Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep lea...
- Autores:
-
Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Otalora Montenegro, Juan Sebastian
Rodriguez Alvira, Francisco Jose
Muller, Henning
Meriaudeau, Fabrice
Rios Calixto, Hernan Andrés
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2019
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1496
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1496
https://doi.org/10.1016/j.cmpb.2019.06.016
- Palabra clave:
- Aprendizaje - Modelos
Enfermedades de la Retina
Optical Coherence Tomography
Deep learning models
Deep Interpretability
Retinal diseases
Medical findings
La tomografía de coherencia óptica
Modelos de aprendizaje
Profundo Interpretabilidad
Enfermedades de la retina
Hallazgos médicos
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_9ca77c062717a9311200103cb9255b77 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1496 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
title |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
spellingShingle |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography Aprendizaje - Modelos Enfermedades de la Retina Optical Coherence Tomography Deep learning models Deep Interpretability Retinal diseases Medical findings La tomografía de coherencia óptica Modelos de aprendizaje Profundo Interpretabilidad Enfermedades de la retina Hallazgos médicos |
title_short |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
title_full |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
title_fullStr |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
title_full_unstemmed |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
title_sort |
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography |
dc.creator.fl_str_mv |
Perdomo Charry, Oscar Julian Gonzalez Osorio, Fabio Otalora Montenegro, Juan Sebastian Rodriguez Alvira, Francisco Jose Muller, Henning Meriaudeau, Fabrice Rios Calixto, Hernan Andrés |
dc.contributor.author.none.fl_str_mv |
Perdomo Charry, Oscar Julian Gonzalez Osorio, Fabio Otalora Montenegro, Juan Sebastian Rodriguez Alvira, Francisco Jose Muller, Henning Meriaudeau, Fabrice Rios Calixto, Hernan Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Aprendizaje - Modelos Enfermedades de la Retina |
topic |
Aprendizaje - Modelos Enfermedades de la Retina Optical Coherence Tomography Deep learning models Deep Interpretability Retinal diseases Medical findings La tomografía de coherencia óptica Modelos de aprendizaje Profundo Interpretabilidad Enfermedades de la retina Hallazgos médicos |
dc.subject.proposal.spa.fl_str_mv |
Optical Coherence Tomography Deep learning models Deep Interpretability Retinal diseases Medical findings La tomografía de coherencia óptica Modelos de aprendizaje Profundo Interpretabilidad Enfermedades de la retina Hallazgos médicos |
description |
Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal diseases. Methods: This article presents a new deep learning model, OCT-NET, which is a customized convolutional neural network for processing scans extracted from optical coherence tomography volumes. OCT-NET is applied to the classification of three conditions seen in SD-OCT volumes. Additionally, the proposed model includes a feedback stage that highlights the areas of the scans to support the interpretation of the results. This information is potentially useful for a medical specialist while assessing the prediction produced by the model. Results: The proposed model was tested on the public SERI-CUHK and A2A SD-OCT data sets containing healthy, diabetic retinopathy, diabetic macular edema and age-related macular degeneration. The experimental evaluation shows that the proposed method outperforms conventional convolutional deep learning models from the state of the art reported on the SERI+CUHK and A2A SD-OCT data sets with a precision of 93% and an area under the ROC curve (AUC) of 0.99 respectively. Conclusions: The proposed method is able to classify the three studied retinal diseases with high accuracy. One advantage of the method is its ability to produce interpretable clinical information in the form of highlighting the regions of the image that most contribute to the classifier decision. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-05-26T16:55:57Z 2021-10-01T17:16:57Z |
dc.date.available.none.fl_str_mv |
2021-05-26 2021-10-01T17:16:57Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0169-2607 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1496 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cmpb.2019.06.016 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.1016/j.cmpb.2019.06.016 |
identifier_str_mv |
0169-2607 10.1016/j.cmpb.2019.06.016 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1496 https://doi.org/10.1016/j.cmpb.2019.06.016 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 178 , septiembre de 2019 , páginas 181-189 |
dc.relation.citationendpage.spa.fl_str_mv |
189 |
dc.relation.citationstartpage.spa.fl_str_mv |
181 |
dc.relation.citationvolume.spa.fl_str_mv |
178 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Computer Methods and Programs in Biomedicine |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Ireland |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0169260718318686?via%3Dihub |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1496/3/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1496/4/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1496/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1496/2/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf |
bitstream.checksum.fl_str_mv |
cff76e2a5af771a385d1d120e6783020 00b9a52dca35d7421ca46855d449c30d 5a7ca94c2e5326ee169f979d71d0f06e ef2f2d179d854453f57afb211d3328a9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355593867034624 |
spelling |
Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Otalora Montenegro, Juan Sebastian3fef45ddf42e85d30c866e58fb22f814600Rodriguez Alvira, Francisco Jose0429757967c717697a2022fd4b3279f2600Muller, Henning198e6f38d48f65916409b356ca390049600Meriaudeau, Fabrice3aeb79ad8c2bb70338a03556e8620a6f600Rios Calixto, Hernan Andrésf321cac4ddf0b82e9f9e9fa617764b3a600GiBiome2021-05-26T16:55:57Z2021-10-01T17:16:57Z2021-05-262021-10-01T17:16:57Z20190169-2607https://repositorio.escuelaing.edu.co/handle/001/149610.1016/j.cmpb.2019.06.016https://doi.org/10.1016/j.cmpb.2019.06.016Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal diseases. Methods: This article presents a new deep learning model, OCT-NET, which is a customized convolutional neural network for processing scans extracted from optical coherence tomography volumes. OCT-NET is applied to the classification of three conditions seen in SD-OCT volumes. Additionally, the proposed model includes a feedback stage that highlights the areas of the scans to support the interpretation of the results. This information is potentially useful for a medical specialist while assessing the prediction produced by the model. Results: The proposed model was tested on the public SERI-CUHK and A2A SD-OCT data sets containing healthy, diabetic retinopathy, diabetic macular edema and age-related macular degeneration. The experimental evaluation shows that the proposed method outperforms conventional convolutional deep learning models from the state of the art reported on the SERI+CUHK and A2A SD-OCT data sets with a precision of 93% and an area under the ROC curve (AUC) of 0.99 respectively. Conclusions: The proposed method is able to classify the three studied retinal diseases with high accuracy. One advantage of the method is its ability to produce interpretable clinical information in the form of highlighting the regions of the image that most contribute to the classifier decision.Antecedentes y objetivos: La Tomografía de Coherencia Óptica de Dominio Espectral (SD-OCT) es una técnica de imagen volumétrica que permite medir patrones entre capas, como pequeñas cantidades de líquido. Desde 2012, el rendimiento del análisis automático de imágenes médicas ha aumentado constantemente gracias al uso de modelos de aprendizaje profundo que aprenden automáticamente características relevantes para tareas específicas, en lugar de diseñar características visuales manualmente. Sin embargo, proporcionar información e interpretación de las predicciones realizadas por el modelo sigue siendo un reto. Este artículo describe un modelo de aprendizaje profundo capaz de detectar información médicamente interpretable en imágenes relevantes de un volumen para clasificar enfermedades de la retina relacionadas con la diabetes. Métodos: Este artículo presenta un nuevo modelo de aprendizaje profundo, OCT-NET, que es una red neuronal convolucional personalizada para procesar exploraciones extraídas de volúmenes de tomografía de coherencia óptica. OCT-NET se aplica a la clasificación de tres condiciones observadas en los volúmenes de SD-OCT. Además, el modelo propuesto incluye una etapa de retroalimentación que resalta las áreas de las exploraciones para apoyar la interpretación de los resultados. Esta información es potencialmente útil para un especialista médico mientras evalúa la predicción producida por el modelo. Resultados: El modelo propuesto fue probado en los conjuntos de datos públicos SERI-CUHK y A2A SD-OCT que contienen retinopatía sana, diabética, edema macular diabético y degeneración macular relacionada con la edad. La evaluación experimental muestra que el método propuesto supera a los modelos convencionales de aprendizaje profundo convolucional del estado del arte reportados en los conjuntos de datos SERI+CUHK y A2A SD-OCT con una precisión del 93% y un área bajo la curva ROC (AUC) de 0,99 respectivamente. Conclusiones: El método propuesto es capaz de clasificar las tres enfermedades retinianas estudiadas con una alta precisión. Una ventaja del método es su capacidad para producir información clínica interpretable en forma de resaltar las regiones de la imagen que más contribuyen a la decisión del clasificador.∗ Corresponding authors. E-mail address: fagonzalezo@unal.edu.co (F.A. González). URL: https://sites.google.com/a/unal.edu.co/mindlab/ (F.A. González)9 páginasapplication/pdfengElsevierIrelandhttps://www.sciencedirect.com/science/article/abs/pii/S0169260718318686?via%3DihubClassification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomographyArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 178 , septiembre de 2019 , páginas 181-189189181178N/AComputer Methods and Programs in Biomedicineinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje - ModelosEnfermedades de la RetinaOptical Coherence TomographyDeep learning modelsDeep InterpretabilityRetinal diseasesMedical findingsLa tomografía de coherencia ópticaModelos de aprendizajeProfundo InterpretabilidadEnfermedades de la retinaHallazgos médicosTEXTClassification of diabetes related retinal diseases using a deep learning.pdf.txtClassification of diabetes related retinal diseases using a deep learning.pdf.txtExtracted texttext/plain50160https://repositorio.escuelaing.edu.co/bitstream/001/1496/3/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.txtcff76e2a5af771a385d1d120e6783020MD53open accessTHUMBNAILClassification of diabetes related retinal diseases using a deep learning.pdf.jpgClassification of diabetes related retinal diseases using a deep learning.pdf.jpgGenerated Thumbnailimage/jpeg15062https://repositorio.escuelaing.edu.co/bitstream/001/1496/4/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.jpg00b9a52dca35d7421ca46855d449c30dMD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1496/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALClassification of diabetes related retinal diseases using a deep learning.pdfapplication/pdf2271637https://repositorio.escuelaing.edu.co/bitstream/001/1496/2/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdfef2f2d179d854453f57afb211d3328a9MD52open access001/1496oai:repositorio.escuelaing.edu.co:001/14962021-10-01 16:26:41.613open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |