Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios

La optimización binivel consiste en cambiar el paradigma de optimización tradicional, donde un solo agente selecciona su objetivo. Su principal aporte es lograr considerar la interacción que existe entre las decisiones que toman dos tipos de agentes: un líder y un seguidor. En este artículo se explo...

Full description

Autores:
Ruiz Cruz, Carlos Rodrigo
Guerrero Rueda, William Javier
Jaimes Suárez, Sonia Alexandra
Sarmiento Lepesqueur, Angélica
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
spa
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1625
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1625
Palabra clave:
Control de inventarios
Programación de operaciones
Inventory control
Operations programming
Optimización binivel
Gestión de operaciones
Gestión de inventarios
Bilevel optimization
Operations management
Inventory management
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_8616c28da476135de3627dc6dbd0f15d
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1625
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
dc.title.alternative.eng.fl_str_mv Bilevel optimization: New perspectives in application to operations and inventory planning and control
title Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
spellingShingle Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
Control de inventarios
Programación de operaciones
Inventory control
Operations programming
Optimización binivel
Gestión de operaciones
Gestión de inventarios
Bilevel optimization
Operations management
Inventory management
title_short Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
title_full Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
title_fullStr Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
title_full_unstemmed Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
title_sort Optimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
dc.creator.fl_str_mv Ruiz Cruz, Carlos Rodrigo
Guerrero Rueda, William Javier
Jaimes Suárez, Sonia Alexandra
Sarmiento Lepesqueur, Angélica
dc.contributor.author.none.fl_str_mv Ruiz Cruz, Carlos Rodrigo
Guerrero Rueda, William Javier
Jaimes Suárez, Sonia Alexandra
Sarmiento Lepesqueur, Angélica
dc.subject.armarc.spa.fl_str_mv Control de inventarios
Programación de operaciones
topic Control de inventarios
Programación de operaciones
Inventory control
Operations programming
Optimización binivel
Gestión de operaciones
Gestión de inventarios
Bilevel optimization
Operations management
Inventory management
dc.subject.armarc.eng.fl_str_mv Inventory control
Operations programming
dc.subject.proposal.spa.fl_str_mv Optimización binivel
Gestión de operaciones
Gestión de inventarios
dc.subject.proposal.eng.fl_str_mv Bilevel optimization
Operations management
Inventory management
description La optimización binivel consiste en cambiar el paradigma de optimización tradicional, donde un solo agente selecciona su objetivo. Su principal aporte es lograr considerar la interacción que existe entre las decisiones que toman dos tipos de agentes: un líder y un seguidor. En este artículo se exploran posibles campos de aplicación de la optimización binivel, en particular como apoyo a la toma de decisiones en la planeación y control de operaciones e inventarios. Se presenta una visión general de las características de esta técnica y diferentes contextos prácticos en los cuales se ha utilizado. Finalmente, se hace énfasis en la importancia de esta técnica para el desarrollo de investigación aplicada en temas de programación de operaciones, gestión de inventarios y gestión de la cadena de abastecimiento, con nuevas perspectivas para desarrollo de trabajos en este campo.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-07-07T20:02:43Z
2021-10-01T17:37:30Z
dc.date.available.none.fl_str_mv 2021-07-07T20:02:43Z
2021-10-01T17:37:30Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0121-5132
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1625
identifier_str_mv 0121-5132
url https://repositorio.escuelaing.edu.co/handle/001/1625
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv N.° 103 Enero-marzo de 2016, pp. 19-27
dc.relation.citationendpage.spa.fl_str_mv 27
dc.relation.citationstartpage.spa.fl_str_mv 19
dc.relation.citationvolume.spa.fl_str_mv 103
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Escuela Colombiana de Ingeniería
dc.relation.references.spa.fl_str_mv T. W. Ruefli, “A Generalized Goal Decomposition Model,” Manage. Sci., vol. 17, N.° 8, p. B505–B518, Apr. 1971.
N. I. Kalashnykova, V. V. Kalashnikov, and R. C. H. Maldonado, “Bilevel Toll Optimization Problems: A Heuristic Algorithm Based Upon Sensitivity Analysis,” Springer Berlin Heidelberg, 2012, pp. 135-143.
W. F. Bialas and M. H. Karwan, “Two-level linear programming,” Manage. Sci., vol. 30, N.° 8, pp. 1004-1020, 1984.
H. Von Stackelberg, The theory of the market economy. Oxford University Press, 1952.
J. F. Bard, Practical bilevel optimization: algorithms and applications. Dordrecht; Boston: Kluwer Academic Publishers, 1998.
B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Ann. Oper. Res., vol. 153, N.° 1, pp. 235-256, Apr. 2007.
R. G. Jeroslow, “The polynomial hierarchy and a simple model for competitive analysis,” Math. Program., vol. 32, N.° 2, pp. 146-164, Jun. 1985.
J. Bard and J. Moore, “A branch and bound algorithm for the bilevel programming problem,” SIAM J. Sci. Stat. Comput., 1990.
S. Dempe and A. B. Zemkoho, “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem,” Nonlinear Anal. Theory, Methods Appl., vol. 75, N.° 3, pp. 1202-1218, Feb. 2012.
M. Sakawa, I. Nishizaki, and Y. Uemura, “Interactive fuzzy programming for multilevel linear programming problems,” Comput. Math. with Appl., vol. 36, N.° 2, pp. 71-86, Jul. 1998.
M. Gendreau, P. Marcotte, and G. Savard, “A hybrid Tabuascent algorithm for the linear Bilevel Programming Problem,” J. Glob. Optim., vol. 8, N.° 3, pp. 217–233, Apr. 1996.
S. Hejazi and A. Memariani, “Linear bilevel programming solution by genetic algorithm,” Comput. Oper. …, 2002.
K. Sahin and A. Ciric, “A dual temperature simulated annealing approach for solving bilevel programming problems,” Comput. Chem. Eng., 1998.
W. Norton, R. Candler, “Multi-level programming and development policy,” pp. 1-56, May 1977.
J. F. Bard, J. Plummer, and J. Claude Sourie, “A bilevel programming approach to determining tax credits for biofuel production,” Eur. J. Oper. Res., vol. 120, N.° 1, pp. 30-46, Jan. 2000.
L. Baringo and A. J. Conejo, “Wind power investment within a market environment,” Appl. Energy, vol. 88, N.° 9, pp. 3239- 3247, Sep. 2011.
M. Labbé, P. Marcotte, and G. Savard, “A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing,” Manage. Sci., Dec. 1998.
V. V. Kalashnikov, N. I. Kalashnykova, and R. C. Herrera- Maldonado, “Solving the toll optimization problem by a heuristic algorithm based upon sensitivity analysis,” in 2014 IEEE International Conference on Industrial Engineering and Engineering Management, 2014, pp. 682–686.
Y. Yin and S. Lawphongpanich, “Internalizing emission externality on road networks,” Transp. Res. Part D Transp. Environ., vol. 11, N.° 4, pp. 292-301, Jul. 2006.
S. Sharma and T. V Matthew, “Transportation Network Design with Emission Pricing as a Bilevel Optimization Problem,” in Transportation Research Board 86th Annual Meeting, 2007.
S. Sharma and T. V Mathew, “Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network,” Environ. Plan. B Plan. Des., vol. 38, N.° 3, pp. 520-538, Jun. 2011.
H. Zhang and Z. Gao, “Bilevel programming model and solution method for mixed transportation network design problem,” J. Syst. Sci. Complex., vol. 22, N.° 3, pp. 446-459, Jul. 2009.
S.-W. Chiou, “Bilevel programming for the continuous transport network design problem,” Transp. Res. Part B Methodol., vol. 39, N.° 4, pp. 361-383, May 2005.
P. Pharkya, A. P. Burgard, and C. D. Maranas, “Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock,” Biotechnol. Bioeng., vol. 84, N.° 7, pp. 887-899, Dec. 2003.
Y. Chang and N. Sahinidis, “Optimization of metabolic pathways under stability considerations,” Comput. Chem. Eng., 2005.
J. Fortuny-Amat and B. McCarl, “A Representation and Economic Interpretation of a Two-Level Programming Problem,” Journal of the Operational Research Society, vol. 32, N.° 9. pp. 783-792, 1981.
J.-P. Côté, P. Marcotte, and G. Savard, “A bilevel modelling approach to pricing and fare optimisation in the airline industry,” J. Revenue Pricing Manag., vol. 2, N.° 1, pp. 23-36, Apr. 2003.
P. Marcotte, G. Savard, and D. Zhu, “Mathematical structure of a bilevel strategic pricing model,” Eur. J. Oper. Res., vol. 193, N.° 2, pp. 552-566, Mar. 2009.
J. A. Keane, “Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model,” IEEE Trans. Power Syst., vol. 24, N.° 2, pp. 1080-1090, May 2009.
L. P. Garcés, A. J. Conejo, R. García-Bertrand, and R. Romero, “A Bilevel Approach to Transmission Expansion Planning Within a Market Environment,” IEEE Trans. Power Syst., vol. 24, N.° 3, pp. 1513-1522, Aug. 2009.
C. Ruiz and A. J. Conejo, “Pool Strategy of a Producer With Endogenous Formation of Locational Marginal Prices,” IEEE Trans. Power Syst., vol. 24, N.° 4, pp. 1855-1866, Nov. 2009.
J. Arroyo and F. Galiana, “On the solution of the bilevel programming formulation of the terrorist threat problem,” Power Syst. IEEE Trans., 2005.
N. Romero, N. Xu, L. K. Nozick, I. Dobson, and D. Jones, “Investment Planning for Electric Power Systems Under Terrorist Threat,” IEEE Trans. Power Syst., vol. 27, N.° 1, pp. 108-116, Feb. 2012.
J. R. T. Arnold, S. N. Chapman, and L. M. Clive, Introduction to Materials Management, 2007.
J. Gang, Y. Tu, B. Lev, J. Xu, W. Shen, and L. Yao, “A multiobjective bi-level location planning problem for stone industrial parks,” Comput. Oper. Res., vol. 56, pp. 8-21, Apr. 2015.
H. I. Calvete, C. Galé, and M.-J. Oliveros, “Bilevel model for production–distribution planning solved by using ant colony optimization,” Comput. Oper. Res., vol. 38, N.° 1, pp. 320-327, 2011.
D. Yang, J. (Roger) Jiao, Y. Ji, G. Du, P. Helo, and A. Valente, “Joint optimization for coordinated configuration of product families and supply chains by a leader-follower Stackelberg game,” Eur. J. Oper. Res., vol. 246, N.° 1, pp. 263-280, 2015.
D. Wang, G. Du, R. J. Jiao, R. Wu, J. Yu, and D. Yang, “A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration,” Int. J. Prod. Econ., vol. 172, pp. 1-18, 2016.
M. L. Pinedo, Planning and scheduling in manufacturing and services: Second edition, 2009.
T. Kis and A. Kovács, “On bilevel machine scheduling problems,” OR Spectr., vol. 34, N.° 1, pp. 43-68, 2012.
J. K. Karlof and W. Wang, “Bilevel programming applied to the flow shop scheduling problem,” Comput. Oper. Res., vol. 23, N.° 5, pp. 443-451, 1996.
Z. Lukač, K. Šorić, and V. V. Rosenzweig, “Production planning problem with sequence dependent setups as a bilevel programming problem,” Eur. J. Oper. Res., vol. 187, N.° 3, pp. 1504-1512, 2008.
C. Kasemset and V. Kachitvichyanukul, “A PSO-based procedure for a bi-level multi-objective TOC-based job-shop scheduling problem,” Int. J. Oper. Res., 2012.
L. Cheng, Z. Wan, and G. Wang, “Bilevel newsvendor models considering retailer with CVaR objective,” Comput. Ind. Eng., vol. 57, N.° 1, pp. 310-318, Aug. 2009.
T. M. Whitin, “Inventory Control and Price Theory,” Manage. Sci., vol. 2, N.° 1, pp. 61-68, Oct. 1955.
L. Arbelaéz and L. Ceballos, “El valor en riesgo condicional CVaR como medida coherente de riesgo,” Rev. Ing., 2005.
F. Ben Abdelaziz and S. Mejri, “Decentralised bilevel model for shared inventory management,” Prod. Plan. Control, vol. 24, N.° 8-9, pp. 684-701, Sep. 2013.
L. Yao and J. Xu, “A class of expected value bilevel programming problems with random coefficients based on rough approximation and its application to a production-inventory system,” Abstr. Appl. Anal., 2013.
S. H. Zegordi and M. Mokhlesian, “Coordination of pricing and cooperative advertising for perishable products in a two-echelon supply chain: A bi-level programming approach,” J. Ind. Syst. Eng., vol. 8, N.° 4, pp. 39-60, Sep. 2015.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Escuela Colombiana de Ingeniería Julio Garavito
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia.
dc.source.spa.fl_str_mv http://www.escuelaing.edu.co/revista.htm
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1625/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1625/2/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1625/3/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1625/4/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
1e92314b8440ae8c44231997429f484e
78a8437323444119cd816ad79bec3822
2d8c5e1814a280ecca9577fc4f780ef4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355628412370944
spelling Ruiz Cruz, Carlos Rodrigo7fc4b2ec7581f8b54eaea2bb702f7b69600Guerrero Rueda, William Javierd89216cf106b0e3a9c34c45cc7dd1ceb600Jaimes Suárez, Sonia Alexandra61836a7a9da60bcca727c48548688112600Sarmiento Lepesqueur, Angélica6bb238952f6233247dee4e4a1f93c2f36002021-07-07T20:02:43Z2021-10-01T17:37:30Z2021-07-07T20:02:43Z2021-10-01T17:37:30Z20160121-5132https://repositorio.escuelaing.edu.co/handle/001/1625La optimización binivel consiste en cambiar el paradigma de optimización tradicional, donde un solo agente selecciona su objetivo. Su principal aporte es lograr considerar la interacción que existe entre las decisiones que toman dos tipos de agentes: un líder y un seguidor. En este artículo se exploran posibles campos de aplicación de la optimización binivel, en particular como apoyo a la toma de decisiones en la planeación y control de operaciones e inventarios. Se presenta una visión general de las características de esta técnica y diferentes contextos prácticos en los cuales se ha utilizado. Finalmente, se hace énfasis en la importancia de esta técnica para el desarrollo de investigación aplicada en temas de programación de operaciones, gestión de inventarios y gestión de la cadena de abastecimiento, con nuevas perspectivas para desarrollo de trabajos en este campo.Bilevel optimization consists on reevaluating the paradigm imposed by traditional optimization approaches where a single agent decides the goal to be reached. The main contribution of this new approach is to make a more accurate modelling of the interaction between decisions made by two types of agents: the leader and the follower. In this paper, potential fields of application for bilevel optimization models are discussed, especially those associated to decision-making tools for operations and inventory management. A general overview of this modelling technique is presented and different practical applications are analyzed. Finally, special focus is given to the potential benefits this technique can provide to applied research in fields such as operations scheduling, inventory management, and supply chain management problems.Escuela Colombiana de Ingeniería Julio Garavito. carlosr.ruiz@escuelaing.edu.co - william.guerrero@escuelaing.edu.co - sonia.jaimes@escuelaing.edu.co - angelica.sarmiento@escuelaing.edu.co9 páginasapplication/pdfspaEscuela Colombiana de Ingeniería Julio GaravitoBogotá, Colombia.http://www.escuelaing.edu.co/revista.htmOptimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventariosBilevel optimization: New perspectives in application to operations and inventory planning and controlArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85N.° 103 Enero-marzo de 2016, pp. 19-272719103N/AEscuela Colombiana de IngenieríaT. W. Ruefli, “A Generalized Goal Decomposition Model,” Manage. Sci., vol. 17, N.° 8, p. B505–B518, Apr. 1971.N. I. Kalashnykova, V. V. Kalashnikov, and R. C. H. Maldonado, “Bilevel Toll Optimization Problems: A Heuristic Algorithm Based Upon Sensitivity Analysis,” Springer Berlin Heidelberg, 2012, pp. 135-143.W. F. Bialas and M. H. Karwan, “Two-level linear programming,” Manage. Sci., vol. 30, N.° 8, pp. 1004-1020, 1984.H. Von Stackelberg, The theory of the market economy. Oxford University Press, 1952.J. F. Bard, Practical bilevel optimization: algorithms and applications. Dordrecht; Boston: Kluwer Academic Publishers, 1998.B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Ann. Oper. Res., vol. 153, N.° 1, pp. 235-256, Apr. 2007.R. G. Jeroslow, “The polynomial hierarchy and a simple model for competitive analysis,” Math. Program., vol. 32, N.° 2, pp. 146-164, Jun. 1985.J. Bard and J. Moore, “A branch and bound algorithm for the bilevel programming problem,” SIAM J. Sci. Stat. Comput., 1990.S. Dempe and A. B. Zemkoho, “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem,” Nonlinear Anal. Theory, Methods Appl., vol. 75, N.° 3, pp. 1202-1218, Feb. 2012.M. Sakawa, I. Nishizaki, and Y. Uemura, “Interactive fuzzy programming for multilevel linear programming problems,” Comput. Math. with Appl., vol. 36, N.° 2, pp. 71-86, Jul. 1998.M. Gendreau, P. Marcotte, and G. Savard, “A hybrid Tabuascent algorithm for the linear Bilevel Programming Problem,” J. Glob. Optim., vol. 8, N.° 3, pp. 217–233, Apr. 1996.S. Hejazi and A. Memariani, “Linear bilevel programming solution by genetic algorithm,” Comput. Oper. …, 2002.K. Sahin and A. Ciric, “A dual temperature simulated annealing approach for solving bilevel programming problems,” Comput. Chem. Eng., 1998.W. Norton, R. Candler, “Multi-level programming and development policy,” pp. 1-56, May 1977.J. F. Bard, J. Plummer, and J. Claude Sourie, “A bilevel programming approach to determining tax credits for biofuel production,” Eur. J. Oper. Res., vol. 120, N.° 1, pp. 30-46, Jan. 2000.L. Baringo and A. J. Conejo, “Wind power investment within a market environment,” Appl. Energy, vol. 88, N.° 9, pp. 3239- 3247, Sep. 2011.M. Labbé, P. Marcotte, and G. Savard, “A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing,” Manage. Sci., Dec. 1998.V. V. Kalashnikov, N. I. Kalashnykova, and R. C. Herrera- Maldonado, “Solving the toll optimization problem by a heuristic algorithm based upon sensitivity analysis,” in 2014 IEEE International Conference on Industrial Engineering and Engineering Management, 2014, pp. 682–686.Y. Yin and S. Lawphongpanich, “Internalizing emission externality on road networks,” Transp. Res. Part D Transp. Environ., vol. 11, N.° 4, pp. 292-301, Jul. 2006.S. Sharma and T. V Matthew, “Transportation Network Design with Emission Pricing as a Bilevel Optimization Problem,” in Transportation Research Board 86th Annual Meeting, 2007.S. Sharma and T. V Mathew, “Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network,” Environ. Plan. B Plan. Des., vol. 38, N.° 3, pp. 520-538, Jun. 2011.H. Zhang and Z. Gao, “Bilevel programming model and solution method for mixed transportation network design problem,” J. Syst. Sci. Complex., vol. 22, N.° 3, pp. 446-459, Jul. 2009.S.-W. Chiou, “Bilevel programming for the continuous transport network design problem,” Transp. Res. Part B Methodol., vol. 39, N.° 4, pp. 361-383, May 2005.P. Pharkya, A. P. Burgard, and C. D. Maranas, “Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock,” Biotechnol. Bioeng., vol. 84, N.° 7, pp. 887-899, Dec. 2003.Y. Chang and N. Sahinidis, “Optimization of metabolic pathways under stability considerations,” Comput. Chem. Eng., 2005.J. Fortuny-Amat and B. McCarl, “A Representation and Economic Interpretation of a Two-Level Programming Problem,” Journal of the Operational Research Society, vol. 32, N.° 9. pp. 783-792, 1981.J.-P. Côté, P. Marcotte, and G. Savard, “A bilevel modelling approach to pricing and fare optimisation in the airline industry,” J. Revenue Pricing Manag., vol. 2, N.° 1, pp. 23-36, Apr. 2003.P. Marcotte, G. Savard, and D. Zhu, “Mathematical structure of a bilevel strategic pricing model,” Eur. J. Oper. Res., vol. 193, N.° 2, pp. 552-566, Mar. 2009.J. A. Keane, “Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model,” IEEE Trans. Power Syst., vol. 24, N.° 2, pp. 1080-1090, May 2009.L. P. Garcés, A. J. Conejo, R. García-Bertrand, and R. Romero, “A Bilevel Approach to Transmission Expansion Planning Within a Market Environment,” IEEE Trans. Power Syst., vol. 24, N.° 3, pp. 1513-1522, Aug. 2009.C. Ruiz and A. J. Conejo, “Pool Strategy of a Producer With Endogenous Formation of Locational Marginal Prices,” IEEE Trans. Power Syst., vol. 24, N.° 4, pp. 1855-1866, Nov. 2009.J. Arroyo and F. Galiana, “On the solution of the bilevel programming formulation of the terrorist threat problem,” Power Syst. IEEE Trans., 2005.N. Romero, N. Xu, L. K. Nozick, I. Dobson, and D. Jones, “Investment Planning for Electric Power Systems Under Terrorist Threat,” IEEE Trans. Power Syst., vol. 27, N.° 1, pp. 108-116, Feb. 2012.J. R. T. Arnold, S. N. Chapman, and L. M. Clive, Introduction to Materials Management, 2007.J. Gang, Y. Tu, B. Lev, J. Xu, W. Shen, and L. Yao, “A multiobjective bi-level location planning problem for stone industrial parks,” Comput. Oper. Res., vol. 56, pp. 8-21, Apr. 2015.H. I. Calvete, C. Galé, and M.-J. Oliveros, “Bilevel model for production–distribution planning solved by using ant colony optimization,” Comput. Oper. Res., vol. 38, N.° 1, pp. 320-327, 2011.D. Yang, J. (Roger) Jiao, Y. Ji, G. Du, P. Helo, and A. Valente, “Joint optimization for coordinated configuration of product families and supply chains by a leader-follower Stackelberg game,” Eur. J. Oper. Res., vol. 246, N.° 1, pp. 263-280, 2015.D. Wang, G. Du, R. J. Jiao, R. Wu, J. Yu, and D. Yang, “A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration,” Int. J. Prod. Econ., vol. 172, pp. 1-18, 2016.M. L. Pinedo, Planning and scheduling in manufacturing and services: Second edition, 2009.T. Kis and A. Kovács, “On bilevel machine scheduling problems,” OR Spectr., vol. 34, N.° 1, pp. 43-68, 2012.J. K. Karlof and W. Wang, “Bilevel programming applied to the flow shop scheduling problem,” Comput. Oper. Res., vol. 23, N.° 5, pp. 443-451, 1996.Z. Lukač, K. Šorić, and V. V. Rosenzweig, “Production planning problem with sequence dependent setups as a bilevel programming problem,” Eur. J. Oper. Res., vol. 187, N.° 3, pp. 1504-1512, 2008.C. Kasemset and V. Kachitvichyanukul, “A PSO-based procedure for a bi-level multi-objective TOC-based job-shop scheduling problem,” Int. J. Oper. Res., 2012.L. Cheng, Z. Wan, and G. Wang, “Bilevel newsvendor models considering retailer with CVaR objective,” Comput. Ind. Eng., vol. 57, N.° 1, pp. 310-318, Aug. 2009.T. M. Whitin, “Inventory Control and Price Theory,” Manage. Sci., vol. 2, N.° 1, pp. 61-68, Oct. 1955.L. Arbelaéz and L. Ceballos, “El valor en riesgo condicional CVaR como medida coherente de riesgo,” Rev. Ing., 2005.F. Ben Abdelaziz and S. Mejri, “Decentralised bilevel model for shared inventory management,” Prod. Plan. Control, vol. 24, N.° 8-9, pp. 684-701, Sep. 2013.L. Yao and J. Xu, “A class of expected value bilevel programming problems with random coefficients based on rough approximation and its application to a production-inventory system,” Abstr. Appl. Anal., 2013.S. H. Zegordi and M. Mokhlesian, “Coordination of pricing and cooperative advertising for perishable products in a two-echelon supply chain: A bi-level programming approach,” J. Ind. Syst. Eng., vol. 8, N.° 4, pp. 39-60, Sep. 2015.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Control de inventariosProgramación de operacionesInventory controlOperations programmingOptimización binivelGestión de operacionesGestión de inventariosBilevel optimizationOperations managementInventory managementLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1625/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALOptimización binivel...[39750].pdfapplication/pdf1293536https://repositorio.escuelaing.edu.co/bitstream/001/1625/2/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf1e92314b8440ae8c44231997429f484eMD52metadata only accessTEXTOptimización binivel...[39750].pdf.txtOptimización binivel...[39750].pdf.txtExtracted texttext/plain38300https://repositorio.escuelaing.edu.co/bitstream/001/1625/3/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf.txt78a8437323444119cd816ad79bec3822MD53open accessTHUMBNAILOptimización binivel...[39750].pdf.jpgOptimización binivel...[39750].pdf.jpgGenerated Thumbnailimage/jpeg13271https://repositorio.escuelaing.edu.co/bitstream/001/1625/4/Optimizaci%c3%b3n%20binivel...%5b39750%5d.pdf.jpg2d8c5e1814a280ecca9577fc4f780ef4MD54open access001/1625oai:repositorio.escuelaing.edu.co:001/16252022-08-25 18:16:29.241metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK