Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants

The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This p...

Full description

Autores:
Mebarki, Ahmed
Willot, Adrien
Reimeringer, Mathieu
Jerez Barbosa, Sandra Rocio
Prod’hommeb, Gaëtan
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1822
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1822
Palabra clave:
Tsunamis
Resiliencia
Curvas de esfuerzo-deformación
Edificios industriales
Zonas de riesgo de tsunami
Tanques de almacenamiento
Stress-strain curves
Industrial buildings
Tsunami hazard zones
Storage tanks
Resilience
Vulnerability
Fragility
Hazard
Risk
Industrial plants
Metal tanks
Rights
openAccess
License
© 2014 The Authors. Published by Elsevier Ltd.
id ESCUELAIG2_a1494177b7e45f0bb5a42ae534bfdfbc
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1822
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
title Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
spellingShingle Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
Tsunamis
Resiliencia
Curvas de esfuerzo-deformación
Edificios industriales
Zonas de riesgo de tsunami
Tanques de almacenamiento
Stress-strain curves
Industrial buildings
Tsunami hazard zones
Storage tanks
Resilience
Vulnerability
Fragility
Hazard
Risk
Industrial plants
Metal tanks
title_short Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
title_full Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
title_fullStr Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
title_full_unstemmed Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
title_sort Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
dc.creator.fl_str_mv Mebarki, Ahmed
Willot, Adrien
Reimeringer, Mathieu
Jerez Barbosa, Sandra Rocio
Prod’hommeb, Gaëtan
dc.contributor.author.none.fl_str_mv Mebarki, Ahmed
Willot, Adrien
Reimeringer, Mathieu
Jerez Barbosa, Sandra Rocio
Prod’hommeb, Gaëtan
dc.contributor.researchgroup.spa.fl_str_mv Estructuras y Materiales
dc.subject.armarc.spa.fl_str_mv Tsunamis
Resiliencia
Curvas de esfuerzo-deformación
Edificios industriales
Zonas de riesgo de tsunami
Tanques de almacenamiento
topic Tsunamis
Resiliencia
Curvas de esfuerzo-deformación
Edificios industriales
Zonas de riesgo de tsunami
Tanques de almacenamiento
Stress-strain curves
Industrial buildings
Tsunami hazard zones
Storage tanks
Resilience
Vulnerability
Fragility
Hazard
Risk
Industrial plants
Metal tanks
dc.subject.armarc.eng.fl_str_mv Stress-strain curves
Industrial buildings
Tsunami hazard zones
Storage tanks
dc.subject.proposal.eng.fl_str_mv Resilience
Vulnerability
Fragility
Hazard
Risk
Industrial plants
Metal tanks
description The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This paper considers different structures and focuses on several parameters which govern resilience together with their mechanical vulnerability under various hazards. A new method of theoretically measuring resilience, its link with mechanical vulnerability and its sensitivity analysis are investigated for industrial plants under the effects of flood and tsunami hazards: -Coastal industrial plants under the effects of a tsunami hazard: structural failure in tanks results from buoyancy (uplift), overturning, sliding by shear effect, excessive bending, or buckling. -Vulnerability and fragility curves are developed for various tanks of small and large sizes.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2021-11-08T16:33:04Z
dc.date.available.none.fl_str_mv 2021-11-08T16:33:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1877-7058
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1822
dc.identifier.doi.none.fl_str_mv 10.1016/j.proeng.2014.10.520
identifier_str_mv 1877-7058
10.1016/j.proeng.2014.10.520
url https://repositorio.escuelaing.edu.co/handle/001/1822
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 121
dc.relation.citationstartpage.spa.fl_str_mv 116
dc.relation.citationvolume.spa.fl_str_mv 84
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Procedia Engineering
dc.relation.references.spa.fl_str_mv K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Resilience-based network component important measures Reliability Engineering and System Safety, 117 (2012), pp. 89-97
Barroca B., Serre D. (2013) Behind the barriers: a resilience conceptual model. SAPIENS.http://sapiens.revues.org/1529.
G.P. Cimellaro, A.M. Reinhorn, M. Bruneau Framework for analytical quantification of disaster resilience Engineering Structures, 32 (2010), pp. 3639-3649
R. Francis, B. Bekera A metric and framework for resilience analysis of engineered and infrastructure systems Reliability Engineering and System Safety, 121 (2010), pp. 90-103
L.T.T. Dinh, H. Pasman, X. Gao, M.S. Mannan Resilience engineering of industrial processes: Principles and contributing factors Journal of Loss Prevention in the Process Industries, 25 (2012), pp. 233-241
Mebarki A., Barroca B. (2014) Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Vicente Santiago-Fandiño,Yev A. Kontar and YoshiyukiKaneda. (eds) «Post-Tsunami Hazard Reconstruction and Restoration», Advances in Natural and Technological Hazards Research, Springer (in Press).
Mebarki A., Jerez S., Matasic I., Prodhomme G., Reimeringer M., Pensée V., Vu Q.A., Willot A. (2014) Domino effects and industrial risks: integrated probabilistic framework – Case of tsunamis effects. In Y.A. Kontar et al. (eds) «Tsunami Events and Lessons Learned :Environnemental and Societal Significance», Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.
A. Mebarki, N. Valencia, J.L. Salagnac, B. Barroca Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale Nat. Hazards Earth Syst. Sci., 12 (2012), pp. 1799-1809, 10.5194/nhess-12-1799-2012
Mebarki A., Genatios C., Lafuente M. (2008) RisquesNaturels et Technologiques: Aléas, Vulnérabilité et Fiabilité des Constructions – versune formulation probabilisteintégrée, Presses Ponts et Chaussées Ed., ISBN 978-2-85978-436-2, Paris.
E. Miller-Hooks, X. Zhang, R. Faturechi Measuring and maximizing resilience of freight transportation networks Computers & Operations Research, 39 (2012), pp. 1633-1643
K.A. Ouedraogo, S. Enjalbert, F. Vanderhaegen How to learn from the resilience of Human-Machine Systems? Engineering Applications of Artificial Intelligence, 26 (2013), pp. 24-34
M. Ouyang, L. Dueñas-Osorio, X. Min A three-stage resilience analysis framework for urban infrastructure systems Structural Safety, 36–37 (2012), pp. 23-31
R. Pant, K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Stochastic measures of resilience and their application to container terminals Computers & Industrial Engineering, 70 (2014), pp. 183-194
G.H.A. Shirali, M. Motamedzade, I. Mohammadfam, V. Ebrahimpour, A. Moghimbeigi Challenges in building resilience engineering (RE) and adaptive capacity: A field study in chemical plant Process Safety and Environmental Protection, 90 (2012), pp. 83-90
R. Steen, T. Aven A risk perspective suitable for resilience engineering Safety Science, 49 (2011), pp. 292-297
Tisserand S. (2007) La Resilience. Que Sais-je? PUF, Ed. Point Delta (in French).
dc.rights.eng.fl_str_mv © 2014 The Authors. Published by Elsevier Ltd.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv © 2014 The Authors. Published by Elsevier Ltd.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Science Direct
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877705814018736
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1822/1/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1822/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1822/3/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1822/4/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.jpg
bitstream.checksum.fl_str_mv 00059587d9fa8f70e9cde853e4d75059
5a7ca94c2e5326ee169f979d71d0f06e
29f3602e7c95e763dc87d345a27353ad
d80f27c2afea846df148df68e302d412
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355637992161280
spelling Mebarki, Ahmed8f74503a40538d29d5bc59be738c615e600Willot, Adrien084c43d8b4090434ace586e8f8443843600Reimeringer, Mathieu40bfb8130b110801191331d1d7c0f24f600Jerez Barbosa, Sandra Rociocf2dd14f8cca29e0bd6bc74523154dc8600Prod’hommeb, Gaëtanf4bb397650517bdc2b3240ac70879981600Estructuras y Materiales2021-11-08T16:33:04Z2021-11-08T16:33:04Z20141877-7058https://repositorio.escuelaing.edu.co/handle/001/182210.1016/j.proeng.2014.10.520The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This paper considers different structures and focuses on several parameters which govern resilience together with their mechanical vulnerability under various hazards. A new method of theoretically measuring resilience, its link with mechanical vulnerability and its sensitivity analysis are investigated for industrial plants under the effects of flood and tsunami hazards: -Coastal industrial plants under the effects of a tsunami hazard: structural failure in tanks results from buoyancy (uplift), overturning, sliding by shear effect, excessive bending, or buckling. -Vulnerability and fragility curves are developed for various tanks of small and large sizes.El enfoque de la resiliencia representa un marco unificado e integrado para el proceso de restauración tras las catástrofes. Bajo determinados valores de los parámetros de resiliencia, un sistema resiliente es capaz de recuperarse y fortalecerse dentro de un periodo de recuperación definido; de lo contrario, es un sistema no resiliente. En este artículo se estudian diferentes estructuras y se centran en varios parámetros que rigen la resiliencia, junto con su vulnerabilidad mecánica ante diversos peligros. Se investiga un nuevo método de medición teórica de la resiliencia, su relación con la vulnerabilidad mecánica y su análisis de sensibilidad para plantas industriales bajo los efectos de los peligros de inundación y tsunami: -Plantas industriales costeras bajo los efectos de un peligro de tsunami: el fallo estructural en los tanques se produce por flotación (levantamiento), vuelco, deslizamiento por efecto de cizallamiento, flexión excesiva o pandeo. -Se desarrollan curvas de vulnerabilidad y fragilidad para diversos tanques de pequeño y gran tamaño. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translatora University Paris-Est, Lab. Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Bd Descartes, 77454, Marne-La-Vallée, France b INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Technologique ALATA,BP 2 - 60550 Verneuil-en-Halatte, France c Escuela Colombiana de Ingeniería, Av. 13 No.205-59, Bogotá, Colombia6 páginasapplication/pdfengScience Direct© 2014 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S1877705814018736Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial PlantsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8512111684N/AProcedia EngineeringK. Barker, J.E. Ramirez-Marquez, C.M. Rocco Resilience-based network component important measures Reliability Engineering and System Safety, 117 (2012), pp. 89-97Barroca B., Serre D. (2013) Behind the barriers: a resilience conceptual model. SAPIENS.http://sapiens.revues.org/1529.G.P. Cimellaro, A.M. Reinhorn, M. Bruneau Framework for analytical quantification of disaster resilience Engineering Structures, 32 (2010), pp. 3639-3649R. Francis, B. Bekera A metric and framework for resilience analysis of engineered and infrastructure systems Reliability Engineering and System Safety, 121 (2010), pp. 90-103L.T.T. Dinh, H. Pasman, X. Gao, M.S. Mannan Resilience engineering of industrial processes: Principles and contributing factors Journal of Loss Prevention in the Process Industries, 25 (2012), pp. 233-241Mebarki A., Barroca B. (2014) Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Vicente Santiago-Fandiño,Yev A. Kontar and YoshiyukiKaneda. (eds) «Post-Tsunami Hazard Reconstruction and Restoration», Advances in Natural and Technological Hazards Research, Springer (in Press).Mebarki A., Jerez S., Matasic I., Prodhomme G., Reimeringer M., Pensée V., Vu Q.A., Willot A. (2014) Domino effects and industrial risks: integrated probabilistic framework – Case of tsunamis effects. In Y.A. Kontar et al. (eds) «Tsunami Events and Lessons Learned :Environnemental and Societal Significance», Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.A. Mebarki, N. Valencia, J.L. Salagnac, B. Barroca Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale Nat. Hazards Earth Syst. Sci., 12 (2012), pp. 1799-1809, 10.5194/nhess-12-1799-2012Mebarki A., Genatios C., Lafuente M. (2008) RisquesNaturels et Technologiques: Aléas, Vulnérabilité et Fiabilité des Constructions – versune formulation probabilisteintégrée, Presses Ponts et Chaussées Ed., ISBN 978-2-85978-436-2, Paris.E. Miller-Hooks, X. Zhang, R. Faturechi Measuring and maximizing resilience of freight transportation networks Computers & Operations Research, 39 (2012), pp. 1633-1643K.A. Ouedraogo, S. Enjalbert, F. Vanderhaegen How to learn from the resilience of Human-Machine Systems? Engineering Applications of Artificial Intelligence, 26 (2013), pp. 24-34M. Ouyang, L. Dueñas-Osorio, X. Min A three-stage resilience analysis framework for urban infrastructure systems Structural Safety, 36–37 (2012), pp. 23-31R. Pant, K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Stochastic measures of resilience and their application to container terminals Computers & Industrial Engineering, 70 (2014), pp. 183-194G.H.A. Shirali, M. Motamedzade, I. Mohammadfam, V. Ebrahimpour, A. Moghimbeigi Challenges in building resilience engineering (RE) and adaptive capacity: A field study in chemical plant Process Safety and Environmental Protection, 90 (2012), pp. 83-90R. Steen, T. Aven A risk perspective suitable for resilience engineering Safety Science, 49 (2011), pp. 292-297Tisserand S. (2007) La Resilience. Que Sais-je? PUF, Ed. Point Delta (in French).TsunamisResilienciaCurvas de esfuerzo-deformaciónEdificios industrialesZonas de riesgo de tsunamiTanques de almacenamientoStress-strain curvesIndustrial buildingsTsunami hazard zonesStorage tanksResilienceVulnerabilityFragilityHazardRiskIndustrial plantsMetal tanksORIGINALVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdfVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdfapplication/pdf527831https://repositorio.escuelaing.edu.co/bitstream/001/1822/1/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf00059587d9fa8f70e9cde853e4d75059MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1822/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessTEXTVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.txtVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.txtExtracted texttext/plain14438https://repositorio.escuelaing.edu.co/bitstream/001/1822/3/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.txt29f3602e7c95e763dc87d345a27353adMD53open accessTHUMBNAILVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.jpgVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.jpgGenerated Thumbnailimage/jpeg11807https://repositorio.escuelaing.edu.co/bitstream/001/1822/4/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.jpgd80f27c2afea846df148df68e302d412MD54open access001/1822oai:repositorio.escuelaing.edu.co:001/18222022-06-30 14:51:43.373open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK