Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®

The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level langu...

Full description

Autores:
Aroca Trujillo, Jorge Luis
Pérez Ruiz, Alexander
Rodriguez Serrezuela, Ruthber
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1491
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1491
https://doi.org/10.1155/2017/7508787
Palabra clave:
Robótica
Robots móviles
Mobile robots
Robots - Movimiento
Robotics
Robots - Motion
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_9d66e85fda3ce9872d601f9848f83434
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1491
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
dc.title.alternative.spa.fl_str_mv Generación y control de trayectorias geométricas básicas para un robot manipulador usando CompactRIO®
title Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
spellingShingle Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
Robótica
Robots móviles
Mobile robots
Robots - Movimiento
Robotics
Robots - Motion
title_short Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
title_full Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
title_fullStr Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
title_full_unstemmed Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
title_sort Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
dc.creator.fl_str_mv Aroca Trujillo, Jorge Luis
Pérez Ruiz, Alexander
Rodriguez Serrezuela, Ruthber
dc.contributor.author.none.fl_str_mv Aroca Trujillo, Jorge Luis
Pérez Ruiz, Alexander
Rodriguez Serrezuela, Ruthber
dc.contributor.researchgroup.spa.fl_str_mv Innovación docente e investigación educativa - INNOVAD-IE
dc.subject.armarc.spa.fl_str_mv Robótica
Robots móviles
Mobile robots
Robots - Movimiento
topic Robótica
Robots móviles
Mobile robots
Robots - Movimiento
Robotics
Robots - Motion
dc.subject.armarc.eng.fl_str_mv Robotics
Robots - Motion
description The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level languages to program robots are based on three types of movement: joint interpolation (MOVEJ), linear interpolation (MOVES), and circular arcs (MOVEC), which are used to develop any type of task. In this work, these three movements are implemented in the industrial controller CompactRIO, as part of the reconditioning process of a robot manipulator of five degrees of freedom (5 DOF) whose controller was obsolete. As a result, it will have an interface in LabVIEW where you can view and modify the basic parameters implemented in the industrial controller. In addition, the results of the validation tests of the joint positions and the end effector of the manipulator will be found.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2021-05-26T13:45:38Z
2021-10-01T17:19:06Z
dc.date.available.none.fl_str_mv 2021-05-26T13:45:38Z
2021-10-01T17:19:06Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1687-9619
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1491
dc.identifier.doi.none.fl_str_mv 10.1155/2017/7508787
dc.identifier.url.none.fl_str_mv https://doi.org/10.1155/2017/7508787
identifier_str_mv 1687-9619
10.1155/2017/7508787
url https://repositorio.escuelaing.edu.co/handle/001/1491
https://doi.org/10.1155/2017/7508787
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Journal of Robotics, Volume 2017, Article ID 7508787, 11 pages.
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 2017
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Robotics
dc.relation.references.spa.fl_str_mv W. Xu, L. Dongsheng, and W. Mingming, “Complete calibration of industrial robot with limited parameters and neural network,” in Proceedings of the IEEE 4th International Symposium on Robotics and Intelligent Sensors (IRIS '16), pp. 103–108, Tokyo, Japan, December 2016.
F. Petit and A. Albu-Schäffer, “Cartesian impedance control for a variable stiffness robot arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), pp. 4180–4186, San Francisco, Claif, USA, September 2011.
P. Arena, S. Fazzino, L. Fortuna, and P. Maniscalco, “Game theory and non-linear dynamics: The Parrondo Paradox case study,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 545–555, 2003.
M. S. Kazemi and M. J. Dominguez, “Simulation and evaluation of neuro-controllers applied in a SCORBOT,” in Proceedings of the IEEE International Conference on Automatica (ICA-ACCA '16), Curico, Chile, October 2016.
E. Zurek Varela and R. López Beltrán, “Carga y descarga automática de una fresadora de control numérico utilizando un robot Scorbot-ER 4pc,” Revista Científica Ingeniería y Desarrollo, vol. 7, pp. 113–119, 2011.
V. A. Deshpande and P. M. George, “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 3, 2012.
A. González Echeverri, Análisis cinemático y dinámico del robot Scorbot-ER Vplus para la nueva configuración en una base deslizante [Bachelor’s thesis], Universidad Tecnológica de Pereira, Pereira, Colombia, 2014.
E. Robotec, Scorbot er-4pc: User's Manual, 1982.
A. Elfasakhany, E. Yanez, K. Baylon, and R. Salgado, “Design and development of a competitive low-cost robot arm with four degrees of freedom,” Modern Mechanical Engineering, vol. 1, no. 2, article 47, 2011.
National Instruments, The CompactRIO Platform, endless Capabilities, Unrivaled Performance, 2014, http://www.ni.com/compactrio/.
H. C. Fang, S. K. Ong, and A. Y. C. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012.
P. Corke, Robotics, Vision and Control, Springer, Berlin, Germany, 2011.
A. Hemami, “Kinematics of two-arm robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 4, pp. 225–228, 1986.
A. A. Mohammed and M. Sunar, “Kinematics modeling of a 4-DOF robotic arm,” in Proceedings of the International Conference on Control, Automation and Robotics (ICCAR '15), pp. 87–91, Singapore, May 2015.
J. H. C. Rojas, R. R. Serrezuela, J. A. Q. López, and K. L. R. Perdomo, “LQR hybrid approach control of a robotic arm two degrees of freedom,” International Journal of Applied Engineering Research, vol. 11, no. 17, pp. 9221–9228, 2016.
C. S. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62–80, 1982.
A. Cayley, An Elementary Treatise on Elliptic Functions, Deighton Bell & Co, Cambridge, UK, 1876.
T. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear interpolation,” in Proceedings of the Annual SIGRAD Conference. Special Theme-Environmental Visualization, pp. 7–10, Linköping University Electronic Press, November 2004.
V. E. Kremer, Quaternions and SLERP, University of Saarbrucken, Department for Computer Science Seminar Character Animation, Saarbrücken, German, 2008.
J. S. Ahn, W. J. Chung, and S. S. Park, Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEWⓇ and RecurDynⓇ.
K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85), pp. 245–254, San Francisco, Calif, USA, July 1985.
R. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u,” in Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA '15), pp. 364–369, Queenstown, New Zealand, February 2015.
R. R. Serrezuela, A. F. C. Chavarro, M. A. T. Cardozo, A. L. Toquica, and L. F. O. Martinez, Kinematic modelling of a robotic arm manipulator using matlab, 2006.
Y. Angal and A. Gade, “LabVIEW controlled robot for object handling using NI myRIO,” in Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT '16), Pune, India, December 2016.
M. M. Ali, H. Liu, N. Stoll, and K. Thurow, “Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 10, no. 4, pp. 40–52, 2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hindawi Limited
dc.publisher.place.spa.fl_str_mv Egipto.
dc.source.spa.fl_str_mv https://www.hindawi.com/journals/jr/2017/7508787/
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1491/3/10.115520177508787.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1491/5/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1491/4/10.115520177508787.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1491/6/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1491/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1491/2/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf
bitstream.checksum.fl_str_mv 914735c3557799a4ee10a3a59cfc012d
914735c3557799a4ee10a3a59cfc012d
425d2f5e251df947d59508d8ff785063
425d2f5e251df947d59508d8ff785063
5a7ca94c2e5326ee169f979d71d0f06e
0b42435b2b8a258d3d8257f9d9b7934a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355588091478016
spelling Aroca Trujillo, Jorge Luis27e8ec644962f62a736aca42d6ef0023600Pérez Ruiz, Alexanderf443804fd28a7eef57b162f79a14345c600Rodriguez Serrezuela, Ruthberefa82ca44f6f2024932412e6563a42f5600Innovación docente e investigación educativa - INNOVAD-IE2021-05-26T13:45:38Z2021-10-01T17:19:06Z2021-05-26T13:45:38Z2021-10-01T17:19:06Z20171687-9619https://repositorio.escuelaing.edu.co/handle/001/149110.1155/2017/7508787https://doi.org/10.1155/2017/7508787The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level languages to program robots are based on three types of movement: joint interpolation (MOVEJ), linear interpolation (MOVES), and circular arcs (MOVEC), which are used to develop any type of task. In this work, these three movements are implemented in the industrial controller CompactRIO, as part of the reconditioning process of a robot manipulator of five degrees of freedom (5 DOF) whose controller was obsolete. As a result, it will have an interface in LabVIEW where you can view and modify the basic parameters implemented in the industrial controller. In addition, the results of the validation tests of the joint positions and the end effector of the manipulator will be found.La utilidad de un robot manipulador se centra en la capacidad de ubicar su efector final en una posición con una orientación determinada siguiendo una trayectoria específica. Para ello, se utilizaron algoritmos con el fin de generar y controlar los movimientos de las articulaciones del robot de forma sincronizada. Los lenguajes de alto nivel para programar robots se basan en tres tipos de movimiento: interpolación conjunta (MOVEJ), interpolación lineal (MOVES) y arcos circulares (MOVEC), que se utilizan para desarrollar cualquier tipo de tarea. En este trabajo, estos tres movimientos se implementan en el controlador industrial CompactRIO, como parte del proceso de reacondicionamiento de un robot manipulador de cinco grados de libertad (5 DOF) cuyo controlador estaba obsoleto. Como resultado, tendrá una interfaz en LabVIEW donde podrá ver y modificar los parámetros básicos implementados en el controlador industrial.1 University Corporation of Huila, Corhuila, Neiva, Colombia 2 Escuela Colombiana de Ingenier´ıa Julio Garavito, Bogota D.C., Colombia ´ Correspondence should be addressed to Ruthber Rodriguez Serrezuela; ruthber.rodriguez@corhuila.edu.co11 páginasapplication/pdfengHindawi LimitedEgipto.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.hindawi.com/journals/jr/2017/7508787/Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®Generación y control de trayectorias geométricas básicas para un robot manipulador usando CompactRIO®Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Robotics, Volume 2017, Article ID 7508787, 11 pages.1112017N/AJournal of RoboticsW. Xu, L. Dongsheng, and W. Mingming, “Complete calibration of industrial robot with limited parameters and neural network,” in Proceedings of the IEEE 4th International Symposium on Robotics and Intelligent Sensors (IRIS '16), pp. 103–108, Tokyo, Japan, December 2016.F. Petit and A. Albu-Schäffer, “Cartesian impedance control for a variable stiffness robot arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), pp. 4180–4186, San Francisco, Claif, USA, September 2011.P. Arena, S. Fazzino, L. Fortuna, and P. Maniscalco, “Game theory and non-linear dynamics: The Parrondo Paradox case study,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 545–555, 2003.M. S. Kazemi and M. J. Dominguez, “Simulation and evaluation of neuro-controllers applied in a SCORBOT,” in Proceedings of the IEEE International Conference on Automatica (ICA-ACCA '16), Curico, Chile, October 2016.E. Zurek Varela and R. López Beltrán, “Carga y descarga automática de una fresadora de control numérico utilizando un robot Scorbot-ER 4pc,” Revista Científica Ingeniería y Desarrollo, vol. 7, pp. 113–119, 2011.V. A. Deshpande and P. M. George, “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 3, 2012.A. González Echeverri, Análisis cinemático y dinámico del robot Scorbot-ER Vplus para la nueva configuración en una base deslizante [Bachelor’s thesis], Universidad Tecnológica de Pereira, Pereira, Colombia, 2014.E. Robotec, Scorbot er-4pc: User's Manual, 1982.A. Elfasakhany, E. Yanez, K. Baylon, and R. Salgado, “Design and development of a competitive low-cost robot arm with four degrees of freedom,” Modern Mechanical Engineering, vol. 1, no. 2, article 47, 2011.National Instruments, The CompactRIO Platform, endless Capabilities, Unrivaled Performance, 2014, http://www.ni.com/compactrio/.H. C. Fang, S. K. Ong, and A. Y. C. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012.P. Corke, Robotics, Vision and Control, Springer, Berlin, Germany, 2011.A. Hemami, “Kinematics of two-arm robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 4, pp. 225–228, 1986.A. A. Mohammed and M. Sunar, “Kinematics modeling of a 4-DOF robotic arm,” in Proceedings of the International Conference on Control, Automation and Robotics (ICCAR '15), pp. 87–91, Singapore, May 2015.J. H. C. Rojas, R. R. Serrezuela, J. A. Q. López, and K. L. R. Perdomo, “LQR hybrid approach control of a robotic arm two degrees of freedom,” International Journal of Applied Engineering Research, vol. 11, no. 17, pp. 9221–9228, 2016.C. S. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62–80, 1982.A. Cayley, An Elementary Treatise on Elliptic Functions, Deighton Bell & Co, Cambridge, UK, 1876.T. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear interpolation,” in Proceedings of the Annual SIGRAD Conference. Special Theme-Environmental Visualization, pp. 7–10, Linköping University Electronic Press, November 2004.V. E. Kremer, Quaternions and SLERP, University of Saarbrucken, Department for Computer Science Seminar Character Animation, Saarbrücken, German, 2008.J. S. Ahn, W. J. Chung, and S. S. Park, Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEWⓇ and RecurDynⓇ.K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85), pp. 245–254, San Francisco, Calif, USA, July 1985.R. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u,” in Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA '15), pp. 364–369, Queenstown, New Zealand, February 2015.R. R. Serrezuela, A. F. C. Chavarro, M. A. T. Cardozo, A. L. Toquica, and L. F. O. Martinez, Kinematic modelling of a robotic arm manipulator using matlab, 2006.Y. Angal and A. Gade, “LabVIEW controlled robot for object handling using NI myRIO,” in Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT '16), Pune, India, December 2016.M. M. Ali, H. Liu, N. Stoll, and K. Thurow, “Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 10, no. 4, pp. 40–52, 2016.RobóticaRobots móvilesMobile robotsRobots - MovimientoRoboticsRobots - MotionTEXT10.115520177508787.pdf.txt10.115520177508787.pdf.txtExtracted texttext/plain38831https://repositorio.escuelaing.edu.co/bitstream/001/1491/3/10.115520177508787.pdf.txt914735c3557799a4ee10a3a59cfc012dMD53open accessGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.txtGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.txtExtracted texttext/plain38831https://repositorio.escuelaing.edu.co/bitstream/001/1491/5/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.txt914735c3557799a4ee10a3a59cfc012dMD55open accessTHUMBNAIL10.115520177508787.pdf.jpg10.115520177508787.pdf.jpgGenerated Thumbnailimage/jpeg13874https://repositorio.escuelaing.edu.co/bitstream/001/1491/4/10.115520177508787.pdf.jpg425d2f5e251df947d59508d8ff785063MD54open accessGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.jpgGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.jpgGenerated Thumbnailimage/jpeg13874https://repositorio.escuelaing.edu.co/bitstream/001/1491/6/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.jpg425d2f5e251df947d59508d8ff785063MD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1491/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdfapplication/pdf3387761https://repositorio.escuelaing.edu.co/bitstream/001/1491/2/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf0b42435b2b8a258d3d8257f9d9b7934aMD52open access001/1491oai:repositorio.escuelaing.edu.co:001/14912022-08-02 03:00:55.748open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK