Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans

Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperre...

Full description

Autores:
Gonzalez Osorio, Fabio
Perdomo Charry, Oscar Julian
Sanchez, Yeison D.
Nieto, Bernardo
Padilla, Fabio D.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1472
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1472
https://doi.org/10.1117/12.2579934
Palabra clave:
Aprendizaje profundo - Tomografía - Coherencia óptica
Tomografía óptica
Retina
Ojos - Enfermedades - Diagnóstico
Eye - Diseases - Diagnosis
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_76c906c1972bf7ffad8353b4ab05390a
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1472
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
title Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
spellingShingle Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
Aprendizaje profundo - Tomografía - Coherencia óptica
Tomografía óptica
Retina
Ojos - Enfermedades - Diagnóstico
Eye - Diseases - Diagnosis
title_short Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
title_full Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
title_fullStr Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
title_full_unstemmed Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
title_sort Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
dc.creator.fl_str_mv Gonzalez Osorio, Fabio
Perdomo Charry, Oscar Julian
Sanchez, Yeison D.
Nieto, Bernardo
Padilla, Fabio D.
dc.contributor.author.none.fl_str_mv Gonzalez Osorio, Fabio
Perdomo Charry, Oscar Julian
Sanchez, Yeison D.
Nieto, Bernardo
Padilla, Fabio D.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Aprendizaje profundo - Tomografía - Coherencia óptica
topic Aprendizaje profundo - Tomografía - Coherencia óptica
Tomografía óptica
Retina
Ojos - Enfermedades - Diagnóstico
Eye - Diseases - Diagnosis
dc.subject.armarc.spa.fl_str_mv Tomografía óptica
Retina
Ojos - Enfermedades - Diagnóstico
dc.subject.armarc.eng.fl_str_mv Eye - Diseases - Diagnosis
description Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperreflective foci, and intraretinal and subretinal fluids. The location of findings is vital to identify and follow-up the retinal disease. However, the detection and segmentation of these findings is not an easy task due to artifacts noise, and the time consuming even to experts ophthalmologist. This paper proposes a computational method based on deep learning to automatically identify fluids and hyperreflective foci as a tool to identify retinal diseases through the use of OCT images. The method was evaluated on a set of OCT images manually annotated by experts. The experimental results present a Dice coefficient of 0,4437 and 0,6245 in the segmentation task of fluids (intrarretinal fluids and subretinal fluids), and hyperreflective foci respectively.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-05-24T19:26:56Z
2021-10-01T17:16:52Z
dc.date.available.none.fl_str_mv 2021-05-24
2021-10-01T17:16:52Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0277-786X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1472
dc.identifier.doi.none.fl_str_mv 10.1117/12.2579934
dc.identifier.url.none.fl_str_mv https://doi.org/10.1117/12.2579934
identifier_str_mv 0277-786X
10.1117/12.2579934
url https://repositorio.escuelaing.edu.co/handle/001/1472
https://doi.org/10.1117/12.2579934
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11583
dc.relation.indexed.spa.fl_str_mv N/A
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv SPIE
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579934/Segmentation-of-retinal-fluids-and-hyperreflective-foci-using-deep-learning/10.1117/12.2579934.short
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1472/6/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1472/5/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.png
https://repositorio.escuelaing.edu.co/bitstream/001/1472/7/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1472/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1472/3/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.txt
bitstream.checksum.fl_str_mv 478605f61fcb7715a86b06f09998e320
c90aa708a0c118e4d5d49b9ab813afcb
bc3477ecbe099a2ccd7fc20b3febf879
5a7ca94c2e5326ee169f979d71d0f06e
010845330ff5c8439e0a9b24de156554
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355599665659904
spelling Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Sanchez, Yeison D.b41f00814e9f16720c568503e98f64ee600Nieto, Bernardo6fc1d49558bb9457582601876df7b5c8600Padilla, Fabio D.7aefa992e29562b087a5c274fe5f482c600GiBiome2021-05-24T19:26:56Z2021-10-01T17:16:52Z2021-05-242021-10-01T17:16:52Z20200277-786Xhttps://repositorio.escuelaing.edu.co/handle/001/147210.1117/12.2579934https://doi.org/10.1117/12.2579934Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperreflective foci, and intraretinal and subretinal fluids. The location of findings is vital to identify and follow-up the retinal disease. However, the detection and segmentation of these findings is not an easy task due to artifacts noise, and the time consuming even to experts ophthalmologist. This paper proposes a computational method based on deep learning to automatically identify fluids and hyperreflective foci as a tool to identify retinal diseases through the use of OCT images. The method was evaluated on a set of OCT images manually annotated by experts. The experimental results present a Dice coefficient of 0,4437 and 0,6245 in the segmentation task of fluids (intrarretinal fluids and subretinal fluids), and hyperreflective foci respectively.Las enfermedades de la retina son una causa común de ceguera en todo el mundo, la detección temprana de los hallazgos clínicos puede ayudar a evitar la pérdida de visión en los pacientes. Las imágenes de tomografía de coherencia óptica se han utilizado ampliamente para diagnosticar enfermedades de la retina, debido a la capacidad de mostrar en detalle hallazgos como drusas, focos hiperreflectantes y fluidos intrarretinianos y subretinianos. La localización de los hallazgos es vital para la identificación y seguimiento de la enfermedad retiniana. Sin embargo, la detección y segmentación de estos hallazgos no es una tarea fácil debido al ruido de los artefactos, y el tiempo que consume incluso para los expertos oftalmólogos. Este trabajo propone un método computacional basado en deep learning para identificar automáticamente fluidos y focos hiperreflectivos como herramienta para identificar enfermedades de la retina mediante el uso de imágenes OCT. El método fue evaluado en un conjunto de imágenes OCT anotadas manualmente por expertos. Los resultados experimentales presentan un coeficiente Dice de 0,4437 y 0,6245 en la tarea de segmentación de fluidos (fluidos intrarretinianos y fluidos subretinianos), y focos hiperreflectivos respectivamente.application/pdfengSPIEEstados Unidoshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579934/Segmentation-of-retinal-fluids-and-hyperreflective-foci-using-deep-learning/10.1117/12.2579934.shortSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scansArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a858111583N/Ainfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje profundo - Tomografía - Coherencia ópticaTomografía ópticaRetinaOjos - Enfermedades - DiagnósticoEye - Diseases - DiagnosisORIGINALSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdfSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdfArtículo de revistaapplication/pdf860146https://repositorio.escuelaing.edu.co/bitstream/001/1472/6/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf478605f61fcb7715a86b06f09998e320MD56metadata only accessTHUMBNAILSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pngSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pngimage/png95241https://repositorio.escuelaing.edu.co/bitstream/001/1472/5/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pngc90aa708a0c118e4d5d49b9ab813afcbMD55open accessSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.jpgSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.jpgGenerated Thumbnailimage/jpeg13339https://repositorio.escuelaing.edu.co/bitstream/001/1472/7/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.jpgbc3477ecbe099a2ccd7fc20b3febf879MD57metadata only accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1472/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessTEXTSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.txtSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.txtExtracted texttext/plain6https://repositorio.escuelaing.edu.co/bitstream/001/1472/3/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.txt010845330ff5c8439e0a9b24de156554MD53open access001/1472oai:repositorio.escuelaing.edu.co:001/14722022-12-14 03:00:38.877metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK