Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks

Today’s wireless networks provide us reliable connectivity. However, if a disaster occurs, the whole network could be out of service and people cannot communicate. Using a fast deployable temporally network by mounting small cell base stations on unmanned aerial vehicles (UAVs) could solve the probl...

Full description

Autores:
Castellanos, German
Deruyck, Margot
Martens, Luc
Joseph, Wout
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1427
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1427
https://doi.org/10.3390/s19153342
Palabra clave:
Sistemas de comunicación inalámbrica
Redes de sensores inalámbricos
Wireless communication systems
Wireless sensor networks
UABS
Backhaul
UAV
Disaster scenarios
Millimeter wave
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_88cde04c98cfca38ca450ae15f9230fa
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1427
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
title Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
spellingShingle Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
Sistemas de comunicación inalámbrica
Redes de sensores inalámbricos
Wireless communication systems
Wireless sensor networks
UABS
Backhaul
UAV
Disaster scenarios
Millimeter wave
title_short Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
title_full Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
title_fullStr Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
title_full_unstemmed Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
title_sort Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks
dc.creator.fl_str_mv Castellanos, German
Deruyck, Margot
Martens, Luc
Joseph, Wout
dc.contributor.author.none.fl_str_mv Castellanos, German
Deruyck, Margot
Martens, Luc
Joseph, Wout
dc.contributor.researchgroup.spa.fl_str_mv Ecitrónica
dc.subject.armarc.spa.fl_str_mv Sistemas de comunicación inalámbrica
Redes de sensores inalámbricos
topic Sistemas de comunicación inalámbrica
Redes de sensores inalámbricos
Wireless communication systems
Wireless sensor networks
UABS
Backhaul
UAV
Disaster scenarios
Millimeter wave
dc.subject.armarc.eng.fl_str_mv Wireless communication systems
Wireless sensor networks
dc.subject.proposal.eng.fl_str_mv UABS
Backhaul
UAV
Disaster scenarios
Millimeter wave
description Today’s wireless networks provide us reliable connectivity. However, if a disaster occurs, the whole network could be out of service and people cannot communicate. Using a fast deployable temporally network by mounting small cell base stations on unmanned aerial vehicles (UAVs) could solve the problem. Yet, this raises several challenges. We propose a capacity-deployment tool to design the backhaul network for UAV-aided networks and to evaluate the performance of the backhaul network in a realistic scenario in the city center of Ghent, Belgium. This tool assigns simultaneously resources to the ground users—access network—and to the backhaul network, taking into consideration backhaul capacity and power restrictions. We compare three types of backhaul scenarios using a 3.5 GHz link, 3.5 GHz with carrier aggregation (CA) and the 60 GHz band, considering three different types of drones. The results showed that an optimal UAV flight height (80 m) could satisfy both access and backhaul networks; however, full coverage was difficult to achieve. Finally, we discuss the influence of the flight height and the number of requesting users concerning the network performance and propose an optimal configuration and new mechanisms to improve the network capacity, based on realistic restrictions.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-05-13T13:27:35Z
2021-10-01T17:19:09Z
dc.date.available.none.fl_str_mv 2021-05-13T13:27:35Z
2021-10-01T17:19:09Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1427
dc.identifier.doi.none.fl_str_mv 10.3390/s19153342
dc.identifier.url.none.fl_str_mv https://doi.org/10.3390/s19153342
identifier_str_mv 1424-8220
10.3390/s19153342
url https://repositorio.escuelaing.edu.co/handle/001/1427
https://doi.org/10.3390/s19153342
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Sensors 2019, 19, 3342.
dc.relation.citationendpage.spa.fl_str_mv 16
dc.relation.citationissue.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Sensors
dc.relation.references.spa.fl_str_mv Statement from Digicel on Haiti Earthquake. Available online: https://web.archive.org/web/20100820123624/http://www.indiaprwire.com/pressrelease/telecommunications/2010011441347.htm (accessed on 19 June 2019).
Miller, F.P.; Vandome, A.F.; McBrewster, J. Damage to Infrastructure in the 2010 Haiti Earthquake; Alphascript: San Carlos, CA, USA, 2010.
FEMA. 2017 Hurricane Season FEMA After-Action Report; FEMA: Washington, DC, USA, 2017.
Haryanto, A.T. Dampak Gempa Donggala Bikin 1.678 BTS Tak Berfungsi. Available online: https://inet.detik.com/telecommunication/d-4234684/dampak-gempa-donggala-bikin-1678-bts-tak-berfungsi (accessed on 19 June 2019).
Deruyck, M.; Wyckmans, J.; Joseph, W.; Martens, L. Designing UAV-aided emergency networks for large-scale disaster scenarios. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 79.
Merwaday, A.; Tuncer, A.; Kumbhar, A.; Guvenc, I. Improved Throughput Coverage in Natural Disasters: Unmanned Aerial Base Stations for Public-Safety Communications. IEEE Veh. Technol. Mag. 2016, 11, 53–60.
Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K. UAV-Assisted Emergency Networks in Disasters. IEEE Wirel. Commun. 2019, 26, 45–51.
Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015.
Deruyck, M.; Wyckmans, J.; Martens, L.; Joseph, W. Emergency ad-hoc networks by using drone mounted base stations for a disaster scenario. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016.
Cicek, C.T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. UAV Base Station Location Optimization for Next Generation Wireless Networks: Overview and Future Research Directions. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019.
Deruyck, M.; Marri, A.; Mignardi, S.; Martens, L.; Joseph, W.; Verdone, R. Performance evaluation of the dynamic trajectory design for an unmanned aerial base station in a single frequency network. In Proceedings of the IEEE 28th International Symposium on Personal, Indoor and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017.
Gangula, R.; Esrafilian, O.; Gesbert, D.; Roux, C.; Kaltenberger, F.; Knopp, R. Flying Rebots: First Results on an Autonomous UAV-Based LTE Relay Using Open Airinterface. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018.
Kawamoto, Y.; Nishiyama, H.; Kato, N.; Ono, F.; Miura, R. Toward Future Unmanned Aerial Vehicle Networks: Architecture, Resource Allocation and Field Experiments. IEEE Wirel. Commun. 2019, 26, 94–99.
Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun. Lett. 2016, 20, 1647–1650.
Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42.
Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. arXiv 2018, arXiv:1803.00680.
Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D Wireless Cellular Network. IEEE Trans. Wirel. Commun. 2018, 18, 357–372.
Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tutor. 2016, 18, 1123–1152.
Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Commun. 2019, 26, 120–127.
Huang, H.; Savkin, A.V. A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and Minimum Interference in Cellular Networks. IEEE Trans. Ind. Inform. 2019, 15, 2638–2647.
Wu, Q.; Liu, L.; Zhang, R. Fundamental Trade-offs in Communication and Trajectory Design for UAV-Enabled Wireless Network. IEEE Wirel. Commun. 2019, 26, 36–44.
Cicek, C.T.; Kutlu, T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. Backhaul-Aware Placement of a UAV-BS with Bandwidth Allocation for User-Centric Operation and Profit Maximization. arXiv 2018, arXiv:1810.12395.
Lime demonstrates FPRF Transceivers at Mobile World Congress Shanghai. Available online: https://limemicro.com/news/lime-demonstrate-fprf-transceivers-at-mobile-world-congress-shanghai/ (accessed on 2 May 2019).
Zhang, C.; Zhang, W.; Wang, W.; Yang, L.; Zhang, W. Research Challenges and Opportunities of UAV Millimeter-Wave Communications. IEEE Wirel. Commun. 2019, 26, 58–62.
Galkin, B.; Kibiłda, J.; DaSilva, L.A. Backhaul for Low-Altitude UAVs in Urban Environments. arXiv 2017, arXiv:1710.10807.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI Open Access Journals
dc.publisher.place.spa.fl_str_mv Basilea, Suiza.
dc.source.spa.fl_str_mv https://www.mdpi.com/1424-8220/19/15/3342/htm
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1427/3/10.3390s19153342.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1427/5/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1427/4/10.3390s19153342.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1427/6/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1427/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1427/2/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf
bitstream.checksum.fl_str_mv 71d4704f813f4d8ea8d780418158a84b
71d4704f813f4d8ea8d780418158a84b
7245b8f3e4b3265a34686f8de2d5df53
7245b8f3e4b3265a34686f8de2d5df53
5a7ca94c2e5326ee169f979d71d0f06e
0a8b389ff7ab3a8ee605c3f06b2484a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355597647151104
spelling Castellanos, Germanf7fe8d4e940fb92b121fa70333515d0a600Deruyck, Margot5f9cd89b20ceca784214b206147f2adf600Martens, Luc9fedb037e06697211fc4df61a264102a600Joseph, Woutc3d8535a86ff89c7fbd729a7c4ec1ce1600Ecitrónica2021-05-13T13:27:35Z2021-10-01T17:19:09Z2021-05-13T13:27:35Z2021-10-01T17:19:09Z20191424-8220https://repositorio.escuelaing.edu.co/handle/001/142710.3390/s19153342https://doi.org/10.3390/s19153342Today’s wireless networks provide us reliable connectivity. However, if a disaster occurs, the whole network could be out of service and people cannot communicate. Using a fast deployable temporally network by mounting small cell base stations on unmanned aerial vehicles (UAVs) could solve the problem. Yet, this raises several challenges. We propose a capacity-deployment tool to design the backhaul network for UAV-aided networks and to evaluate the performance of the backhaul network in a realistic scenario in the city center of Ghent, Belgium. This tool assigns simultaneously resources to the ground users—access network—and to the backhaul network, taking into consideration backhaul capacity and power restrictions. We compare three types of backhaul scenarios using a 3.5 GHz link, 3.5 GHz with carrier aggregation (CA) and the 60 GHz band, considering three different types of drones. The results showed that an optimal UAV flight height (80 m) could satisfy both access and backhaul networks; however, full coverage was difficult to achieve. Finally, we discuss the influence of the flight height and the number of requesting users concerning the network performance and propose an optimal configuration and new mechanisms to improve the network capacity, based on realistic restrictions.Las redes inalámbricas actuales nos proporcionan una conectividad fiable. Sin embargo, si se produce una catástrofe, toda la red podría quedar fuera de servicio y las personas no podrían comunicarse. El uso de una red de despliegue rápido y temporal mediante el montaje de estaciones base de células pequeñas en vehículos aéreos no tripulados (UAV) podría resolver el problema. Sin embargo, esto plantea varios retos. Proponemos una herramienta de despliegue de capacidad para diseñar la red de backhaul para redes asistidas por UAV y para evaluar el rendimiento de la red de backhaul en un escenario realista en el centro de la ciudad de Gante, Bélgica. Esta herramienta asigna simultáneamente recursos a los usuarios de tierra -red de acceso- y a la red backhaul, teniendo en cuenta la capacidad de backhaul y las restricciones de potencia. Comparamos tres tipos de escenarios de backhaul utilizando un enlace de 3,5 GHz, 3,5 GHz con agregación de portadoras (CA) y la banda de 60 GHz, considerando tres tipos diferentes de drones. Los resultados mostraron que una altura de vuelo óptima del UAV (80 m) podía satisfacer tanto las redes de acceso como las de backhaul; sin embargo, era difícil lograr una cobertura total. Por último, se analiza la influencia de la altura de vuelo y el número de usuarios solicitantes en el rendimiento de la red y se propone una configuración óptima y nuevos mecanismos para mejorar la capacidad de la red, basados en restricciones realistas.1 Department of Electronics Engineering, Colombian School of Engineering, Bogota 111166, Colombia 2 Department of Information Technology, IMEC-Ghent University, 9052 Ghent, Belgium *Author to whom correspondence should be addressed.16 páginasapplication/pdfengMDPI Open Access JournalsBasilea, Suiza.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.mdpi.com/1424-8220/19/15/3342/htmPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency NetworksArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Sensors 2019, 19, 3342.1615119N/ASensorsStatement from Digicel on Haiti Earthquake. Available online: https://web.archive.org/web/20100820123624/http://www.indiaprwire.com/pressrelease/telecommunications/2010011441347.htm (accessed on 19 June 2019).Miller, F.P.; Vandome, A.F.; McBrewster, J. Damage to Infrastructure in the 2010 Haiti Earthquake; Alphascript: San Carlos, CA, USA, 2010.FEMA. 2017 Hurricane Season FEMA After-Action Report; FEMA: Washington, DC, USA, 2017.Haryanto, A.T. Dampak Gempa Donggala Bikin 1.678 BTS Tak Berfungsi. Available online: https://inet.detik.com/telecommunication/d-4234684/dampak-gempa-donggala-bikin-1678-bts-tak-berfungsi (accessed on 19 June 2019).Deruyck, M.; Wyckmans, J.; Joseph, W.; Martens, L. Designing UAV-aided emergency networks for large-scale disaster scenarios. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 79.Merwaday, A.; Tuncer, A.; Kumbhar, A.; Guvenc, I. Improved Throughput Coverage in Natural Disasters: Unmanned Aerial Base Stations for Public-Safety Communications. IEEE Veh. Technol. Mag. 2016, 11, 53–60.Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K. UAV-Assisted Emergency Networks in Disasters. IEEE Wirel. Commun. 2019, 26, 45–51.Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015.Deruyck, M.; Wyckmans, J.; Martens, L.; Joseph, W. Emergency ad-hoc networks by using drone mounted base stations for a disaster scenario. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016.Cicek, C.T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. UAV Base Station Location Optimization for Next Generation Wireless Networks: Overview and Future Research Directions. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019.Deruyck, M.; Marri, A.; Mignardi, S.; Martens, L.; Joseph, W.; Verdone, R. Performance evaluation of the dynamic trajectory design for an unmanned aerial base station in a single frequency network. In Proceedings of the IEEE 28th International Symposium on Personal, Indoor and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017.Gangula, R.; Esrafilian, O.; Gesbert, D.; Roux, C.; Kaltenberger, F.; Knopp, R. Flying Rebots: First Results on an Autonomous UAV-Based LTE Relay Using Open Airinterface. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018.Kawamoto, Y.; Nishiyama, H.; Kato, N.; Ono, F.; Miura, R. Toward Future Unmanned Aerial Vehicle Networks: Architecture, Resource Allocation and Field Experiments. IEEE Wirel. Commun. 2019, 26, 94–99.Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun. Lett. 2016, 20, 1647–1650.Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42.Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. arXiv 2018, arXiv:1803.00680.Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D Wireless Cellular Network. IEEE Trans. Wirel. Commun. 2018, 18, 357–372.Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tutor. 2016, 18, 1123–1152.Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Commun. 2019, 26, 120–127.Huang, H.; Savkin, A.V. A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and Minimum Interference in Cellular Networks. IEEE Trans. Ind. Inform. 2019, 15, 2638–2647.Wu, Q.; Liu, L.; Zhang, R. Fundamental Trade-offs in Communication and Trajectory Design for UAV-Enabled Wireless Network. IEEE Wirel. Commun. 2019, 26, 36–44.Cicek, C.T.; Kutlu, T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. Backhaul-Aware Placement of a UAV-BS with Bandwidth Allocation for User-Centric Operation and Profit Maximization. arXiv 2018, arXiv:1810.12395.Lime demonstrates FPRF Transceivers at Mobile World Congress Shanghai. Available online: https://limemicro.com/news/lime-demonstrate-fprf-transceivers-at-mobile-world-congress-shanghai/ (accessed on 2 May 2019).Zhang, C.; Zhang, W.; Wang, W.; Yang, L.; Zhang, W. Research Challenges and Opportunities of UAV Millimeter-Wave Communications. IEEE Wirel. Commun. 2019, 26, 58–62.Galkin, B.; Kibiłda, J.; DaSilva, L.A. Backhaul for Low-Altitude UAVs in Urban Environments. arXiv 2017, arXiv:1710.10807.Sistemas de comunicación inalámbricaRedes de sensores inalámbricosWireless communication systemsWireless sensor networksUABSBackhaulUAVDisaster scenariosMillimeter waveTEXT10.3390s19153342.pdf.txt10.3390s19153342.pdf.txtExtracted texttext/plain72169https://repositorio.escuelaing.edu.co/bitstream/001/1427/3/10.3390s19153342.pdf.txt71d4704f813f4d8ea8d780418158a84bMD53open accessPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks.pdf.txtPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks.pdf.txtExtracted texttext/plain72169https://repositorio.escuelaing.edu.co/bitstream/001/1427/5/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf.txt71d4704f813f4d8ea8d780418158a84bMD55open accessTHUMBNAIL10.3390s19153342.pdf.jpg10.3390s19153342.pdf.jpgGenerated Thumbnailimage/jpeg15021https://repositorio.escuelaing.edu.co/bitstream/001/1427/4/10.3390s19153342.pdf.jpg7245b8f3e4b3265a34686f8de2d5df53MD54open accessPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks.pdf.jpgPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks.pdf.jpgGenerated Thumbnailimage/jpeg15021https://repositorio.escuelaing.edu.co/bitstream/001/1427/6/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf.jpg7245b8f3e4b3265a34686f8de2d5df53MD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1427/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALPerformance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks.pdfapplication/pdf3635942https://repositorio.escuelaing.edu.co/bitstream/001/1427/2/Performance%20Evaluation%20of%20Direct-Link%20Backhaul%20for%20UAV-Aided%20Emergency%20Networks.pdf0a8b389ff7ab3a8ee605c3f06b2484a9MD52open access001/1427oai:repositorio.escuelaing.edu.co:001/14272022-08-02 03:01:21.723open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK