Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots
Today’s autonomous robots are being used for complex tasks, including space exploration, military applications, and precision agriculture. As the complexity of control architectures increases, reliability of autonomous robots becomes more challenging to guarantee. This paper presents a hybrid contro...
- Autores:
-
Cadavid, Héctor
Pérez, Alexander
Rocha, Camilo
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2017
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1478
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1478
https://link.springer.com/chapter/10.1007/978-3-319-66562-7_44
- Palabra clave:
- Automatización
Robótica
Sistema operativo de robots
Robots - Sistemas de control
Robot autonomy
Plan Execution Interchange Language ( PLEXIL )
Robot Operating System ( ROS )
Control architectures
Formal verification
Rewriting logic
Automatic reachability analysis
- Rights
- closedAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_9102fc8eec24e03c9b0ecdb3410c96d0 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1478 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
title |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
spellingShingle |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots Automatización Robótica Sistema operativo de robots Robots - Sistemas de control Robot autonomy Plan Execution Interchange Language ( PLEXIL ) Robot Operating System ( ROS ) Control architectures Formal verification Rewriting logic Automatic reachability analysis |
title_short |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
title_full |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
title_fullStr |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
title_full_unstemmed |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
title_sort |
Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots |
dc.creator.fl_str_mv |
Cadavid, Héctor Pérez, Alexander Rocha, Camilo |
dc.contributor.author.none.fl_str_mv |
Cadavid, Héctor Pérez, Alexander Rocha, Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
CTG-Informática Ecitrónica |
dc.subject.armarc.spa.fl_str_mv |
Automatización Robótica Sistema operativo de robots Robots - Sistemas de control |
topic |
Automatización Robótica Sistema operativo de robots Robots - Sistemas de control Robot autonomy Plan Execution Interchange Language ( PLEXIL ) Robot Operating System ( ROS ) Control architectures Formal verification Rewriting logic Automatic reachability analysis |
dc.subject.proposal.spa.fl_str_mv |
Robot autonomy Plan Execution Interchange Language ( PLEXIL ) Robot Operating System ( ROS ) Control architectures Formal verification Rewriting logic Automatic reachability analysis |
description |
Today’s autonomous robots are being used for complex tasks, including space exploration, military applications, and precision agriculture. As the complexity of control architectures increases, reliability of autonomous robots becomes more challenging to guarantee. This paper presents a hybrid control architecture, based on the Plan Execution Interchange Language ( PLEXIL ), for autonomy of wheeled robots running the Robot Operating System ( ROS ). PLEXIL is a synchronous reactive language developed by NASA for mission critical robotic systems, while ROS is one of the most popular frameworks for robotic middle-ware development. Given the safety-critical nature of spacecraft operations, PLEXIL operational semantics has been mathematically defined, and formal techniques and tools have been developed to automatically analyze plans written in this language. The hybrid control architecture proposed in this paper is showcased in a path tracking scenario using the Husky robot platform via a Gazebo simulation. Thanks to the architecture presented in this paper, all formal analysis techniques and tools currently available to PLEXIL are now available to build reliable plans for ROS -enabled wheeled robots. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-05-24T22:47:01Z 2021-10-01T17:22:44Z |
dc.date.available.none.fl_str_mv |
2021-05-24 2021-10-01T17:22:44Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
978-3-319-66561-0 978-3-319-66562-7 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1478 |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.1007/978-3-319-66562-7_44 |
dc.identifier.url.none.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-319-66562-7_44 |
identifier_str_mv |
978-3-319-66561-0 978-3-319-66562-7 doi.org/10.1007/978-3-319-66562-7_44 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1478 https://link.springer.com/chapter/10.1007/978-3-319-66562-7_44 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
Communications in Computer and Information Science book series (CCIS, volume 735); |
dc.relation.citationedition.spa.fl_str_mv |
CCC 2017 |
dc.relation.citationendpage.spa.fl_str_mv |
626 |
dc.relation.citationstartpage.spa.fl_str_mv |
611 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofbook.spa.fl_str_mv |
Advances in Computing |
dc.relation.references.spa.fl_str_mv |
Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 69–82. Springer, Cham (2015). doi: 10.1007/978-3-319-23264-5_7 Broenink, J., Brodskiy, Y., Dresscher, D., Stramigioli, S.: Robustness inembedded software for autonomous robots. Mikroniek 54, 38–45 (2014) Cadavid, H.F., Chaparro, J.A.: Hardware and software architecture for plexil-based, simulation supported, robot automation. In: IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1–6. IEEE (2016) Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework: How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007) Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution language. Electron. Proc. Theoret. Comput. Sci. 18, 77–91 (2010) Estlin, T., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K., Verma, V.: Plan Execution Interchange Language (PLEXIL). Technical report TM-2006-213483, NASA, April 2006 O. S. R. Foundation. GAZEBO: A 3D dynamic simulator. http://gazebosim.org. Accessed 19 May 2017 O. S. R. Foundation. ROS: Robot operating system. http://wiki.ros.org. Accessed 19 May 2017 O. S. R. Foundation. RViz: 3D visualization tool for ROS. http://wiki.ros.org/rviz. Accessed 19 May 2017 Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft, R., Steinbuch, M.: Integrating planning and execution for ros enabled service robots using hierarchical action representations. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–7. IEEE (2013) Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2149–2154, September 2004 Lundgren, M.: Path tracking for a miniature robot. Department of Computer Science, University of Umea, Masters (2003) Medeiros, A.A.: A survey of control architectures for autonomous mobile robots. J. Braz. Comput. Soc. 4(3) (1998) Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992) Muñoz, C.A., Dutle, A., Narkawicz, A., Upchurch, J.: Unmanned aircraft systems in the national airspace system: a formal methods perspective. SIGLOG News 3(3), 67–76 (2016) Muñoz, P., R-Moreno, M.D., Castaño, B.: Integrating a PDDL-based planner and a PLEXIL-executor into the ptinto robot. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 72–81. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13022-9_8 Nakhaeinia, D., Tang, S.H., Noor, S.M., Motlagh, O.: A review of control architectures for autonomous navigation of mobile robots. Int. J. Phys. Sci. 6(2), 169–174 (2011) Potop-Butucaru, D., de Simone, R., Talpin, J.-P.: The synchronous hypothesis and synchronous languages. In: The Embedded Systems Handbook, pp. 1–21 (2005) Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009) Robotics, C.: Husky-unmanned ground vehicle. Technical Specifications, Clearpath Robotics, Kitcener, Ontario, Canada (2013) Rocha, C.: Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis, University of Illinois, December 2012 Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verification environment for the plan execution interchange language. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30729-4_24 Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Logic. Algebr. Methods Program. 86(1), 269–297 (2017) Rocha, C., Muñoz, C., Cadavid, H.: A graphical environment for the semantic validation of a plan execution language. In: Third IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), pp. 201–207. IEEE, July 2009 Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham (2016). doi: 10.1007/978-3-319-48869-1_2 Verma, V., Jonsson, A., Pasareanu, C., Iatauro, M.: Universal-executive and PLEXIL: engine and language for robust spacecraft control and operations. In: American Institute of Aeronautics and Astronautics SPACE Forum (Space 2006). American Institute of Aeronautics and Astronautics, September 2006 Zheltoukhov, A.A., Stankevich, L.A.: A survey of control architectures for autonomous mobile robots. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1094–1099. IEEE (2017) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Nature |
dc.publisher.place.spa.fl_str_mv |
Suiza |
dc.source.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_44 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1478/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1478/2/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1478/3/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1478/4/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a7ca94c2e5326ee169f979d71d0f06e 171bebb3ca018e5cecdd6c71f352f172 d784fa8b6d98d27699781bd9a7cf19f0 92c8369572228b9ba3677dcd9eb90010 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355607636934656 |
spelling |
Cadavid, Héctor1419fa48babb695dddb738176b5abcb4600Pérez, Alexander9993c6a7080229dbf901830e1398a2ff600Rocha, Camilo649eba80a4c919beefa7d19955bc2950600CTG-InformáticaEcitrónica2021-05-24T22:47:01Z2021-10-01T17:22:44Z2021-05-242021-10-01T17:22:44Z2017978-3-319-66561-0978-3-319-66562-7https://repositorio.escuelaing.edu.co/handle/001/1478doi.org/10.1007/978-3-319-66562-7_44https://link.springer.com/chapter/10.1007/978-3-319-66562-7_44Today’s autonomous robots are being used for complex tasks, including space exploration, military applications, and precision agriculture. As the complexity of control architectures increases, reliability of autonomous robots becomes more challenging to guarantee. This paper presents a hybrid control architecture, based on the Plan Execution Interchange Language ( PLEXIL ), for autonomy of wheeled robots running the Robot Operating System ( ROS ). PLEXIL is a synchronous reactive language developed by NASA for mission critical robotic systems, while ROS is one of the most popular frameworks for robotic middle-ware development. Given the safety-critical nature of spacecraft operations, PLEXIL operational semantics has been mathematically defined, and formal techniques and tools have been developed to automatically analyze plans written in this language. The hybrid control architecture proposed in this paper is showcased in a path tracking scenario using the Husky robot platform via a Gazebo simulation. Thanks to the architecture presented in this paper, all formal analysis techniques and tools currently available to PLEXIL are now available to build reliable plans for ROS -enabled wheeled robots.Los robots autónomos de hoy se utilizan para tareas complejas, incluida la exploración espacial, aplicaciones militares y agricultura de precisión. A medida que aumenta la complejidad de las arquitecturas de control, la fiabilidad de los robots autónomos se vuelve más difícil de garantizar. Este artículo presenta una arquitectura de control híbrida, basada en el lenguaje de intercambio de ejecución de planes (PLEXIL), para la autonomía de los robots con ruedas que ejecutan el sistema operativo de robots (ROS). PLEXIL es un lenguaje reactivo sincrónico desarrollado por la NASA para sistemas robóticos de misión crítica, mientras que ROS es uno de los marcos más populares para el desarrollo de middleware robótico. Dada la naturaleza crítica para la seguridad de las operaciones de las naves espaciales, la semántica operativa de PLEXIL se ha definido matemáticamente y se han desarrollado técnicas y herramientas formales para analizar automáticamente los planes escritos en este lenguaje. La arquitectura de control híbrida propuesta en este documento se muestra en un escenario de seguimiento de ruta utilizando la plataforma de robot Husky a través de una simulación de Gazebo. Gracias a la arquitectura presentada en este documento, todas las técnicas y herramientas de análisis formales actualmente disponibles para PLEXIL están ahora disponibles para construir planes confiables para robots con ruedas habilitados para ROS.16 páginasapplication/pdfengSpringer NatureSuizaCommunications in Computer and Information Science book series (CCIS, volume 735);CCC 2017626611N/AAdvances in ComputingAndres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 69–82. Springer, Cham (2015). doi: 10.1007/978-3-319-23264-5_7Broenink, J., Brodskiy, Y., Dresscher, D., Stramigioli, S.: Robustness inembedded software for autonomous robots. Mikroniek 54, 38–45 (2014)Cadavid, H.F., Chaparro, J.A.: Hardware and software architecture for plexil-based, simulation supported, robot automation. In: IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1–6. IEEE (2016)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework: How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution language. Electron. Proc. Theoret. Comput. Sci. 18, 77–91 (2010)Estlin, T., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K., Verma, V.: Plan Execution Interchange Language (PLEXIL). Technical report TM-2006-213483, NASA, April 2006O. S. R. Foundation. GAZEBO: A 3D dynamic simulator. http://gazebosim.org. Accessed 19 May 2017O. S. R. Foundation. ROS: Robot operating system. http://wiki.ros.org. Accessed 19 May 2017O. S. R. Foundation. RViz: 3D visualization tool for ROS. http://wiki.ros.org/rviz. Accessed 19 May 2017Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft, R., Steinbuch, M.: Integrating planning and execution for ros enabled service robots using hierarchical action representations. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–7. IEEE (2013)Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2149–2154, September 2004Lundgren, M.: Path tracking for a miniature robot. Department of Computer Science, University of Umea, Masters (2003)Medeiros, A.A.: A survey of control architectures for autonomous mobile robots. J. Braz. Comput. Soc. 4(3) (1998)Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)Muñoz, C.A., Dutle, A., Narkawicz, A., Upchurch, J.: Unmanned aircraft systems in the national airspace system: a formal methods perspective. SIGLOG News 3(3), 67–76 (2016)Muñoz, P., R-Moreno, M.D., Castaño, B.: Integrating a PDDL-based planner and a PLEXIL-executor into the ptinto robot. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 72–81. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13022-9_8Nakhaeinia, D., Tang, S.H., Noor, S.M., Motlagh, O.: A review of control architectures for autonomous navigation of mobile robots. Int. J. Phys. Sci. 6(2), 169–174 (2011)Potop-Butucaru, D., de Simone, R., Talpin, J.-P.: The synchronous hypothesis and synchronous languages. In: The Embedded Systems Handbook, pp. 1–21 (2005)Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)Robotics, C.: Husky-unmanned ground vehicle. Technical Specifications, Clearpath Robotics, Kitcener, Ontario, Canada (2013)Rocha, C.: Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis, University of Illinois, December 2012Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verification environment for the plan execution interchange language. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30729-4_24Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Logic. Algebr. Methods Program. 86(1), 269–297 (2017)Rocha, C., Muñoz, C., Cadavid, H.: A graphical environment for the semantic validation of a plan execution language. In: Third IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), pp. 201–207. IEEE, July 2009Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham (2016). doi: 10.1007/978-3-319-48869-1_2Verma, V., Jonsson, A., Pasareanu, C., Iatauro, M.: Universal-executive and PLEXIL: engine and language for robust spacecraft control and operations. In: American Institute of Aeronautics and Astronautics SPACE Forum (Space 2006). American Institute of Aeronautics and Astronautics, September 2006Zheltoukhov, A.A., Stankevich, L.A.: A survey of control architectures for autonomous mobile robots. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1094–1099. IEEE (2017)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/closedAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_14cbhttps://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_44Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled RobotsCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85AutomatizaciónRobóticaSistema operativo de robotsRobots - Sistemas de controlRobot autonomyPlan Execution Interchange Language ( PLEXIL )Robot Operating System ( ROS )Control architecturesFormal verificationRewriting logicAutomatic reachability analysisLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1478/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALReliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots.pdfapplication/pdf111731https://repositorio.escuelaing.edu.co/bitstream/001/1478/2/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf171bebb3ca018e5cecdd6c71f352f172MD52metadata only accessTEXTReliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots.pdf.txtReliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1478/3/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD53open accessTHUMBNAILReliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots.pdf.jpgReliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots.pdf.jpgGenerated Thumbnailimage/jpeg8187https://repositorio.escuelaing.edu.co/bitstream/001/1478/4/Reliable%20Control%20Architecture%20with%20PLEXIL%20and%20ROS%20for%20Autonomous%20Wheeled%20Robots.pdf.jpg92c8369572228b9ba3677dcd9eb90010MD54open access001/1478oai:repositorio.escuelaing.edu.co:001/14782022-08-04 16:39:20.492metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |