Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®
The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level langu...
- Autores:
-
Aroca Trujillo, Jorge Luis
Pérez Ruiz, Alexander
Rodriguez Serrezuela, Ruthber
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1491
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1491
https://doi.org/10.1155/2017/7508787
- Palabra clave:
- Robótica
Robots móviles
Mobile robots
Robots - Movimiento
Robotics
Robots - Motion
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_9d66e85fda3ce9872d601f9848f83434 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1491 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
dc.title.alternative.spa.fl_str_mv |
Generación y control de trayectorias geométricas básicas para un robot manipulador usando CompactRIO® |
title |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
spellingShingle |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® Robótica Robots móviles Mobile robots Robots - Movimiento Robotics Robots - Motion |
title_short |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
title_full |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
title_fullStr |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
title_full_unstemmed |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
title_sort |
Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO® |
dc.creator.fl_str_mv |
Aroca Trujillo, Jorge Luis Pérez Ruiz, Alexander Rodriguez Serrezuela, Ruthber |
dc.contributor.author.none.fl_str_mv |
Aroca Trujillo, Jorge Luis Pérez Ruiz, Alexander Rodriguez Serrezuela, Ruthber |
dc.contributor.researchgroup.spa.fl_str_mv |
Innovación docente e investigación educativa - INNOVAD-IE |
dc.subject.armarc.spa.fl_str_mv |
Robótica Robots móviles Mobile robots Robots - Movimiento |
topic |
Robótica Robots móviles Mobile robots Robots - Movimiento Robotics Robots - Motion |
dc.subject.armarc.eng.fl_str_mv |
Robotics Robots - Motion |
description |
The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level languages to program robots are based on three types of movement: joint interpolation (MOVEJ), linear interpolation (MOVES), and circular arcs (MOVEC), which are used to develop any type of task. In this work, these three movements are implemented in the industrial controller CompactRIO, as part of the reconditioning process of a robot manipulator of five degrees of freedom (5 DOF) whose controller was obsolete. As a result, it will have an interface in LabVIEW where you can view and modify the basic parameters implemented in the industrial controller. In addition, the results of the validation tests of the joint positions and the end effector of the manipulator will be found. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-05-26T13:45:38Z 2021-10-01T17:19:06Z |
dc.date.available.none.fl_str_mv |
2021-05-26T13:45:38Z 2021-10-01T17:19:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1687-9619 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1491 |
dc.identifier.doi.none.fl_str_mv |
10.1155/2017/7508787 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.1155/2017/7508787 |
identifier_str_mv |
1687-9619 10.1155/2017/7508787 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1491 https://doi.org/10.1155/2017/7508787 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Journal of Robotics, Volume 2017, Article ID 7508787, 11 pages. |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
2017 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Robotics |
dc.relation.references.spa.fl_str_mv |
W. Xu, L. Dongsheng, and W. Mingming, “Complete calibration of industrial robot with limited parameters and neural network,” in Proceedings of the IEEE 4th International Symposium on Robotics and Intelligent Sensors (IRIS '16), pp. 103–108, Tokyo, Japan, December 2016. F. Petit and A. Albu-Schäffer, “Cartesian impedance control for a variable stiffness robot arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), pp. 4180–4186, San Francisco, Claif, USA, September 2011. P. Arena, S. Fazzino, L. Fortuna, and P. Maniscalco, “Game theory and non-linear dynamics: The Parrondo Paradox case study,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 545–555, 2003. M. S. Kazemi and M. J. Dominguez, “Simulation and evaluation of neuro-controllers applied in a SCORBOT,” in Proceedings of the IEEE International Conference on Automatica (ICA-ACCA '16), Curico, Chile, October 2016. E. Zurek Varela and R. López Beltrán, “Carga y descarga automática de una fresadora de control numérico utilizando un robot Scorbot-ER 4pc,” Revista Científica Ingeniería y Desarrollo, vol. 7, pp. 113–119, 2011. V. A. Deshpande and P. M. George, “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 3, 2012. A. González Echeverri, Análisis cinemático y dinámico del robot Scorbot-ER Vplus para la nueva configuración en una base deslizante [Bachelor’s thesis], Universidad Tecnológica de Pereira, Pereira, Colombia, 2014. E. Robotec, Scorbot er-4pc: User's Manual, 1982. A. Elfasakhany, E. Yanez, K. Baylon, and R. Salgado, “Design and development of a competitive low-cost robot arm with four degrees of freedom,” Modern Mechanical Engineering, vol. 1, no. 2, article 47, 2011. National Instruments, The CompactRIO Platform, endless Capabilities, Unrivaled Performance, 2014, http://www.ni.com/compactrio/. H. C. Fang, S. K. Ong, and A. Y. C. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012. P. Corke, Robotics, Vision and Control, Springer, Berlin, Germany, 2011. A. Hemami, “Kinematics of two-arm robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 4, pp. 225–228, 1986. A. A. Mohammed and M. Sunar, “Kinematics modeling of a 4-DOF robotic arm,” in Proceedings of the International Conference on Control, Automation and Robotics (ICCAR '15), pp. 87–91, Singapore, May 2015. J. H. C. Rojas, R. R. Serrezuela, J. A. Q. López, and K. L. R. Perdomo, “LQR hybrid approach control of a robotic arm two degrees of freedom,” International Journal of Applied Engineering Research, vol. 11, no. 17, pp. 9221–9228, 2016. C. S. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62–80, 1982. A. Cayley, An Elementary Treatise on Elliptic Functions, Deighton Bell & Co, Cambridge, UK, 1876. T. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear interpolation,” in Proceedings of the Annual SIGRAD Conference. Special Theme-Environmental Visualization, pp. 7–10, Linköping University Electronic Press, November 2004. V. E. Kremer, Quaternions and SLERP, University of Saarbrucken, Department for Computer Science Seminar Character Animation, Saarbrücken, German, 2008. J. S. Ahn, W. J. Chung, and S. S. Park, Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEWⓇ and RecurDynⓇ. K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85), pp. 245–254, San Francisco, Calif, USA, July 1985. R. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u,” in Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA '15), pp. 364–369, Queenstown, New Zealand, February 2015. R. R. Serrezuela, A. F. C. Chavarro, M. A. T. Cardozo, A. L. Toquica, and L. F. O. Martinez, Kinematic modelling of a robotic arm manipulator using matlab, 2006. Y. Angal and A. Gade, “LabVIEW controlled robot for object handling using NI myRIO,” in Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT '16), Pune, India, December 2016. M. M. Ali, H. Liu, N. Stoll, and K. Thurow, “Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 10, no. 4, pp. 40–52, 2016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Hindawi Limited |
dc.publisher.place.spa.fl_str_mv |
Egipto. |
dc.source.spa.fl_str_mv |
https://www.hindawi.com/journals/jr/2017/7508787/ |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1491/3/10.115520177508787.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1491/5/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1491/4/10.115520177508787.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1491/6/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1491/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1491/2/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf |
bitstream.checksum.fl_str_mv |
914735c3557799a4ee10a3a59cfc012d 914735c3557799a4ee10a3a59cfc012d 425d2f5e251df947d59508d8ff785063 425d2f5e251df947d59508d8ff785063 5a7ca94c2e5326ee169f979d71d0f06e 0b42435b2b8a258d3d8257f9d9b7934a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355588091478016 |
spelling |
Aroca Trujillo, Jorge Luis27e8ec644962f62a736aca42d6ef0023600Pérez Ruiz, Alexanderf443804fd28a7eef57b162f79a14345c600Rodriguez Serrezuela, Ruthberefa82ca44f6f2024932412e6563a42f5600Innovación docente e investigación educativa - INNOVAD-IE2021-05-26T13:45:38Z2021-10-01T17:19:06Z2021-05-26T13:45:38Z2021-10-01T17:19:06Z20171687-9619https://repositorio.escuelaing.edu.co/handle/001/149110.1155/2017/7508787https://doi.org/10.1155/2017/7508787The utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level languages to program robots are based on three types of movement: joint interpolation (MOVEJ), linear interpolation (MOVES), and circular arcs (MOVEC), which are used to develop any type of task. In this work, these three movements are implemented in the industrial controller CompactRIO, as part of the reconditioning process of a robot manipulator of five degrees of freedom (5 DOF) whose controller was obsolete. As a result, it will have an interface in LabVIEW where you can view and modify the basic parameters implemented in the industrial controller. In addition, the results of the validation tests of the joint positions and the end effector of the manipulator will be found.La utilidad de un robot manipulador se centra en la capacidad de ubicar su efector final en una posición con una orientación determinada siguiendo una trayectoria específica. Para ello, se utilizaron algoritmos con el fin de generar y controlar los movimientos de las articulaciones del robot de forma sincronizada. Los lenguajes de alto nivel para programar robots se basan en tres tipos de movimiento: interpolación conjunta (MOVEJ), interpolación lineal (MOVES) y arcos circulares (MOVEC), que se utilizan para desarrollar cualquier tipo de tarea. En este trabajo, estos tres movimientos se implementan en el controlador industrial CompactRIO, como parte del proceso de reacondicionamiento de un robot manipulador de cinco grados de libertad (5 DOF) cuyo controlador estaba obsoleto. Como resultado, tendrá una interfaz en LabVIEW donde podrá ver y modificar los parámetros básicos implementados en el controlador industrial.1 University Corporation of Huila, Corhuila, Neiva, Colombia 2 Escuela Colombiana de Ingenier´ıa Julio Garavito, Bogota D.C., Colombia ´ Correspondence should be addressed to Ruthber Rodriguez Serrezuela; ruthber.rodriguez@corhuila.edu.co11 páginasapplication/pdfengHindawi LimitedEgipto.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.hindawi.com/journals/jr/2017/7508787/Generation and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®Generación y control de trayectorias geométricas básicas para un robot manipulador usando CompactRIO®Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Robotics, Volume 2017, Article ID 7508787, 11 pages.1112017N/AJournal of RoboticsW. Xu, L. Dongsheng, and W. Mingming, “Complete calibration of industrial robot with limited parameters and neural network,” in Proceedings of the IEEE 4th International Symposium on Robotics and Intelligent Sensors (IRIS '16), pp. 103–108, Tokyo, Japan, December 2016.F. Petit and A. Albu-Schäffer, “Cartesian impedance control for a variable stiffness robot arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), pp. 4180–4186, San Francisco, Claif, USA, September 2011.P. Arena, S. Fazzino, L. Fortuna, and P. Maniscalco, “Game theory and non-linear dynamics: The Parrondo Paradox case study,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 545–555, 2003.M. S. Kazemi and M. J. Dominguez, “Simulation and evaluation of neuro-controllers applied in a SCORBOT,” in Proceedings of the IEEE International Conference on Automatica (ICA-ACCA '16), Curico, Chile, October 2016.E. Zurek Varela and R. López Beltrán, “Carga y descarga automática de una fresadora de control numérico utilizando un robot Scorbot-ER 4pc,” Revista Científica Ingeniería y Desarrollo, vol. 7, pp. 113–119, 2011.V. A. Deshpande and P. M. George, “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 3, 2012.A. González Echeverri, Análisis cinemático y dinámico del robot Scorbot-ER Vplus para la nueva configuración en una base deslizante [Bachelor’s thesis], Universidad Tecnológica de Pereira, Pereira, Colombia, 2014.E. Robotec, Scorbot er-4pc: User's Manual, 1982.A. Elfasakhany, E. Yanez, K. Baylon, and R. Salgado, “Design and development of a competitive low-cost robot arm with four degrees of freedom,” Modern Mechanical Engineering, vol. 1, no. 2, article 47, 2011.National Instruments, The CompactRIO Platform, endless Capabilities, Unrivaled Performance, 2014, http://www.ni.com/compactrio/.H. C. Fang, S. K. Ong, and A. Y. C. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012.P. Corke, Robotics, Vision and Control, Springer, Berlin, Germany, 2011.A. Hemami, “Kinematics of two-arm robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 4, pp. 225–228, 1986.A. A. Mohammed and M. Sunar, “Kinematics modeling of a 4-DOF robotic arm,” in Proceedings of the International Conference on Control, Automation and Robotics (ICCAR '15), pp. 87–91, Singapore, May 2015.J. H. C. Rojas, R. R. Serrezuela, J. A. Q. López, and K. L. R. Perdomo, “LQR hybrid approach control of a robotic arm two degrees of freedom,” International Journal of Applied Engineering Research, vol. 11, no. 17, pp. 9221–9228, 2016.C. S. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62–80, 1982.A. Cayley, An Elementary Treatise on Elliptic Functions, Deighton Bell & Co, Cambridge, UK, 1876.T. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear interpolation,” in Proceedings of the Annual SIGRAD Conference. Special Theme-Environmental Visualization, pp. 7–10, Linköping University Electronic Press, November 2004.V. E. Kremer, Quaternions and SLERP, University of Saarbrucken, Department for Computer Science Seminar Character Animation, Saarbrücken, German, 2008.J. S. Ahn, W. J. Chung, and S. S. Park, Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEWⓇ and RecurDynⓇ.K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85), pp. 245–254, San Francisco, Calif, USA, July 1985.R. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u,” in Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA '15), pp. 364–369, Queenstown, New Zealand, February 2015.R. R. Serrezuela, A. F. C. Chavarro, M. A. T. Cardozo, A. L. Toquica, and L. F. O. Martinez, Kinematic modelling of a robotic arm manipulator using matlab, 2006.Y. Angal and A. Gade, “LabVIEW controlled robot for object handling using NI myRIO,” in Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT '16), Pune, India, December 2016.M. M. Ali, H. Liu, N. Stoll, and K. Thurow, “Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 10, no. 4, pp. 40–52, 2016.RobóticaRobots móvilesMobile robotsRobots - MovimientoRoboticsRobots - MotionTEXT10.115520177508787.pdf.txt10.115520177508787.pdf.txtExtracted texttext/plain38831https://repositorio.escuelaing.edu.co/bitstream/001/1491/3/10.115520177508787.pdf.txt914735c3557799a4ee10a3a59cfc012dMD53open accessGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.txtGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.txtExtracted texttext/plain38831https://repositorio.escuelaing.edu.co/bitstream/001/1491/5/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.txt914735c3557799a4ee10a3a59cfc012dMD55open accessTHUMBNAIL10.115520177508787.pdf.jpg10.115520177508787.pdf.jpgGenerated Thumbnailimage/jpeg13874https://repositorio.escuelaing.edu.co/bitstream/001/1491/4/10.115520177508787.pdf.jpg425d2f5e251df947d59508d8ff785063MD54open accessGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.jpgGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdf.jpgGenerated Thumbnailimage/jpeg13874https://repositorio.escuelaing.edu.co/bitstream/001/1491/6/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf.jpg425d2f5e251df947d59508d8ff785063MD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1491/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®.pdfapplication/pdf3387761https://repositorio.escuelaing.edu.co/bitstream/001/1491/2/Generation%20and%20Control%20of%20Basic%20Geometric%20Trajectories%20for%20a%20Robot%20Manipulator%20Using%20CompactRIO%c2%ae.pdf0b42435b2b8a258d3d8257f9d9b7934aMD52open access001/1491oai:repositorio.escuelaing.edu.co:001/14912022-08-02 03:00:55.748open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |