Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants
The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This p...
- Autores:
-
Mebarki, Ahmed
Willot, Adrien
Reimeringer, Mathieu
Jerez Barbosa, Sandra Rocio
Prod’hommeb, Gaëtan
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1822
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1822
- Palabra clave:
- Tsunamis
Resiliencia
Curvas de esfuerzo-deformación
Edificios industriales
Zonas de riesgo de tsunami
Tanques de almacenamiento
Stress-strain curves
Industrial buildings
Tsunami hazard zones
Storage tanks
Resilience
Vulnerability
Fragility
Hazard
Risk
Industrial plants
Metal tanks
- Rights
- openAccess
- License
- © 2014 The Authors. Published by Elsevier Ltd.
id |
ESCUELAIG2_a1494177b7e45f0bb5a42ae534bfdfbc |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1822 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
title |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
spellingShingle |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants Tsunamis Resiliencia Curvas de esfuerzo-deformación Edificios industriales Zonas de riesgo de tsunami Tanques de almacenamiento Stress-strain curves Industrial buildings Tsunami hazard zones Storage tanks Resilience Vulnerability Fragility Hazard Risk Industrial plants Metal tanks |
title_short |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
title_full |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
title_fullStr |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
title_full_unstemmed |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
title_sort |
Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial Plants |
dc.creator.fl_str_mv |
Mebarki, Ahmed Willot, Adrien Reimeringer, Mathieu Jerez Barbosa, Sandra Rocio Prod’hommeb, Gaëtan |
dc.contributor.author.none.fl_str_mv |
Mebarki, Ahmed Willot, Adrien Reimeringer, Mathieu Jerez Barbosa, Sandra Rocio Prod’hommeb, Gaëtan |
dc.contributor.researchgroup.spa.fl_str_mv |
Estructuras y Materiales |
dc.subject.armarc.spa.fl_str_mv |
Tsunamis Resiliencia Curvas de esfuerzo-deformación Edificios industriales Zonas de riesgo de tsunami Tanques de almacenamiento |
topic |
Tsunamis Resiliencia Curvas de esfuerzo-deformación Edificios industriales Zonas de riesgo de tsunami Tanques de almacenamiento Stress-strain curves Industrial buildings Tsunami hazard zones Storage tanks Resilience Vulnerability Fragility Hazard Risk Industrial plants Metal tanks |
dc.subject.armarc.eng.fl_str_mv |
Stress-strain curves Industrial buildings Tsunami hazard zones Storage tanks |
dc.subject.proposal.eng.fl_str_mv |
Resilience Vulnerability Fragility Hazard Risk Industrial plants Metal tanks |
description |
The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This paper considers different structures and focuses on several parameters which govern resilience together with their mechanical vulnerability under various hazards. A new method of theoretically measuring resilience, its link with mechanical vulnerability and its sensitivity analysis are investigated for industrial plants under the effects of flood and tsunami hazards: -Coastal industrial plants under the effects of a tsunami hazard: structural failure in tanks results from buoyancy (uplift), overturning, sliding by shear effect, excessive bending, or buckling. -Vulnerability and fragility curves are developed for various tanks of small and large sizes. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2021-11-08T16:33:04Z |
dc.date.available.none.fl_str_mv |
2021-11-08T16:33:04Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1877-7058 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1822 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.proeng.2014.10.520 |
identifier_str_mv |
1877-7058 10.1016/j.proeng.2014.10.520 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1822 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
121 |
dc.relation.citationstartpage.spa.fl_str_mv |
116 |
dc.relation.citationvolume.spa.fl_str_mv |
84 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Procedia Engineering |
dc.relation.references.spa.fl_str_mv |
K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Resilience-based network component important measures Reliability Engineering and System Safety, 117 (2012), pp. 89-97 Barroca B., Serre D. (2013) Behind the barriers: a resilience conceptual model. SAPIENS.http://sapiens.revues.org/1529. G.P. Cimellaro, A.M. Reinhorn, M. Bruneau Framework for analytical quantification of disaster resilience Engineering Structures, 32 (2010), pp. 3639-3649 R. Francis, B. Bekera A metric and framework for resilience analysis of engineered and infrastructure systems Reliability Engineering and System Safety, 121 (2010), pp. 90-103 L.T.T. Dinh, H. Pasman, X. Gao, M.S. Mannan Resilience engineering of industrial processes: Principles and contributing factors Journal of Loss Prevention in the Process Industries, 25 (2012), pp. 233-241 Mebarki A., Barroca B. (2014) Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Vicente Santiago-Fandiño,Yev A. Kontar and YoshiyukiKaneda. (eds) «Post-Tsunami Hazard Reconstruction and Restoration», Advances in Natural and Technological Hazards Research, Springer (in Press). Mebarki A., Jerez S., Matasic I., Prodhomme G., Reimeringer M., Pensée V., Vu Q.A., Willot A. (2014) Domino effects and industrial risks: integrated probabilistic framework – Case of tsunamis effects. In Y.A. Kontar et al. (eds) «Tsunami Events and Lessons Learned :Environnemental and Societal Significance», Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer. A. Mebarki, N. Valencia, J.L. Salagnac, B. Barroca Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale Nat. Hazards Earth Syst. Sci., 12 (2012), pp. 1799-1809, 10.5194/nhess-12-1799-2012 Mebarki A., Genatios C., Lafuente M. (2008) RisquesNaturels et Technologiques: Aléas, Vulnérabilité et Fiabilité des Constructions – versune formulation probabilisteintégrée, Presses Ponts et Chaussées Ed., ISBN 978-2-85978-436-2, Paris. E. Miller-Hooks, X. Zhang, R. Faturechi Measuring and maximizing resilience of freight transportation networks Computers & Operations Research, 39 (2012), pp. 1633-1643 K.A. Ouedraogo, S. Enjalbert, F. Vanderhaegen How to learn from the resilience of Human-Machine Systems? Engineering Applications of Artificial Intelligence, 26 (2013), pp. 24-34 M. Ouyang, L. Dueñas-Osorio, X. Min A three-stage resilience analysis framework for urban infrastructure systems Structural Safety, 36–37 (2012), pp. 23-31 R. Pant, K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Stochastic measures of resilience and their application to container terminals Computers & Industrial Engineering, 70 (2014), pp. 183-194 G.H.A. Shirali, M. Motamedzade, I. Mohammadfam, V. Ebrahimpour, A. Moghimbeigi Challenges in building resilience engineering (RE) and adaptive capacity: A field study in chemical plant Process Safety and Environmental Protection, 90 (2012), pp. 83-90 R. Steen, T. Aven A risk perspective suitable for resilience engineering Safety Science, 49 (2011), pp. 292-297 Tisserand S. (2007) La Resilience. Que Sais-je? PUF, Ed. Point Delta (in French). |
dc.rights.eng.fl_str_mv |
© 2014 The Authors. Published by Elsevier Ltd. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
© 2014 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Science Direct |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877705814018736 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1822/1/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1822/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1822/3/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1822/4/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.jpg |
bitstream.checksum.fl_str_mv |
00059587d9fa8f70e9cde853e4d75059 5a7ca94c2e5326ee169f979d71d0f06e 29f3602e7c95e763dc87d345a27353ad d80f27c2afea846df148df68e302d412 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355637992161280 |
spelling |
Mebarki, Ahmed8f74503a40538d29d5bc59be738c615e600Willot, Adrien084c43d8b4090434ace586e8f8443843600Reimeringer, Mathieu40bfb8130b110801191331d1d7c0f24f600Jerez Barbosa, Sandra Rociocf2dd14f8cca29e0bd6bc74523154dc8600Prod’hommeb, Gaëtanf4bb397650517bdc2b3240ac70879981600Estructuras y Materiales2021-11-08T16:33:04Z2021-11-08T16:33:04Z20141877-7058https://repositorio.escuelaing.edu.co/handle/001/182210.1016/j.proeng.2014.10.520The resilience approach represents a unified and integrated framework for the restoration process following disasters. Under given resilience parameters values, a resilient system is able to recover and be strengthened within a defined recovery period; otherwise, it is a non-resilient system. This paper considers different structures and focuses on several parameters which govern resilience together with their mechanical vulnerability under various hazards. A new method of theoretically measuring resilience, its link with mechanical vulnerability and its sensitivity analysis are investigated for industrial plants under the effects of flood and tsunami hazards: -Coastal industrial plants under the effects of a tsunami hazard: structural failure in tanks results from buoyancy (uplift), overturning, sliding by shear effect, excessive bending, or buckling. -Vulnerability and fragility curves are developed for various tanks of small and large sizes.El enfoque de la resiliencia representa un marco unificado e integrado para el proceso de restauración tras las catástrofes. Bajo determinados valores de los parámetros de resiliencia, un sistema resiliente es capaz de recuperarse y fortalecerse dentro de un periodo de recuperación definido; de lo contrario, es un sistema no resiliente. En este artículo se estudian diferentes estructuras y se centran en varios parámetros que rigen la resiliencia, junto con su vulnerabilidad mecánica ante diversos peligros. Se investiga un nuevo método de medición teórica de la resiliencia, su relación con la vulnerabilidad mecánica y su análisis de sensibilidad para plantas industriales bajo los efectos de los peligros de inundación y tsunami: -Plantas industriales costeras bajo los efectos de un peligro de tsunami: el fallo estructural en los tanques se produce por flotación (levantamiento), vuelco, deslizamiento por efecto de cizallamiento, flexión excesiva o pandeo. -Se desarrollan curvas de vulnerabilidad y fragilidad para diversos tanques de pequeño y gran tamaño. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translatora University Paris-Est, Lab. Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Bd Descartes, 77454, Marne-La-Vallée, France b INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Technologique ALATA,BP 2 - 60550 Verneuil-en-Halatte, France c Escuela Colombiana de Ingeniería, Av. 13 No.205-59, Bogotá, Colombia6 páginasapplication/pdfengScience Direct© 2014 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S1877705814018736Vulnerability and Resilience under Effects of Tsunamis: Case of Industrial PlantsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8512111684N/AProcedia EngineeringK. Barker, J.E. Ramirez-Marquez, C.M. Rocco Resilience-based network component important measures Reliability Engineering and System Safety, 117 (2012), pp. 89-97Barroca B., Serre D. (2013) Behind the barriers: a resilience conceptual model. SAPIENS.http://sapiens.revues.org/1529.G.P. Cimellaro, A.M. Reinhorn, M. Bruneau Framework for analytical quantification of disaster resilience Engineering Structures, 32 (2010), pp. 3639-3649R. Francis, B. Bekera A metric and framework for resilience analysis of engineered and infrastructure systems Reliability Engineering and System Safety, 121 (2010), pp. 90-103L.T.T. Dinh, H. Pasman, X. Gao, M.S. Mannan Resilience engineering of industrial processes: Principles and contributing factors Journal of Loss Prevention in the Process Industries, 25 (2012), pp. 233-241Mebarki A., Barroca B. (2014) Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Vicente Santiago-Fandiño,Yev A. Kontar and YoshiyukiKaneda. (eds) «Post-Tsunami Hazard Reconstruction and Restoration», Advances in Natural and Technological Hazards Research, Springer (in Press).Mebarki A., Jerez S., Matasic I., Prodhomme G., Reimeringer M., Pensée V., Vu Q.A., Willot A. (2014) Domino effects and industrial risks: integrated probabilistic framework – Case of tsunamis effects. In Y.A. Kontar et al. (eds) «Tsunami Events and Lessons Learned :Environnemental and Societal Significance», Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.A. Mebarki, N. Valencia, J.L. Salagnac, B. Barroca Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale Nat. Hazards Earth Syst. Sci., 12 (2012), pp. 1799-1809, 10.5194/nhess-12-1799-2012Mebarki A., Genatios C., Lafuente M. (2008) RisquesNaturels et Technologiques: Aléas, Vulnérabilité et Fiabilité des Constructions – versune formulation probabilisteintégrée, Presses Ponts et Chaussées Ed., ISBN 978-2-85978-436-2, Paris.E. Miller-Hooks, X. Zhang, R. Faturechi Measuring and maximizing resilience of freight transportation networks Computers & Operations Research, 39 (2012), pp. 1633-1643K.A. Ouedraogo, S. Enjalbert, F. Vanderhaegen How to learn from the resilience of Human-Machine Systems? Engineering Applications of Artificial Intelligence, 26 (2013), pp. 24-34M. Ouyang, L. Dueñas-Osorio, X. Min A three-stage resilience analysis framework for urban infrastructure systems Structural Safety, 36–37 (2012), pp. 23-31R. Pant, K. Barker, J.E. Ramirez-Marquez, C.M. Rocco Stochastic measures of resilience and their application to container terminals Computers & Industrial Engineering, 70 (2014), pp. 183-194G.H.A. Shirali, M. Motamedzade, I. Mohammadfam, V. Ebrahimpour, A. Moghimbeigi Challenges in building resilience engineering (RE) and adaptive capacity: A field study in chemical plant Process Safety and Environmental Protection, 90 (2012), pp. 83-90R. Steen, T. Aven A risk perspective suitable for resilience engineering Safety Science, 49 (2011), pp. 292-297Tisserand S. (2007) La Resilience. Que Sais-je? PUF, Ed. Point Delta (in French).TsunamisResilienciaCurvas de esfuerzo-deformaciónEdificios industrialesZonas de riesgo de tsunamiTanques de almacenamientoStress-strain curvesIndustrial buildingsTsunami hazard zonesStorage tanksResilienceVulnerabilityFragilityHazardRiskIndustrial plantsMetal tanksORIGINALVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdfVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdfapplication/pdf527831https://repositorio.escuelaing.edu.co/bitstream/001/1822/1/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf00059587d9fa8f70e9cde853e4d75059MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1822/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessTEXTVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.txtVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.txtExtracted texttext/plain14438https://repositorio.escuelaing.edu.co/bitstream/001/1822/3/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.txt29f3602e7c95e763dc87d345a27353adMD53open accessTHUMBNAILVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.jpgVulnerability and Resilience under Effects of Tsunamis Case of Industrial Plants.pdf.jpgGenerated Thumbnailimage/jpeg11807https://repositorio.escuelaing.edu.co/bitstream/001/1822/4/Vulnerability%20and%20Resilience%20under%20Effects%20of%20Tsunamis%20Case%20of%20Industrial%20Plants.pdf.jpgd80f27c2afea846df148df68e302d412MD54open access001/1822oai:repositorio.escuelaing.edu.co:001/18222022-06-30 14:51:43.373open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |