Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography

Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep lea...

Full description

Autores:
Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Otalora Montenegro, Juan Sebastian
Rodriguez Alvira, Francisco Jose
Muller, Henning
Meriaudeau, Fabrice
Rios Calixto, Hernan Andrés
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1496
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1496
https://doi.org/10.1016/j.cmpb.2019.06.016
Palabra clave:
Aprendizaje - Modelos
Enfermedades de la Retina
Optical Coherence Tomography
Deep learning models
Deep Interpretability
Retinal diseases
Medical findings
La tomografía de coherencia óptica
Modelos de aprendizaje
Profundo Interpretabilidad
Enfermedades de la retina
Hallazgos médicos
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_9ca77c062717a9311200103cb9255b77
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1496
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
title Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
spellingShingle Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
Aprendizaje - Modelos
Enfermedades de la Retina
Optical Coherence Tomography
Deep learning models
Deep Interpretability
Retinal diseases
Medical findings
La tomografía de coherencia óptica
Modelos de aprendizaje
Profundo Interpretabilidad
Enfermedades de la retina
Hallazgos médicos
title_short Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
title_full Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
title_fullStr Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
title_full_unstemmed Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
title_sort Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
dc.creator.fl_str_mv Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Otalora Montenegro, Juan Sebastian
Rodriguez Alvira, Francisco Jose
Muller, Henning
Meriaudeau, Fabrice
Rios Calixto, Hernan Andrés
dc.contributor.author.none.fl_str_mv Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Otalora Montenegro, Juan Sebastian
Rodriguez Alvira, Francisco Jose
Muller, Henning
Meriaudeau, Fabrice
Rios Calixto, Hernan Andrés
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Aprendizaje - Modelos
Enfermedades de la Retina
topic Aprendizaje - Modelos
Enfermedades de la Retina
Optical Coherence Tomography
Deep learning models
Deep Interpretability
Retinal diseases
Medical findings
La tomografía de coherencia óptica
Modelos de aprendizaje
Profundo Interpretabilidad
Enfermedades de la retina
Hallazgos médicos
dc.subject.proposal.spa.fl_str_mv Optical Coherence Tomography
Deep learning models
Deep Interpretability
Retinal diseases
Medical findings
La tomografía de coherencia óptica
Modelos de aprendizaje
Profundo Interpretabilidad
Enfermedades de la retina
Hallazgos médicos
description Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal diseases. Methods: This article presents a new deep learning model, OCT-NET, which is a customized convolutional neural network for processing scans extracted from optical coherence tomography volumes. OCT-NET is applied to the classification of three conditions seen in SD-OCT volumes. Additionally, the proposed model includes a feedback stage that highlights the areas of the scans to support the interpretation of the results. This information is potentially useful for a medical specialist while assessing the prediction produced by the model. Results: The proposed model was tested on the public SERI-CUHK and A2A SD-OCT data sets containing healthy, diabetic retinopathy, diabetic macular edema and age-related macular degeneration. The experimental evaluation shows that the proposed method outperforms conventional convolutional deep learning models from the state of the art reported on the SERI+CUHK and A2A SD-OCT data sets with a precision of 93% and an area under the ROC curve (AUC) of 0.99 respectively. Conclusions: The proposed method is able to classify the three studied retinal diseases with high accuracy. One advantage of the method is its ability to produce interpretable clinical information in the form of highlighting the regions of the image that most contribute to the classifier decision.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-05-26T16:55:57Z
2021-10-01T17:16:57Z
dc.date.available.none.fl_str_mv 2021-05-26
2021-10-01T17:16:57Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0169-2607
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1496
dc.identifier.doi.none.fl_str_mv 10.1016/j.cmpb.2019.06.016
dc.identifier.url.none.fl_str_mv https://doi.org/10.1016/j.cmpb.2019.06.016
identifier_str_mv 0169-2607
10.1016/j.cmpb.2019.06.016
url https://repositorio.escuelaing.edu.co/handle/001/1496
https://doi.org/10.1016/j.cmpb.2019.06.016
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 178 , septiembre de 2019 , páginas 181-189
dc.relation.citationendpage.spa.fl_str_mv 189
dc.relation.citationstartpage.spa.fl_str_mv 181
dc.relation.citationvolume.spa.fl_str_mv 178
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Computer Methods and Programs in Biomedicine
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Ireland
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0169260718318686?via%3Dihub
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1496/3/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1496/4/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1496/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1496/2/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf
bitstream.checksum.fl_str_mv cff76e2a5af771a385d1d120e6783020
00b9a52dca35d7421ca46855d449c30d
5a7ca94c2e5326ee169f979d71d0f06e
ef2f2d179d854453f57afb211d3328a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355593867034624
spelling Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Otalora Montenegro, Juan Sebastian3fef45ddf42e85d30c866e58fb22f814600Rodriguez Alvira, Francisco Jose0429757967c717697a2022fd4b3279f2600Muller, Henning198e6f38d48f65916409b356ca390049600Meriaudeau, Fabrice3aeb79ad8c2bb70338a03556e8620a6f600Rios Calixto, Hernan Andrésf321cac4ddf0b82e9f9e9fa617764b3a600GiBiome2021-05-26T16:55:57Z2021-10-01T17:16:57Z2021-05-262021-10-01T17:16:57Z20190169-2607https://repositorio.escuelaing.edu.co/handle/001/149610.1016/j.cmpb.2019.06.016https://doi.org/10.1016/j.cmpb.2019.06.016Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal diseases. Methods: This article presents a new deep learning model, OCT-NET, which is a customized convolutional neural network for processing scans extracted from optical coherence tomography volumes. OCT-NET is applied to the classification of three conditions seen in SD-OCT volumes. Additionally, the proposed model includes a feedback stage that highlights the areas of the scans to support the interpretation of the results. This information is potentially useful for a medical specialist while assessing the prediction produced by the model. Results: The proposed model was tested on the public SERI-CUHK and A2A SD-OCT data sets containing healthy, diabetic retinopathy, diabetic macular edema and age-related macular degeneration. The experimental evaluation shows that the proposed method outperforms conventional convolutional deep learning models from the state of the art reported on the SERI+CUHK and A2A SD-OCT data sets with a precision of 93% and an area under the ROC curve (AUC) of 0.99 respectively. Conclusions: The proposed method is able to classify the three studied retinal diseases with high accuracy. One advantage of the method is its ability to produce interpretable clinical information in the form of highlighting the regions of the image that most contribute to the classifier decision.Antecedentes y objetivos: La Tomografía de Coherencia Óptica de Dominio Espectral (SD-OCT) es una técnica de imagen volumétrica que permite medir patrones entre capas, como pequeñas cantidades de líquido. Desde 2012, el rendimiento del análisis automático de imágenes médicas ha aumentado constantemente gracias al uso de modelos de aprendizaje profundo que aprenden automáticamente características relevantes para tareas específicas, en lugar de diseñar características visuales manualmente. Sin embargo, proporcionar información e interpretación de las predicciones realizadas por el modelo sigue siendo un reto. Este artículo describe un modelo de aprendizaje profundo capaz de detectar información médicamente interpretable en imágenes relevantes de un volumen para clasificar enfermedades de la retina relacionadas con la diabetes. Métodos: Este artículo presenta un nuevo modelo de aprendizaje profundo, OCT-NET, que es una red neuronal convolucional personalizada para procesar exploraciones extraídas de volúmenes de tomografía de coherencia óptica. OCT-NET se aplica a la clasificación de tres condiciones observadas en los volúmenes de SD-OCT. Además, el modelo propuesto incluye una etapa de retroalimentación que resalta las áreas de las exploraciones para apoyar la interpretación de los resultados. Esta información es potencialmente útil para un especialista médico mientras evalúa la predicción producida por el modelo. Resultados: El modelo propuesto fue probado en los conjuntos de datos públicos SERI-CUHK y A2A SD-OCT que contienen retinopatía sana, diabética, edema macular diabético y degeneración macular relacionada con la edad. La evaluación experimental muestra que el método propuesto supera a los modelos convencionales de aprendizaje profundo convolucional del estado del arte reportados en los conjuntos de datos SERI+CUHK y A2A SD-OCT con una precisión del 93% y un área bajo la curva ROC (AUC) de 0,99 respectivamente. Conclusiones: El método propuesto es capaz de clasificar las tres enfermedades retinianas estudiadas con una alta precisión. Una ventaja del método es su capacidad para producir información clínica interpretable en forma de resaltar las regiones de la imagen que más contribuyen a la decisión del clasificador.∗ Corresponding authors. E-mail address: fagonzalezo@unal.edu.co (F.A. González). URL: https://sites.google.com/a/unal.edu.co/mindlab/ (F.A. González)9 páginasapplication/pdfengElsevierIrelandhttps://www.sciencedirect.com/science/article/abs/pii/S0169260718318686?via%3DihubClassification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomographyArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 178 , septiembre de 2019 , páginas 181-189189181178N/AComputer Methods and Programs in Biomedicineinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje - ModelosEnfermedades de la RetinaOptical Coherence TomographyDeep learning modelsDeep InterpretabilityRetinal diseasesMedical findingsLa tomografía de coherencia ópticaModelos de aprendizajeProfundo InterpretabilidadEnfermedades de la retinaHallazgos médicosTEXTClassification of diabetes related retinal diseases using a deep learning.pdf.txtClassification of diabetes related retinal diseases using a deep learning.pdf.txtExtracted texttext/plain50160https://repositorio.escuelaing.edu.co/bitstream/001/1496/3/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.txtcff76e2a5af771a385d1d120e6783020MD53open accessTHUMBNAILClassification of diabetes related retinal diseases using a deep learning.pdf.jpgClassification of diabetes related retinal diseases using a deep learning.pdf.jpgGenerated Thumbnailimage/jpeg15062https://repositorio.escuelaing.edu.co/bitstream/001/1496/4/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdf.jpg00b9a52dca35d7421ca46855d449c30dMD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1496/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALClassification of diabetes related retinal diseases using a deep learning.pdfapplication/pdf2271637https://repositorio.escuelaing.edu.co/bitstream/001/1496/2/Classification%20of%20diabetes%20related%20retinal%20diseases%20using%20a%20deep%20learning.pdfef2f2d179d854453f57afb211d3328a9MD52open access001/1496oai:repositorio.escuelaing.edu.co:001/14962021-10-01 16:26:41.613open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK