Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments
In the context of the preservation of natural resources, researchers show a growing interest in developing eco—friendly materials based on recycled polymers and natural fiber biocomposites to minimize plastic and agroindustrial waste pollution. The development of new materials must be integrated wit...
- Autores:
-
Morales, María Alejandra
Maranon, Alejandro
Hernandez, Camilo
Michaud, Veronique
PORRAS HOLGUIN, ALICIA
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3137
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3137
https://doi.org/10.3390/polym15030528
https://www.mdpi.com/2073-4360/15/3/528
- Palabra clave:
- Agro-industrial waste
Circular economy
Fused deposition modeling
Plastics recycling
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_97d05dd41c37c45a2b22b93ac63f2b14 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3137 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
title |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
spellingShingle |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments Agro-industrial waste Circular economy Fused deposition modeling Plastics recycling |
title_short |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
title_full |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
title_fullStr |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
title_full_unstemmed |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
title_sort |
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments |
dc.creator.fl_str_mv |
Morales, María Alejandra Maranon, Alejandro Hernandez, Camilo Michaud, Veronique PORRAS HOLGUIN, ALICIA |
dc.contributor.author.none.fl_str_mv |
Morales, María Alejandra Maranon, Alejandro Hernandez, Camilo Michaud, Veronique PORRAS HOLGUIN, ALICIA |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Diseños sostenibles en ingeniería mecánica |
dc.subject.proposal.eng.fl_str_mv |
Agro-industrial waste Circular economy Fused deposition modeling Plastics recycling |
topic |
Agro-industrial waste Circular economy Fused deposition modeling Plastics recycling |
description |
In the context of the preservation of natural resources, researchers show a growing interest in developing eco—friendly materials based on recycled polymers and natural fiber biocomposites to minimize plastic and agroindustrial waste pollution. The development of new materials must be integrated within the circular economy concepts to guarantee sustainable production. In parallel, fused deposition modeling, an additive manufacturing technology, provides the opportunity to use these new materials in an efficient and sustainable manner. This review presents the context of plastics and agro-industrial fiber pollution, followed by the opportunity to give them added value by applying circular economy concepts and implementing these residues to develop new materials for the manufacture of fused deposition modeling 3D printing technique feedstock. Colombian perspective is highlighted since 3D printing technology is growing there, and Colombian biodiversity represents a high reservoir of materials. Also, recycling in Colombia promotes compliance with the 2030 Agenda and the Sustainable Development Goals. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-02T14:16:41Z |
dc.date.available.none.fl_str_mv |
2024-07-02T14:16:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2073-4360 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3137 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/polym15030528 |
dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2073-4360/15/3/528 |
identifier_str_mv |
2073-4360 |
url |
https://repositorio.escuelaing.edu.co/handle/001/3137 https://doi.org/10.3390/polym15030528 https://www.mdpi.com/2073-4360/15/3/528 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
February-1 2023 |
dc.relation.citationendpage.spa.fl_str_mv |
32 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Polymers |
dc.relation.references.spa.fl_str_mv |
Wowrzeczka, B. City of Waste—Importance of Scale. Sustainability 2021, 13, 3909. [CrossRef] Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0. Plastics Europe Plastic-the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data. Available online: Plastics_the_facts-WEB-2020_versionJun21_final.pdf (accessed on 12 December 2021). World Economic Forum the New Platics Economy: Rethinking the Future of Plastics. Available online: WEF_The_New_Plastics_ Economy.pdf (accessed on 12 December 2021). Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(Ethylene Terephthalate). Polymers 2013, 5, 1–18. [CrossRef] OECD. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Paris, France, 2022; ISBN 978-92-64-97364-0. Acoplásticos Plástico En Colombia: Plásticos-Química-Petroquímica-Cauchos-Pinturas-Tintas-Fibras. Available online: https: //acoplasticos.org/boletines/2020/Pec_2020_2021/PeC_2021.pdf (accessed on 12 December 2021). Cherubin, M.R.; Oliveira, D.M.d.S.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop Residue Harvest for Bioenergy Production and Its Implications on Soil Functioning and Plant Growth: A Review. Sci. Agric. 2018, 75, 255–272. [CrossRef] Industrial Waste Management: Waste Stream Statistics. Available online: https://recoverusa.com/industrial-waste-management/ (accessed on 11 March 2022). US EPA. Construction and Demolition Debris: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figuresabout-materials-waste-and-recycling/construction-and-demolition-debris-material (accessed on 11 March 2022). Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in Mitigation of Industrial Waste: Global Health Hazards, Environmental Implications and Waste Derived Economy for Environmental Sustainability. Sci. Total Environ. 2022, 811, 152357. [CrossRef] [PubMed] Escalante, H.; Orduz, J.; Zapata, H.; Cardona, M.; Ortega, M. Atlas Del Potencial Energético de La Biomasa Residual En Colombia; Universidad Industrial de Santander: Bucaramanga, Colombia, 2011; ISBN 978-958-8504-59-9. Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. Npj Clim. Atmos. Sci. 2019, 2, 35. [CrossRef] Het Groene Brein. A Circular Economy Differs from a Linear Economy, but How? Kenniskaarten-het Groene Brein 2020. Available online: https://kenniskaarten.hetgroenebrein.nl/ (accessed on 18 January 2022). Lucas, P.; Wilting, H. Using Planetary Boundaries to Support National Implementation of Environment-Related Sustainable Development Goals; PBL Netherlands Environmental Assesment Agency: The Hague, The Netherlands, 2018; p. 54. Ellen McArthur Foundation. The Circular Economy Solution to Plastic Pollution: Perspective on “Breaking the Plastic Wave” Study. 2020. Available online: https://ellenmacarthurfoundation.org/ (accessed on 18 January 2022). Koshy, R.R.; Mary, S.K.; Thomas, S.; Pothan, L.A. Environment Friendly Green Composites Based on Soy Protein Isolate—A Review. Food Hydrocoll. 2015, 50, 174–192. [CrossRef] Sulyman, M.; Haponiuk, J.; Formela, K. Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. Int. J. Environ. Sci. Dev. 2016, 7, 100–108. [CrossRef] DePalma, K.; Walluk, M.R.; Murtaugh, A.; Hilton, J.; McConky, S.; Hilton, B. Assessment of 3D Printing Using Fused Deposition Modeling and Selective Laser Sintering for a Circular Economy. J. Clean. Prod. 2020, 264, 121567. [CrossRef] Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [CrossRef] Cámara de Comercio de Ministerio de Tecnologías de la Información y las Comunicaciones de Colombia; International Chamber of Commerce. Observatorio de la Economía Digital de Colombia; Cámara de Comercio de Ministerio de Tecnologías de la Información y las Comunicaciones de Colombia: Bogota, Colombia; International Chamber of Commerce: Paris, France, 2018; ISBN 978-958-688-472-3. Misión, S. Colombia y La Nueva Revolución Industrial: Propuesta de Foco de Tecnologías Convergentes e Industria 4.0; Ministerio de Ciencia, Tecnología e Innovación: Bogota, Colombia, 2019. [CrossRef] Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer Recycling in an Open-Source Additive Manufacturing Context: Mechanical Issues. Addit. Manuf. 2017, 17, 87–105. [CrossRef] Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [CrossRef] Gu, L.; Ozbakkaloglu, T. Use of Recycled Plastics in Concrete: A Critical Review. Waste Manag. 2016, 51, 19–42. [CrossRef] [PubMed] Zhang, J.; Liu, J.; Wang, S.; Zhan, P.; Wang, Z.; Ming, N. Facile Methods to Coat Polystyrene and Silica Colloids with Metal. Adv. Funct. Mater. 2004, 14, 1089–1096. [CrossRef] Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and Nano-Plastics in Marine Environment: Source, Distribution and Threats—A Review. Sci. Total Environ. 2020, 698, 134254. [CrossRef] [PubMed] Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change. J. Clean. Prod. 2020, 254, 120138. [CrossRef] United Nations Environment Programme (UNEP) Mapping of Global Plastics Value Chain and Plastics Losses to the Environment: With a Particular Focus on Marine Environment. Available online: https://www.greengrowthknowledge.org/research/mappingglobal-plastics-value-chain-and-plastics-losses-environment-particular-focus-marine (accessed on 27 October 2021). Brooks, A.; Jambeck, J.R.; Mozo-Reyes, E. Plastic Waste Management and Leakage in Latin America and the Caribbean. Available online: https://publications.iadb.org/publications/english/document/Plastic-Waste-Management-and-Leakagein-Latin-America-and-the-Caribbean.pdf (accessed on 27 October 2021). DANE Encuesta Anual Manufacturera-Boletín Técnico 2018. Available online: https://www.dane.gov.co/files/investigaciones/ boletines/eam/boletin_eam_2018.pdf (accessed on 3 February 2022). Greenpeace Colombia. Mejor Sin Plásticos: La Contaminación Plástica En Colombia y El Mundo. 2018. Available online: https://www.greenpeace.org/colombia/ (accessed on 3 February 2022). Portafolio, C.E.E. Colombia Recicla El 17% de Las 12 Millones de Toneladas de Residuos. Available online: https://www. portafolio.co/economia/colombia-solo-recicla-el-17-de-las-12-millones-de-toneladas-de-residuos-solidos-523236 (accessed on 26 October 2021). Crippa, M.; De Wilde, B.; Koopmans, R.; Leyssens, J.; Muncke, J.; Ritschkoff, A.-C.; Van Doorsselaer, K.; Velis, C.; Wagner, M. A Circular Economy for Plastics: Insights from Research and Innovation to Inform Policy and Funding Decisions; European Comission: Brussels, Belgium, 2019; ISBN 978-92-79-98429-7. FAO. Food and Agriculture: Driving Action across the 2030 Agenda for Sustainable Development; FAO: Rome, Italy, 2017; p. 40. Adhikari, S.; Nam, H.; Chakraborty, J.P. Chapter 8—Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis. In Waste Biorefinery; Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–263, ISBN 978-0-444-63992-9. Ramírez-García, R.; Gohil, N.; Singh, V. Chapter 21-Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 517–568, ISBN 978-0-12-813912-7. FAO State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Available online: https: //www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1242090/ (accessed on 29 November 2021). Cury, R.K.; Aguas, M.Y.; Martinez, M.A.; Olivero, V.R.; Chams, C.L. Residuos Agroindustriales Su Impacto, Manejo y Aprovechamiento. Rev. Colomb. Cienc. Anim. RECIA 2017, 9, 122–132. [CrossRef] Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [CrossRef] Kumar, P.; Joshi, L. Pollution Caused by Agricultural Waste Burning and Possible Alternate Uses of Crop Stubble: A Case Study of Punjab. Available online: https://www.springerprofessional.de/en/pollution-caused-by-agricultural-waste-burning-andpossible-alte/4055460 (accessed on 17 November 2021). Abbasi, A.; Sajid, A.; Haq, N.; Rahman, S.; Misbah, Z.; Sanober, G.; Ashraf, M.; Kazi, A.G. Agricultural Pollution: An Emerging Issue. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M.R., Azooz, M.M., Tran, L.-S.P., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 347–387, ISBN 978-1-4614-8830-9. FAO Losses and Food Waste in Latin America and the Caribbean. Available online: https://www.fao.org/americas/noticias/ ver/en/c/239392/ (accessed on 29 November 2021). Marrugo Escobar, G.P. Efecto de los Cambios Estructurales de Diferentes Biomasas Pirolizadas Sobre las Características del Gas de Síntesis, Obtenido a Partir de la Gasificación de Biochar. 2016. Available online: https://repositorio.unal.edu.co/handle/ unal/56490 (accessed on 29 November 2021). Corredor, Y.A.V.; Pérez, L.I.P. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Rev. Fac. Cienc. Básicas 2018, 14, 59–72. [CrossRef] Federación Nacional de Cafeteros de Colombia Estadísticas Cafeteras. Fed Nac Cafe. 2022. Available online: https:// federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed on 30 November 2021). Serna-Jiménez, J.A.; Torres-Valenzuela, L.S.; Cortínez, K.M.; Sandoval, M.C.H. Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos. Rev. ION 2018, 31, 37–42. [CrossRef] Ramirez, C.A.M. Sector Agroindustrial de La Caña. Available online: https://www.asocana.org/modules/documentos/1/41 .aspx (accessed on 30 November 2021). FEDEARROZ April 2021. Available online: http://www.fedearroz.com.co/revistanew/arroz551.pdf (accessed on 3 July 2021). Singh, B. 13-Rice Husk Ash. In Waste and Supplementary Cementitious Materials in Concrete; Siddique, R., Cachim, P., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 417–460, ISBN 978-0-08-102156-9. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
32 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Multidisciplinary Digital Publishing Institute - MDPI |
dc.publisher.place.spa.fl_str_mv |
Suiza |
dc.source.spa.fl_str_mv |
https://www.mdpi.com/2073-4360/15/3/528 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3137/4/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3137/3/Portada%20-%20Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.png https://repositorio.escuelaing.edu.co/bitstream/001/3137/5/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3137/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3137/1/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdf |
bitstream.checksum.fl_str_mv |
5849ef73db21e6b4d59df6feac643dbe 0aa870bd2a902ffd38fcff37fa10fa31 076f57ac68a0dc11b6d8e12da992dee5 5a7ca94c2e5326ee169f979d71d0f06e c14ff223b2e5419a5e1a2ab11536b4b1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355602469552128 |
spelling |
Morales, María Alejandra f750f8604599b0a32253247a5d1cee88600Maranon, Alejandro2c99cbb293bab3ddd019fcb66437f513600Hernandez, Camilo102b737cea49dba2f49906ecbbafe5dd600Michaud, Veronique23605f9d33a0e23050c67a46eec07083600PORRAS HOLGUIN, ALICIAddfe605260828c9007704a48420c149e600Grupo de Investigación en Diseños sostenibles en ingeniería mecánica2024-07-02T14:16:41Z2024-07-02T14:16:41Z20232073-4360https://repositorio.escuelaing.edu.co/handle/001/3137https://doi.org/10.3390/polym15030528https://www.mdpi.com/2073-4360/15/3/528In the context of the preservation of natural resources, researchers show a growing interest in developing eco—friendly materials based on recycled polymers and natural fiber biocomposites to minimize plastic and agroindustrial waste pollution. The development of new materials must be integrated within the circular economy concepts to guarantee sustainable production. In parallel, fused deposition modeling, an additive manufacturing technology, provides the opportunity to use these new materials in an efficient and sustainable manner. This review presents the context of plastics and agro-industrial fiber pollution, followed by the opportunity to give them added value by applying circular economy concepts and implementing these residues to develop new materials for the manufacture of fused deposition modeling 3D printing technique feedstock. Colombian perspective is highlighted since 3D printing technology is growing there, and Colombian biodiversity represents a high reservoir of materials. Also, recycling in Colombia promotes compliance with the 2030 Agenda and the Sustainable Development Goals.En el contexto de la preservación de los recursos naturales, los investigadores muestran un interés creciente por el desarrollo de materiales ecológicos basados en polímeros reciclados y biocomposites de fibras naturales para minimizar la contaminación por residuos plásticos y agroindustriales. El desarrollo de nuevos materiales debe integrarse en los conceptos de economía circular para garantizar una producción sostenible. Paralelamente, el modelado por deposición fundida, una tecnología de fabricación aditiva, ofrece la oportunidad de utilizar estos nuevos materiales de forma eficiente y sostenible. Esta revisión presenta el contexto de la contaminación de plásticos y fibras agroindustriales, seguido de la oportunidad de darles valor agregado aplicando conceptos de economía circular e implementando estos residuos para desarrollar nuevos materiales para la fabricación de materia prima de la técnica de impresión 3D por deposición fundida. Colombia se destaca la perspectiva colombiana ya que la tecnología de impresión 3D está creciendo allí, y la biodiversidad colombiana representa un alto reservorio de materiales. Así mismo, el reciclaje en Colombia promueve el cumplimiento de la Agenda 2030 y los Objetivos de Desarrollo Sostenible.32 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute - MDPISuizahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.mdpi.com/2073-4360/15/3/528Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing FilamentsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85February-1 2023323115N/APolymersWowrzeczka, B. City of Waste—Importance of Scale. Sustainability 2021, 13, 3909. [CrossRef]Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0.Plastics Europe Plastic-the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data. Available online: Plastics_the_facts-WEB-2020_versionJun21_final.pdf (accessed on 12 December 2021).World Economic Forum the New Platics Economy: Rethinking the Future of Plastics. Available online: WEF_The_New_Plastics_ Economy.pdf (accessed on 12 December 2021).Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(Ethylene Terephthalate). Polymers 2013, 5, 1–18. [CrossRef]OECD. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Paris, France, 2022; ISBN 978-92-64-97364-0.Acoplásticos Plástico En Colombia: Plásticos-Química-Petroquímica-Cauchos-Pinturas-Tintas-Fibras. Available online: https: //acoplasticos.org/boletines/2020/Pec_2020_2021/PeC_2021.pdf (accessed on 12 December 2021).Cherubin, M.R.; Oliveira, D.M.d.S.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop Residue Harvest for Bioenergy Production and Its Implications on Soil Functioning and Plant Growth: A Review. Sci. Agric. 2018, 75, 255–272. [CrossRef]Industrial Waste Management: Waste Stream Statistics. Available online: https://recoverusa.com/industrial-waste-management/ (accessed on 11 March 2022).US EPA. Construction and Demolition Debris: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figuresabout-materials-waste-and-recycling/construction-and-demolition-debris-material (accessed on 11 March 2022).Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in Mitigation of Industrial Waste: Global Health Hazards, Environmental Implications and Waste Derived Economy for Environmental Sustainability. Sci. Total Environ. 2022, 811, 152357. [CrossRef] [PubMed]Escalante, H.; Orduz, J.; Zapata, H.; Cardona, M.; Ortega, M. Atlas Del Potencial Energético de La Biomasa Residual En Colombia; Universidad Industrial de Santander: Bucaramanga, Colombia, 2011; ISBN 978-958-8504-59-9.Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. Npj Clim. Atmos. Sci. 2019, 2, 35. [CrossRef]Het Groene Brein. A Circular Economy Differs from a Linear Economy, but How? Kenniskaarten-het Groene Brein 2020. Available online: https://kenniskaarten.hetgroenebrein.nl/ (accessed on 18 January 2022).Lucas, P.; Wilting, H. Using Planetary Boundaries to Support National Implementation of Environment-Related Sustainable Development Goals; PBL Netherlands Environmental Assesment Agency: The Hague, The Netherlands, 2018; p. 54.Ellen McArthur Foundation. The Circular Economy Solution to Plastic Pollution: Perspective on “Breaking the Plastic Wave” Study. 2020. Available online: https://ellenmacarthurfoundation.org/ (accessed on 18 January 2022).Koshy, R.R.; Mary, S.K.; Thomas, S.; Pothan, L.A. Environment Friendly Green Composites Based on Soy Protein Isolate—A Review. Food Hydrocoll. 2015, 50, 174–192. [CrossRef]Sulyman, M.; Haponiuk, J.; Formela, K. Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. Int. J. Environ. Sci. Dev. 2016, 7, 100–108. [CrossRef]DePalma, K.; Walluk, M.R.; Murtaugh, A.; Hilton, J.; McConky, S.; Hilton, B. Assessment of 3D Printing Using Fused Deposition Modeling and Selective Laser Sintering for a Circular Economy. J. Clean. Prod. 2020, 264, 121567. [CrossRef]Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [CrossRef]Cámara de Comercio de Ministerio de Tecnologías de la Información y las Comunicaciones de Colombia; International Chamber of Commerce. Observatorio de la Economía Digital de Colombia; Cámara de Comercio de Ministerio de Tecnologías de la Información y las Comunicaciones de Colombia: Bogota, Colombia; International Chamber of Commerce: Paris, France, 2018; ISBN 978-958-688-472-3.Misión, S. Colombia y La Nueva Revolución Industrial: Propuesta de Foco de Tecnologías Convergentes e Industria 4.0; Ministerio de Ciencia, Tecnología e Innovación: Bogota, Colombia, 2019. [CrossRef]Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer Recycling in an Open-Source Additive Manufacturing Context: Mechanical Issues. Addit. Manuf. 2017, 17, 87–105. [CrossRef]Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [CrossRef]Gu, L.; Ozbakkaloglu, T. Use of Recycled Plastics in Concrete: A Critical Review. Waste Manag. 2016, 51, 19–42. [CrossRef] [PubMed]Zhang, J.; Liu, J.; Wang, S.; Zhan, P.; Wang, Z.; Ming, N. Facile Methods to Coat Polystyrene and Silica Colloids with Metal. Adv. Funct. Mater. 2004, 14, 1089–1096. [CrossRef]Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and Nano-Plastics in Marine Environment: Source, Distribution and Threats—A Review. Sci. Total Environ. 2020, 698, 134254. [CrossRef] [PubMed]Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change. J. Clean. Prod. 2020, 254, 120138. [CrossRef]United Nations Environment Programme (UNEP) Mapping of Global Plastics Value Chain and Plastics Losses to the Environment: With a Particular Focus on Marine Environment. Available online: https://www.greengrowthknowledge.org/research/mappingglobal-plastics-value-chain-and-plastics-losses-environment-particular-focus-marine (accessed on 27 October 2021).Brooks, A.; Jambeck, J.R.; Mozo-Reyes, E. Plastic Waste Management and Leakage in Latin America and the Caribbean. Available online: https://publications.iadb.org/publications/english/document/Plastic-Waste-Management-and-Leakagein-Latin-America-and-the-Caribbean.pdf (accessed on 27 October 2021).DANE Encuesta Anual Manufacturera-Boletín Técnico 2018. Available online: https://www.dane.gov.co/files/investigaciones/ boletines/eam/boletin_eam_2018.pdf (accessed on 3 February 2022).Greenpeace Colombia. Mejor Sin Plásticos: La Contaminación Plástica En Colombia y El Mundo. 2018. Available online: https://www.greenpeace.org/colombia/ (accessed on 3 February 2022).Portafolio, C.E.E. Colombia Recicla El 17% de Las 12 Millones de Toneladas de Residuos. Available online: https://www. portafolio.co/economia/colombia-solo-recicla-el-17-de-las-12-millones-de-toneladas-de-residuos-solidos-523236 (accessed on 26 October 2021).Crippa, M.; De Wilde, B.; Koopmans, R.; Leyssens, J.; Muncke, J.; Ritschkoff, A.-C.; Van Doorsselaer, K.; Velis, C.; Wagner, M. A Circular Economy for Plastics: Insights from Research and Innovation to Inform Policy and Funding Decisions; European Comission: Brussels, Belgium, 2019; ISBN 978-92-79-98429-7.FAO. Food and Agriculture: Driving Action across the 2030 Agenda for Sustainable Development; FAO: Rome, Italy, 2017; p. 40.Adhikari, S.; Nam, H.; Chakraborty, J.P. Chapter 8—Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis. In Waste Biorefinery; Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–263, ISBN 978-0-444-63992-9.Ramírez-García, R.; Gohil, N.; Singh, V. Chapter 21-Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 517–568, ISBN 978-0-12-813912-7.FAO State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Available online: https: //www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1242090/ (accessed on 29 November 2021).Cury, R.K.; Aguas, M.Y.; Martinez, M.A.; Olivero, V.R.; Chams, C.L. Residuos Agroindustriales Su Impacto, Manejo y Aprovechamiento. Rev. Colomb. Cienc. Anim. RECIA 2017, 9, 122–132. [CrossRef]Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [CrossRef]Kumar, P.; Joshi, L. Pollution Caused by Agricultural Waste Burning and Possible Alternate Uses of Crop Stubble: A Case Study of Punjab. Available online: https://www.springerprofessional.de/en/pollution-caused-by-agricultural-waste-burning-andpossible-alte/4055460 (accessed on 17 November 2021).Abbasi, A.; Sajid, A.; Haq, N.; Rahman, S.; Misbah, Z.; Sanober, G.; Ashraf, M.; Kazi, A.G. Agricultural Pollution: An Emerging Issue. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M.R., Azooz, M.M., Tran, L.-S.P., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 347–387, ISBN 978-1-4614-8830-9.FAO Losses and Food Waste in Latin America and the Caribbean. Available online: https://www.fao.org/americas/noticias/ ver/en/c/239392/ (accessed on 29 November 2021).Marrugo Escobar, G.P. Efecto de los Cambios Estructurales de Diferentes Biomasas Pirolizadas Sobre las Características del Gas de Síntesis, Obtenido a Partir de la Gasificación de Biochar. 2016. Available online: https://repositorio.unal.edu.co/handle/ unal/56490 (accessed on 29 November 2021).Corredor, Y.A.V.; Pérez, L.I.P. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Rev. Fac. Cienc. Básicas 2018, 14, 59–72. [CrossRef]Federación Nacional de Cafeteros de Colombia Estadísticas Cafeteras. Fed Nac Cafe. 2022. Available online: https:// federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed on 30 November 2021).Serna-Jiménez, J.A.; Torres-Valenzuela, L.S.; Cortínez, K.M.; Sandoval, M.C.H. Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos. Rev. ION 2018, 31, 37–42. [CrossRef]Ramirez, C.A.M. Sector Agroindustrial de La Caña. Available online: https://www.asocana.org/modules/documentos/1/41 .aspx (accessed on 30 November 2021).FEDEARROZ April 2021. Available online: http://www.fedearroz.com.co/revistanew/arroz551.pdf (accessed on 3 July 2021).Singh, B. 13-Rice Husk Ash. In Waste and Supplementary Cementitious Materials in Concrete; Siddique, R., Cachim, P., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 417–460, ISBN 978-0-08-102156-9.Agro-industrial wasteCircular economyFused deposition modelingPlastics recyclingTEXTColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdf.txtColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdf.txtExtracted texttext/plain163963https://repositorio.escuelaing.edu.co/bitstream/001/3137/4/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdf.txt5849ef73db21e6b4d59df6feac643dbeMD54open accessTHUMBNAILPortada - Colombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pngPortada - Colombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pngimage/png190246https://repositorio.escuelaing.edu.co/bitstream/001/3137/3/Portada%20-%20Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.png0aa870bd2a902ffd38fcff37fa10fa31MD53open accessColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdf.jpgColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdf.jpgGenerated Thumbnailimage/jpeg16319https://repositorio.escuelaing.edu.co/bitstream/001/3137/5/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdf.jpg076f57ac68a0dc11b6d8e12da992dee5MD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3137/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdfColombian Sustainability Perspective on Fused Deposition Modeling Technology Opportunity to Develop Recycled and Biobased 3D Printing Filaments.pdfArtículo de revistaapplication/pdf4228927https://repositorio.escuelaing.edu.co/bitstream/001/3137/1/Colombian%20Sustainability%20Perspective%20on%20Fused%20Deposition%20Modeling%20Technology%20Opportunity%20to%20Develop%20Recycled%20and%20Biobased%203D%20Printing%20Filaments.pdfc14ff223b2e5419a5e1a2ab11536b4b1MD51open access001/3137oai:repositorio.escuelaing.edu.co:001/31372024-07-03 03:00:36.718open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |