedades mecánicasResistencia a clorurosSorptividadConcreteChloride resistanceDurabilityFine recycled aggregatesMechanical propertiesSorptivityConcretoResistência a cloretosDurabilidadeAgregados reciclados finosPropriedades mecânicasSorvitividadeTHUMBNAILDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdf.jpgDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdf.jpgGenerated Thumbnailimage/jpeg10755https://repositorio.escuelaing.edu.co/bitstream/001/2407/4/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf.jpgf3e46abda681b6526001d4becfb93b9aMD54open accessTEXTDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdf.txtDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdf.txtExtracted texttext/plain36693https://repositorio.escuelaing.edu.co/bitstream/001/2407/3/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf.txt8c26b71aa15c2cd16705035f7fde74f1MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2407/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdfDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial.pdfArtículo de revistaapplication/pdf814532https://repositorio.escuelaing.edu.co/bitstream/001/2407/1/Desempe%c3%b1o%20mec%c3%a1nico%20y%20durable%20de%20concretos%20que%20incorporan%20agregado%20reciclado%20fino%20comercial.pdf7147b65720a4869f777fd70b2e0f3c56MD51open access001/2407oai:repositorio.escuelaing.edu.co:001/24072023-06-10 03:00:36.363open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK