Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects

This paper presents an integrated probabilistic framework that deals with the industrial accidents and domino effects that may occur in an industrial plant. The particular case of tsunamis is detailed in the present paper: simplified models for the inundations depths and run-ups as well as their mec...

Full description

Autores:
Mebarki, Ahmed
Jerez Barbosa, Sandra Rocio
Matasic, Igor
Prodhomme, Gaëtan
Reimeringer, Mathieu
Pensee, Vincent
Anh Vu, Quang
Willot, Adrien
Tipo de recurso:
Part of book
Fecha de publicación:
2013
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1819
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1819
Palabra clave:
Tsunamis
Accidentes de trabajo
Edificios industriales
Industrial buildings
Tsunamis
Industrial accidents
Explosions
Domino effect
Atmospheric tank
Tank under pressure
Risk of failure
Rights
closedAccess
License
© Springer Science+Business Media Dordrecht 2014
id ESCUELAIG2_a99fe71e12988f6d024e135a501fab1d
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1819
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
title Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
spellingShingle Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
Tsunamis
Accidentes de trabajo
Edificios industriales
Industrial buildings
Tsunamis
Industrial accidents
Explosions
Domino effect
Atmospheric tank
Tank under pressure
Risk of failure
title_short Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
title_full Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
title_fullStr Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
title_full_unstemmed Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
title_sort Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
dc.creator.fl_str_mv Mebarki, Ahmed
Jerez Barbosa, Sandra Rocio
Matasic, Igor
Prodhomme, Gaëtan
Reimeringer, Mathieu
Pensee, Vincent
Anh Vu, Quang
Willot, Adrien
dc.contributor.author.none.fl_str_mv Mebarki, Ahmed
Jerez Barbosa, Sandra Rocio
Matasic, Igor
Prodhomme, Gaëtan
Reimeringer, Mathieu
Pensee, Vincent
Anh Vu, Quang
Willot, Adrien
dc.contributor.researchgroup.spa.fl_str_mv Estructuras y Materiales
dc.subject.armarc.spa.fl_str_mv Tsunamis
Accidentes de trabajo
Edificios industriales
topic Tsunamis
Accidentes de trabajo
Edificios industriales
Industrial buildings
Tsunamis
Industrial accidents
Explosions
Domino effect
Atmospheric tank
Tank under pressure
Risk of failure
dc.subject.armarc.eng.fl_str_mv Industrial buildings
dc.subject.proposal.eng.fl_str_mv Tsunamis
Industrial accidents
Explosions
Domino effect
Atmospheric tank
Tank under pressure
Risk of failure
description This paper presents an integrated probabilistic framework that deals with the industrial accidents and domino effects that may occur in an industrial plant. The particular case of tsunamis is detailed in the present paper: simplified models for the inundations depths and run-ups as well as their mechanical effects on industrial tanks. The initial accident may be caused by severe service conditions in any of the tanks either under or at atmospheric pressure, or triggered by a natural hazard such as earthquake, tsunami or extreme floods for instance. This initial event generates, in general, a set of structural fragments, a fire ball, a blast wave as well as critical losses of containment (liquid and gas release and loss). The surrounding facilities may suffer serious damages and may also be a new source of accident and explosion generating afterwards a new sequence of structural fragments, fire ball, blast wave and confinement loss. The structural fragments, the blast wave form and the features of the fire ball can be described following database and feedback collected from past accidents. The surrounding tanks might be under or at atmospheric pressure, and might be buried or not, or protected by physical barriers such as walls. The vulnerability of the potential targets should therefore be investigated in order to assess the risk of propagation of the accidents since cascading sequences of accidents, explosions and fires may take place within the industrial plant, giving rise to the domino effect that threatens any industrial plant. The present research describes the risk of domino effect occurrence. The methodology is developed so that it can be operational and valid for any industrial site. It is supposed to be valid for a set of sizes, forms and kinds of tanks as well as a given geometric disposal on the industrial site. The interaction and the behavior of the targets affected or impacted by the first explosion effects should be described thanks to adequate simplified or sophisticated mechanical models: perforation and penetration of metal fragments when they impact surrounding tanks, as well as global failure such as overturning, buckling, excessive bending or shear effects, etc. The vulnerability analysis is detailed for the case of tanks under the mechanical effects generated by tsunamis.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2021-11-08T15:49:44Z
dc.date.available.none.fl_str_mv 2021-11-08T15:49:44Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9789400772687
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1819
dc.identifier.doi.none.fl_str_mv 10.1007/978-94-007-7269-4_15
identifier_str_mv 9789400772687
10.1007/978-94-007-7269-4_15
url https://repositorio.escuelaing.edu.co/handle/001/1819
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv NTHR;Vol. 35
dc.relation.citationendpage.spa.fl_str_mv 307
dc.relation.citationstartpage.spa.fl_str_mv 271
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofbook.eng.fl_str_mv Tsunami Events and Lessons Learned
dc.relation.references.spa.fl_str_mv Abbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519
Abe K (1993) Estimate of tsunami heights from earthquake magnitudes. In: Proceedings of the IUGG/IOC international tsunami symposium TSUNAMI’93, Wakayama
Abe K (1995) Modeling of the runup heights of the hokkaido-nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys 144(3/4):113–124
Ali SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528
Antonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an extended industrial area. J Loss Prev Process Ind 22:614–624
ARIA base of BARPI, France. www.aria.environnement.gouv.fr
ASCE (2010) Minimum design loads for buildings and other structures, ASCE/SEI standard. American Society of Civil Engineers, Reston, pp 7–10
Askan A, Yucemen MS (2010) Probabilistic methods for the estimation of potential seismic damage: application to reinforced concrete buildings in Turkey. Struct Saf 32:262–271, Elsevier
ATC (2008) Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P646. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency, FEMA and the National Oceanic and Atmospheric Administration, NOAA.: 158 p
ATC (2011) Coastal Construction Manual, FEMA P-55. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency FEMA. II: 400 p
Batdorf SB (1974) A simplified method of elastic-stability analysis for thin cylindrical shells. NACA report – 874: 25 p
Beltrami GM, Di Risio M (2011) Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coast Eng 58:1062–1071, Elsevier
Børvik T, Hooperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int J Impact Eng 28:413–464
Burwell D, Tolkova E, Chawla A (2007) Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model 19:10–30, Elsevier
CCH (2000) City and county of Honolulu building code. Department of Planning and Permitting of Honolulu Hawaii, Honolulu
CEN (2007) EN 1993-1-6 eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures. CEN, Brussels
Chen L, Rotter M (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208
Cheung KF, Wei Y, Yamazaki Y, Yim SCS (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructures in the pacific northwest. Coast Eng 58:970–985, Elsevier
Constantin A (2009) On the relevance of soliton theory to tsunami modelling. Wave Motion 46:420–426, Elsevier
Corbet GG, Reid SR, Johnson W (1995) Impact loading of plates and shells by free flying projectiles: a review. J Impact Eng 18:141–230, 0734-743X(95)00023-2
Cozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure- Part I: probit models. J Hazard Mater A107:67–80
Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA (1994) Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng 21(7):629–643, Pergamon
Eckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723, Elsevier
Federal Emergency Management Agency, FEMA, USA. http://www.fema.gov/photolibrary/photo_details.do?id=42405
Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE (2011) Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Numer Math 67:111–125. doi: 10.1016/j.apnum.2011.06.003, Elsevier
GEBCO (2012) General Bathymetric Chart of the Oceans. Retrieved 15 June 2012, from www.gebco.net
Godoy LA (2007) Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil 21(6):441–449
Goto Y (2008) Tsunami damage to oil storage tanks. In: The 14 World Conference on Earthquake Engineering, Beijing
Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290:46–50, Elsevier
Grasso VF, Singh A (2008) Global environmental alert service (GEAS). Adv Space Res 41:1836–1852, Elsevier
Haugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Metroleum Geol 22:209–217, Elsevier
Heidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376, Elsevier
Helal MA, Mehanna MS (2008) Tsunamis from nature to physics. Chaos Solitons Fractals 36:787–796, Elsevier
Holden PL (1988) Assessment of missile hazards: review of incident experience relevant to major hazard plant. Safety and reliability directorate, Health & Safety Directorate
INERIS (2011) (in French) Note de caractérisation du comportement des équipements industriels à l’inondation. Rapport d'étude DRA-. Adrien Willot et Agnès Vallée, Institut National de l'Environnement Industriel et des Risques
Jin D, Lin J (2011) Managing tsunamis through early warning systems: a multidisciplinary approach. Ocean Coast Manag 54:189–199, Elsevier
Kharif C, Pelinovsky E (2005) Asteroids impact tsunamis. Physique 6:361–366
Koshimura S, Namegaya Y et al (2009) Tsunami fragility – a New measure to identify tsunami damage. J Disaster Res 4(6):479–490
Lees FP (2005) Loss prevention in the process industries, 3rd edn. Butterwort Heinemann, Oxford
Leone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375, Elsevier
Liu PLF, Wang X, Salisbury AJ (2009) Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci 36:2–12, Elsevier
Lovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2011) Tsunami hazard and exposure on the global scale. Earth-Sci Rev, Elsevier. doi:10.1016/j.earscirev.2011.10.002
Lukkunaprasit P, Thanasisathit N et al (2009) Experimental verification of FEMA P646 tsunami loading. J Disaster Res 4(6):410–418
Madsen PA (2010) On the evolution and run-up of tsunamis. J Hydrodyn 22:1–6. doi: 10.1016/S1001-6058(09)60160-8, Elsevier
Marhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites : on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Industries 24(5):477–523
Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2007) A probabilistic model for the vulnerability of metal plates under the impact of cylindrical projectiles. J Loss Prev Process Industries 20:128–134
Mebarki A, Genatios C, Lafuente M (2008a) Risques Naturels et Technologiques : Aléas, Vulnérabilité et Fiabilité des Constructions – vers une formulation probabiliste intégrée. Presses Ponts et Chaussées, Paris, ISBN 978-2-85978-436-2
Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2008b) Reliability analysis of metallic targets under metallic rods impact: towards a simplified probabilistic approach. J Loss Prev Process Industries 21:518–527
Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009a) Structural fragments and explosions in industrial facilities. Part I: probabilistic description of the source terms. J Loss Prev Process Industries 22(4):408–416. doi: 10.1016/j.jlp.2009.02.006
Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009b) Structural fragments and explosions in industrial facilities. Part II: projectile trajectory and probability of impact. J Loss Prev Process Industries 22(4):417–425, 10.1016/j.jlp.2009.02.005
Mebarki A (2009) A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics 466:300–306
Mingguang Z, Juncheng J (2008) An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. J Hazard Mater 158:280–286
Naito C, Cox D et al (2012) Fuel storage container performance during the 2011 Tohoku japan tsunami. J Perform Constr Fac, 10.1061/(ASCE)CF.1943-5509.0000339
Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84, Elsevier
Neilson AJ (1985) Empirical equations for the perforation of mild steel plates. J Impact Eng 3:137–142
Nishi H (2012) Damage on Hazardous Materials Facilities. In: international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, Tokyo
Nistor I, Palermo D et al (2010) Experimental and numerical modeling of tsunami loading on structures. In: International conference on coastal engineering, ASCE
Nistor I, Palermo D et al (2010b) In: Kim YC (ed) Tsunami-induced forces on structures. Handbook of coastal and ocean engineering. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 261–286
Norio O, Ye T, Kajitani Y, Shi P, Tatano H (2011) The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci 2(1):34–42
Ohte S, Yoshizawa H, Chiba N, Shida S (1982) Impact strength of steel plates struck by projectiles. Bull Japan Soc Mech Eng 25:1226–1231
Palermo D, Nistor I (2008) Tsunami-induced loading on structures. Structure Magazine 3:10–13
Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268, Elsevier
Reese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173, Elsevier
Ruiz C, Salvatorelli-D’Angelo F, Thompson VK (1989) Elastic response of thin-wall cylindrical vessels to blast loading. Comput Fluids 32(5):1061–1072
Saatçioğlu M (2009) Performance of structures during the 2004 Indian Ocean tsunami and tsunami induced forces for structural design. Earthquake Tsunamis 11:153–178, A. T. Tankut, Springer Netherlands
Sakakiyama T, Matsuura S et al (2009) Tsunami force acting on oil tanks and buckling analysis for tsunami pressure. J Disaster Res 4(6):427–435
Seveso Inspection Tool (2009) Réservoirs de stockage aériens atmosphériques, Deuxième version test, CRC/SIT/012-F
Sladen A, Hébert H, Schindelé F, Reymond D (2007) L’aléa tsunami en polynésie française : apports de la simulation numérique. C R Géosci 339:303–316, Elsevier
Suguino H, Iwabuchi Y et al (2008) Development of probabilistic methodology for evaluating tsunami risk on nuclear power plants. In: The 14th World Conference on Earthquake Engineering, Beijing
Talaslidis DG, Manolis GD, Paraskevopoulos E, Panagiotopoulos C, Pelekasis N (2004) The Sun website, UK: http://www.thesun.co.uk/sol/homepage/news/3615721/Four-die-in-oil-refinery-explosion.html
TNO (2005a) Methods for the calculation of possible damage to people and objects resulting from releases from hazardous materials. The Green Book CPR16E
TNO (2005b) Methods for the calculations of physical effects – due to release of hazardous materials (liquids and gases). The Yellow Book CPR14E 2005
Todorovska MII, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn Earthq Eng 22:129–141, Elsevier
Tsamopoulos JA (2004) Risk analysis of industrial structures under extreme transient loads. Soil Dyn Earthq Eng 24:435–448
Università degli Studi di Torino. Laboratory of Molecular Electrochemistry, Italy. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Explosion.html
USGS (2011) United States Geological Survey. Retrieved 13/03/2012, 2012, from www.usgs.gov
van den Berg AC (1985) The multi-energy method, a framework for vapor cloud explosion blast prediction. J Hazard Mater 12:1–10
van Zijll de Jong SL, Dominey-Howes D, Roman CE, Calgaro E, Gero A, Veland S, Bird DK, Muliaina T, Tuiloma-Sua D, Afioga TL (2011) Process, practice and priorities – key lessons learnt undertaking sensitive social reconnaissance research as part of an (UNESCO-IOC) International Tsunami Survey Team. Earth-Sci Rev 107:174–192, Elsevier
Ward SN (2011) In: Gupta HK (ed) Tsunamis. Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1473–1492
Wijetunge JJ (2006) Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Haz 24(3):225–240
Wilson RI, Dengler LA, Goltz JD, Legg MR, Miller KM, Ritchie A, Whitmore PM (2011) Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami. Earth-Sci Rev 107:193–200, Elsevier
Xie M (2007) Thermodynamic and gas dynamic aspects of a BLEVE, Delft University of Technology, No.: 04–200708
Yeh H (2008) Maximum fluid forces in the tsunami runup zone. J Waterw Port Coast Ocean Eng 132(6):496–501
Zhang DH, Yip TL, Ng CO (2009) Predicting tsunami arrivals: estimates and policy implications. Mar Policy 33:643–650, Elsevier
Zhao BB, Duan WY, Webster WC (2011) Tsunami simulation with Green-Naghdi theory. Ocean Eng 3:389–396, Elsevier
dc.rights.eng.fl_str_mv © Springer Science+Business Media Dordrecht 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv © Springer Science+Business Media Dordrecht 2014
https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 36 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
dc.publisher.place.spa.fl_str_mv Switzerland
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1819/5/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1819/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1819/3/Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1819/6/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1819/4/Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1819/7/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.jpg
bitstream.checksum.fl_str_mv 7ea5d7fc511edc5bd45911db8ecf5144
5a7ca94c2e5326ee169f979d71d0f06e
d784fa8b6d98d27699781bd9a7cf19f0
fcc22f13d27b396b0f77b3a692f532f9
beff037f98f331fb1cf477a52e364762
a514649f2e935bfd06deca3bddd33275
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355636010352640
spelling Mebarki, Ahmed8f74503a40538d29d5bc59be738c615e600Jerez Barbosa, Sandra Rociocf2dd14f8cca29e0bd6bc74523154dc8600Matasic, Igor555c48ac2e357f36a0ac9c764b4c648e600Prodhomme, Gaëtan9d934b1ca5b378da89856671d056d299600Reimeringer, Mathieu40bfb8130b110801191331d1d7c0f24f600Pensee, Vincent8a7a84d73bf1f038a02c4622260f5253600Anh Vu, Quang508cd905da0177b009811f4f94bdf7e9600Willot, Adrien084c43d8b4090434ace586e8f8443843600Estructuras y Materiales2021-11-08T15:49:44Z2021-11-08T15:49:44Z20139789400772687https://repositorio.escuelaing.edu.co/handle/001/181910.1007/978-94-007-7269-4_15This paper presents an integrated probabilistic framework that deals with the industrial accidents and domino effects that may occur in an industrial plant. The particular case of tsunamis is detailed in the present paper: simplified models for the inundations depths and run-ups as well as their mechanical effects on industrial tanks. The initial accident may be caused by severe service conditions in any of the tanks either under or at atmospheric pressure, or triggered by a natural hazard such as earthquake, tsunami or extreme floods for instance. This initial event generates, in general, a set of structural fragments, a fire ball, a blast wave as well as critical losses of containment (liquid and gas release and loss). The surrounding facilities may suffer serious damages and may also be a new source of accident and explosion generating afterwards a new sequence of structural fragments, fire ball, blast wave and confinement loss. The structural fragments, the blast wave form and the features of the fire ball can be described following database and feedback collected from past accidents. The surrounding tanks might be under or at atmospheric pressure, and might be buried or not, or protected by physical barriers such as walls. The vulnerability of the potential targets should therefore be investigated in order to assess the risk of propagation of the accidents since cascading sequences of accidents, explosions and fires may take place within the industrial plant, giving rise to the domino effect that threatens any industrial plant. The present research describes the risk of domino effect occurrence. The methodology is developed so that it can be operational and valid for any industrial site. It is supposed to be valid for a set of sizes, forms and kinds of tanks as well as a given geometric disposal on the industrial site. The interaction and the behavior of the targets affected or impacted by the first explosion effects should be described thanks to adequate simplified or sophisticated mechanical models: perforation and penetration of metal fragments when they impact surrounding tanks, as well as global failure such as overturning, buckling, excessive bending or shear effects, etc. The vulnerability analysis is detailed for the case of tanks under the mechanical effects generated by tsunamis.Este documento presenta un marco probabilístico integrado que trata los accidentes industriales y los efectos dominó que pueden producirse en una planta industrial. En el presente trabajo se detalla el caso particular de los tsunamis: modelos simplificados para las profundidades de las inundaciones y los run-ups, así como sus efectos mecánicos en los tanques industriales. El accidente inicial puede ser causado por condiciones severas de servicio en cualquiera de los tanques, ya sea bajo o a presión atmosférica, o desencadenado por un peligro natural como un terremoto, un tsunami o inundaciones extremas, por ejemplo. Este evento inicial genera, en general, un conjunto de fragmentos estructurales, una bola de fuego, una onda expansiva, así como pérdidas críticas de contención (liberación y pérdida de líquidos y gases). Las instalaciones circundantes pueden sufrir graves daños y también pueden ser una nueva fuente de accidentes y explosiones generando después una nueva secuencia de fragmentos estructurales, bola de fuego, onda expansiva y pérdida de confinamiento. Los fragmentos estructurales, la forma de la onda expansiva y las características de la bola de fuego pueden describirse a partir de la base de datos y de la información recogida en accidentes anteriores. Los tanques circundantes pueden estar bajo o a presión atmosférica, y pueden estar enterrados o no, o protegidos por barreras físicas como muros. Por lo tanto, debe investigarse la vulnerabilidad de los objetivos potenciales para evaluar el riesgo de propagación de los accidentes, ya que pueden producirse secuencias en cascada de accidentes, explosiones e incendios dentro de la planta industrial, dando lugar al efecto dominó que amenaza a cualquier planta industrial. La presente investigación describe el riesgo de ocurrencia del efecto dominó. La metodología se desarrolla de forma que pueda ser operativa y válida para cualquier planta industrial. Se supone que es válida para un conjunto de tamaños, formas y tipos de depósitos, así como para una determinada disposición geométrica en el emplazamiento industrial. La interacción y el comportamiento de los objetivos afectados o impactados por los primeros efectos de la explosión deben describirse gracias a modelos mecánicos adecuados, simplificados o sofisticados: perforación y penetración de fragmentos metálicos cuando impactan en los tanques circundantes, así como fallos globales como el vuelco, el pandeo, los efectos de flexión o cizallamiento excesivos, etc. El análisis de vulnerabilidad se detalla para el caso de los tanques bajo los efectos mecánicos generados por los tsunamis. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator36 páginasapplication/pdfengSpringer NatureSwitzerlandNTHR;Vol. 35307271N/ATsunami Events and Lessons LearnedAbbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519Abe K (1993) Estimate of tsunami heights from earthquake magnitudes. In: Proceedings of the IUGG/IOC international tsunami symposium TSUNAMI’93, WakayamaAbe K (1995) Modeling of the runup heights of the hokkaido-nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys 144(3/4):113–124Ali SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528Antonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an extended industrial area. J Loss Prev Process Ind 22:614–624ARIA base of BARPI, France. www.aria.environnement.gouv.frASCE (2010) Minimum design loads for buildings and other structures, ASCE/SEI standard. American Society of Civil Engineers, Reston, pp 7–10Askan A, Yucemen MS (2010) Probabilistic methods for the estimation of potential seismic damage: application to reinforced concrete buildings in Turkey. Struct Saf 32:262–271, ElsevierATC (2008) Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P646. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency, FEMA and the National Oceanic and Atmospheric Administration, NOAA.: 158 pATC (2011) Coastal Construction Manual, FEMA P-55. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency FEMA. II: 400 pBatdorf SB (1974) A simplified method of elastic-stability analysis for thin cylindrical shells. NACA report – 874: 25 pBeltrami GM, Di Risio M (2011) Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coast Eng 58:1062–1071, ElsevierBørvik T, Hooperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int J Impact Eng 28:413–464Burwell D, Tolkova E, Chawla A (2007) Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model 19:10–30, ElsevierCCH (2000) City and county of Honolulu building code. Department of Planning and Permitting of Honolulu Hawaii, HonoluluCEN (2007) EN 1993-1-6 eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures. CEN, BrusselsChen L, Rotter M (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208Cheung KF, Wei Y, Yamazaki Y, Yim SCS (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructures in the pacific northwest. Coast Eng 58:970–985, ElsevierConstantin A (2009) On the relevance of soliton theory to tsunami modelling. Wave Motion 46:420–426, ElsevierCorbet GG, Reid SR, Johnson W (1995) Impact loading of plates and shells by free flying projectiles: a review. J Impact Eng 18:141–230, 0734-743X(95)00023-2Cozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure- Part I: probit models. J Hazard Mater A107:67–80Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA (1994) Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng 21(7):629–643, PergamonEckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723, ElsevierFederal Emergency Management Agency, FEMA, USA. http://www.fema.gov/photolibrary/photo_details.do?id=42405Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE (2011) Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Numer Math 67:111–125. doi: 10.1016/j.apnum.2011.06.003, ElsevierGEBCO (2012) General Bathymetric Chart of the Oceans. Retrieved 15 June 2012, from www.gebco.netGodoy LA (2007) Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil 21(6):441–449Goto Y (2008) Tsunami damage to oil storage tanks. In: The 14 World Conference on Earthquake Engineering, BeijingGoto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290:46–50, ElsevierGrasso VF, Singh A (2008) Global environmental alert service (GEAS). Adv Space Res 41:1836–1852, ElsevierHaugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Metroleum Geol 22:209–217, ElsevierHeidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376, ElsevierHelal MA, Mehanna MS (2008) Tsunamis from nature to physics. Chaos Solitons Fractals 36:787–796, ElsevierHolden PL (1988) Assessment of missile hazards: review of incident experience relevant to major hazard plant. Safety and reliability directorate, Health & Safety DirectorateINERIS (2011) (in French) Note de caractérisation du comportement des équipements industriels à l’inondation. Rapport d'étude DRA-. Adrien Willot et Agnès Vallée, Institut National de l'Environnement Industriel et des RisquesJin D, Lin J (2011) Managing tsunamis through early warning systems: a multidisciplinary approach. Ocean Coast Manag 54:189–199, ElsevierKharif C, Pelinovsky E (2005) Asteroids impact tsunamis. Physique 6:361–366Koshimura S, Namegaya Y et al (2009) Tsunami fragility – a New measure to identify tsunami damage. J Disaster Res 4(6):479–490Lees FP (2005) Loss prevention in the process industries, 3rd edn. Butterwort Heinemann, OxfordLeone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375, ElsevierLiu PLF, Wang X, Salisbury AJ (2009) Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci 36:2–12, ElsevierLovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2011) Tsunami hazard and exposure on the global scale. Earth-Sci Rev, Elsevier. doi:10.1016/j.earscirev.2011.10.002Lukkunaprasit P, Thanasisathit N et al (2009) Experimental verification of FEMA P646 tsunami loading. J Disaster Res 4(6):410–418Madsen PA (2010) On the evolution and run-up of tsunamis. J Hydrodyn 22:1–6. doi: 10.1016/S1001-6058(09)60160-8, ElsevierMarhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites : on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Industries 24(5):477–523Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2007) A probabilistic model for the vulnerability of metal plates under the impact of cylindrical projectiles. J Loss Prev Process Industries 20:128–134Mebarki A, Genatios C, Lafuente M (2008a) Risques Naturels et Technologiques : Aléas, Vulnérabilité et Fiabilité des Constructions – vers une formulation probabiliste intégrée. Presses Ponts et Chaussées, Paris, ISBN 978-2-85978-436-2Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2008b) Reliability analysis of metallic targets under metallic rods impact: towards a simplified probabilistic approach. J Loss Prev Process Industries 21:518–527Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009a) Structural fragments and explosions in industrial facilities. Part I: probabilistic description of the source terms. J Loss Prev Process Industries 22(4):408–416. doi: 10.1016/j.jlp.2009.02.006Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009b) Structural fragments and explosions in industrial facilities. Part II: projectile trajectory and probability of impact. J Loss Prev Process Industries 22(4):417–425, 10.1016/j.jlp.2009.02.005Mebarki A (2009) A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics 466:300–306Mingguang Z, Juncheng J (2008) An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. J Hazard Mater 158:280–286Naito C, Cox D et al (2012) Fuel storage container performance during the 2011 Tohoku japan tsunami. J Perform Constr Fac, 10.1061/(ASCE)CF.1943-5509.0000339Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84, ElsevierNeilson AJ (1985) Empirical equations for the perforation of mild steel plates. J Impact Eng 3:137–142Nishi H (2012) Damage on Hazardous Materials Facilities. In: international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, TokyoNistor I, Palermo D et al (2010) Experimental and numerical modeling of tsunami loading on structures. In: International conference on coastal engineering, ASCENistor I, Palermo D et al (2010b) In: Kim YC (ed) Tsunami-induced forces on structures. Handbook of coastal and ocean engineering. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 261–286Norio O, Ye T, Kajitani Y, Shi P, Tatano H (2011) The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci 2(1):34–42Ohte S, Yoshizawa H, Chiba N, Shida S (1982) Impact strength of steel plates struck by projectiles. Bull Japan Soc Mech Eng 25:1226–1231Palermo D, Nistor I (2008) Tsunami-induced loading on structures. Structure Magazine 3:10–13Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268, ElsevierReese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173, ElsevierRuiz C, Salvatorelli-D’Angelo F, Thompson VK (1989) Elastic response of thin-wall cylindrical vessels to blast loading. Comput Fluids 32(5):1061–1072Saatçioğlu M (2009) Performance of structures during the 2004 Indian Ocean tsunami and tsunami induced forces for structural design. Earthquake Tsunamis 11:153–178, A. T. Tankut, Springer NetherlandsSakakiyama T, Matsuura S et al (2009) Tsunami force acting on oil tanks and buckling analysis for tsunami pressure. J Disaster Res 4(6):427–435Seveso Inspection Tool (2009) Réservoirs de stockage aériens atmosphériques, Deuxième version test, CRC/SIT/012-FSladen A, Hébert H, Schindelé F, Reymond D (2007) L’aléa tsunami en polynésie française : apports de la simulation numérique. C R Géosci 339:303–316, ElsevierSuguino H, Iwabuchi Y et al (2008) Development of probabilistic methodology for evaluating tsunami risk on nuclear power plants. In: The 14th World Conference on Earthquake Engineering, BeijingTalaslidis DG, Manolis GD, Paraskevopoulos E, Panagiotopoulos C, Pelekasis N (2004) The Sun website, UK: http://www.thesun.co.uk/sol/homepage/news/3615721/Four-die-in-oil-refinery-explosion.htmlTNO (2005a) Methods for the calculation of possible damage to people and objects resulting from releases from hazardous materials. The Green Book CPR16ETNO (2005b) Methods for the calculations of physical effects – due to release of hazardous materials (liquids and gases). The Yellow Book CPR14E 2005Todorovska MII, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn Earthq Eng 22:129–141, ElsevierTsamopoulos JA (2004) Risk analysis of industrial structures under extreme transient loads. Soil Dyn Earthq Eng 24:435–448Università degli Studi di Torino. Laboratory of Molecular Electrochemistry, Italy. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Explosion.htmlUSGS (2011) United States Geological Survey. Retrieved 13/03/2012, 2012, from www.usgs.govvan den Berg AC (1985) The multi-energy method, a framework for vapor cloud explosion blast prediction. J Hazard Mater 12:1–10van Zijll de Jong SL, Dominey-Howes D, Roman CE, Calgaro E, Gero A, Veland S, Bird DK, Muliaina T, Tuiloma-Sua D, Afioga TL (2011) Process, practice and priorities – key lessons learnt undertaking sensitive social reconnaissance research as part of an (UNESCO-IOC) International Tsunami Survey Team. Earth-Sci Rev 107:174–192, ElsevierWard SN (2011) In: Gupta HK (ed) Tsunamis. Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1473–1492Wijetunge JJ (2006) Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Haz 24(3):225–240Wilson RI, Dengler LA, Goltz JD, Legg MR, Miller KM, Ritchie A, Whitmore PM (2011) Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami. Earth-Sci Rev 107:193–200, ElsevierXie M (2007) Thermodynamic and gas dynamic aspects of a BLEVE, Delft University of Technology, No.: 04–200708Yeh H (2008) Maximum fluid forces in the tsunami runup zone. J Waterw Port Coast Ocean Eng 132(6):496–501Zhang DH, Yip TL, Ng CO (2009) Predicting tsunami arrivals: estimates and policy implications. Mar Policy 33:643–650, ElsevierZhao BB, Duan WY, Webster WC (2011) Tsunami simulation with Green-Naghdi theory. Ocean Eng 3:389–396, Elsevier© Springer Science+Business Media Dordrecht 2014https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/closedAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_14cbDomino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis EffectsCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85TsunamisAccidentes de trabajoEdificios industrialesIndustrial buildingsTsunamisIndustrial accidentsExplosionsDomino effectAtmospheric tankTank under pressureRisk of failureORIGINALChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdfChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdfCapítulo - Parte de Libroapplication/pdf1230485https://repositorio.escuelaing.edu.co/bitstream/001/1819/5/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf7ea5d7fc511edc5bd45911db8ecf5144MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1819/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessTEXTDomino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.txtDomino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1819/3/Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD53metadata only accessChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.txtChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.txtExtracted texttext/plain73819https://repositorio.escuelaing.edu.co/bitstream/001/1819/6/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.txtfcc22f13d27b396b0f77b3a692f532f9MD56metadata only accessTHUMBNAILDomino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.jpgDomino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.jpgGenerated Thumbnailimage/jpeg13283https://repositorio.escuelaing.edu.co/bitstream/001/1819/4/Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.jpgbeff037f98f331fb1cf477a52e364762MD54open accessChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.jpgChapter - Domino Effects and Industrial Risks Integrated Probabilistic Framework – Case of Tsunamis Effects.pdf.jpgGenerated Thumbnailimage/jpeg12854https://repositorio.escuelaing.edu.co/bitstream/001/1819/7/Chapter%20-%20Domino%20Effects%20and%20Industrial%20Risks%20Integrated%20Probabilistic%20Framework%20%e2%80%93%20Case%20of%20Tsunamis%20Effects.pdf.jpga514649f2e935bfd06deca3bddd33275MD57metadata only access001/1819oai:repositorio.escuelaing.edu.co:001/18192022-09-29 03:01:14.949metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK