Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans
Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperre...
- Autores:
-
Gonzalez Osorio, Fabio
Perdomo Charry, Oscar Julian
Sanchez, Yeison D.
Nieto, Bernardo
Padilla, Fabio D.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1472
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1472
https://doi.org/10.1117/12.2579934
- Palabra clave:
- Aprendizaje profundo - Tomografía - Coherencia óptica
Tomografía óptica
Retina
Ojos - Enfermedades - Diagnóstico
Eye - Diseases - Diagnosis
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_76c906c1972bf7ffad8353b4ab05390a |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1472 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
title |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
spellingShingle |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans Aprendizaje profundo - Tomografía - Coherencia óptica Tomografía óptica Retina Ojos - Enfermedades - Diagnóstico Eye - Diseases - Diagnosis |
title_short |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
title_full |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
title_fullStr |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
title_full_unstemmed |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
title_sort |
Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans |
dc.creator.fl_str_mv |
Gonzalez Osorio, Fabio Perdomo Charry, Oscar Julian Sanchez, Yeison D. Nieto, Bernardo Padilla, Fabio D. |
dc.contributor.author.none.fl_str_mv |
Gonzalez Osorio, Fabio Perdomo Charry, Oscar Julian Sanchez, Yeison D. Nieto, Bernardo Padilla, Fabio D. |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Aprendizaje profundo - Tomografía - Coherencia óptica |
topic |
Aprendizaje profundo - Tomografía - Coherencia óptica Tomografía óptica Retina Ojos - Enfermedades - Diagnóstico Eye - Diseases - Diagnosis |
dc.subject.armarc.spa.fl_str_mv |
Tomografía óptica Retina Ojos - Enfermedades - Diagnóstico |
dc.subject.armarc.eng.fl_str_mv |
Eye - Diseases - Diagnosis |
description |
Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperreflective foci, and intraretinal and subretinal fluids. The location of findings is vital to identify and follow-up the retinal disease. However, the detection and segmentation of these findings is not an easy task due to artifacts noise, and the time consuming even to experts ophthalmologist. This paper proposes a computational method based on deep learning to automatically identify fluids and hyperreflective foci as a tool to identify retinal diseases through the use of OCT images. The method was evaluated on a set of OCT images manually annotated by experts. The experimental results present a Dice coefficient of 0,4437 and 0,6245 in the segmentation task of fluids (intrarretinal fluids and subretinal fluids), and hyperreflective foci respectively. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-05-24T19:26:56Z 2021-10-01T17:16:52Z |
dc.date.available.none.fl_str_mv |
2021-05-24 2021-10-01T17:16:52Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0277-786X |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1472 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2579934 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.1117/12.2579934 |
identifier_str_mv |
0277-786X 10.1117/12.2579934 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1472 https://doi.org/10.1117/12.2579934 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
11583 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
SPIE |
dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
dc.source.spa.fl_str_mv |
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579934/Segmentation-of-retinal-fluids-and-hyperreflective-foci-using-deep-learning/10.1117/12.2579934.short |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1472/6/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1472/5/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.png https://repositorio.escuelaing.edu.co/bitstream/001/1472/7/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1472/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1472/3/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.txt |
bitstream.checksum.fl_str_mv |
478605f61fcb7715a86b06f09998e320 c90aa708a0c118e4d5d49b9ab813afcb bc3477ecbe099a2ccd7fc20b3febf879 5a7ca94c2e5326ee169f979d71d0f06e 010845330ff5c8439e0a9b24de156554 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355599665659904 |
spelling |
Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Sanchez, Yeison D.b41f00814e9f16720c568503e98f64ee600Nieto, Bernardo6fc1d49558bb9457582601876df7b5c8600Padilla, Fabio D.7aefa992e29562b087a5c274fe5f482c600GiBiome2021-05-24T19:26:56Z2021-10-01T17:16:52Z2021-05-242021-10-01T17:16:52Z20200277-786Xhttps://repositorio.escuelaing.edu.co/handle/001/147210.1117/12.2579934https://doi.org/10.1117/12.2579934Retinal diseases are a common cause of blindness around the world, early detection of clinical findings can help to avoid vision loss in patients. Optical coherence tomography images have been widely used to diagnose retinal diseases, due to the capacity to show in detail findings as drusen, hyperreflective foci, and intraretinal and subretinal fluids. The location of findings is vital to identify and follow-up the retinal disease. However, the detection and segmentation of these findings is not an easy task due to artifacts noise, and the time consuming even to experts ophthalmologist. This paper proposes a computational method based on deep learning to automatically identify fluids and hyperreflective foci as a tool to identify retinal diseases through the use of OCT images. The method was evaluated on a set of OCT images manually annotated by experts. The experimental results present a Dice coefficient of 0,4437 and 0,6245 in the segmentation task of fluids (intrarretinal fluids and subretinal fluids), and hyperreflective foci respectively.Las enfermedades de la retina son una causa común de ceguera en todo el mundo, la detección temprana de los hallazgos clínicos puede ayudar a evitar la pérdida de visión en los pacientes. Las imágenes de tomografía de coherencia óptica se han utilizado ampliamente para diagnosticar enfermedades de la retina, debido a la capacidad de mostrar en detalle hallazgos como drusas, focos hiperreflectantes y fluidos intrarretinianos y subretinianos. La localización de los hallazgos es vital para la identificación y seguimiento de la enfermedad retiniana. Sin embargo, la detección y segmentación de estos hallazgos no es una tarea fácil debido al ruido de los artefactos, y el tiempo que consume incluso para los expertos oftalmólogos. Este trabajo propone un método computacional basado en deep learning para identificar automáticamente fluidos y focos hiperreflectivos como herramienta para identificar enfermedades de la retina mediante el uso de imágenes OCT. El método fue evaluado en un conjunto de imágenes OCT anotadas manualmente por expertos. Los resultados experimentales presentan un coeficiente Dice de 0,4437 y 0,6245 en la tarea de segmentación de fluidos (fluidos intrarretinianos y fluidos subretinianos), y focos hiperreflectivos respectivamente.application/pdfengSPIEEstados Unidoshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2579934/Segmentation-of-retinal-fluids-and-hyperreflective-foci-using-deep-learning/10.1117/12.2579934.shortSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scansArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a858111583N/Ainfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje profundo - Tomografía - Coherencia ópticaTomografía ópticaRetinaOjos - Enfermedades - DiagnósticoEye - Diseases - DiagnosisORIGINALSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdfSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdfArtículo de revistaapplication/pdf860146https://repositorio.escuelaing.edu.co/bitstream/001/1472/6/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf478605f61fcb7715a86b06f09998e320MD56metadata only accessTHUMBNAILSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pngSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pngimage/png95241https://repositorio.escuelaing.edu.co/bitstream/001/1472/5/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pngc90aa708a0c118e4d5d49b9ab813afcbMD55open accessSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.jpgSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.jpgGenerated Thumbnailimage/jpeg13339https://repositorio.escuelaing.edu.co/bitstream/001/1472/7/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.jpgbc3477ecbe099a2ccd7fc20b3febf879MD57metadata only accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1472/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessTEXTSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.txtSegmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans.pdf.txtExtracted texttext/plain6https://repositorio.escuelaing.edu.co/bitstream/001/1472/3/Segmentation%20of%20retinal%20fluids%20and%20hyperreflective%20foci%20using%20deep%20learning%20approach%20in%20optical%20coherence%20tomography%20scans.pdf.txt010845330ff5c8439e0a9b24de156554MD53open access001/1472oai:repositorio.escuelaing.edu.co:001/14722022-12-14 03:00:38.877metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |