Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
- Autores:
-
Montoya Vallejo, Miguel Fernando
Hernandez Acevedo, Camilo
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2019
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1703
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1703
- Palabra clave:
- Ingeniería - Innovaciones tecnológicas - Investigaciones
Engineering - Technological innovations - Research
Innovaciones tecnológicas
Ingeniería
Technological innovations
Engineering
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_75dfdcc987c691b4ea6cfcb68ee35cdb |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1703 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
title |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
spellingShingle |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida Ingeniería - Innovaciones tecnológicas - Investigaciones Engineering - Technological innovations - Research Innovaciones tecnológicas Ingeniería Technological innovations Engineering |
title_short |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
title_full |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
title_fullStr |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
title_full_unstemmed |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
title_sort |
Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida |
dc.creator.fl_str_mv |
Montoya Vallejo, Miguel Fernando Hernandez Acevedo, Camilo |
dc.contributor.author.none.fl_str_mv |
Montoya Vallejo, Miguel Fernando Hernandez Acevedo, Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
Diseño Sostenible en Ingeniería Mecánica (DSIM) |
dc.subject.armarc.none.fl_str_mv |
Ingeniería - Innovaciones tecnológicas - Investigaciones |
topic |
Ingeniería - Innovaciones tecnológicas - Investigaciones Engineering - Technological innovations - Research Innovaciones tecnológicas Ingeniería Technological innovations Engineering |
dc.subject.armarc.eng.fl_str_mv |
Engineering - Technological innovations - Research |
dc.subject.lemb.none.fl_str_mv |
|
dc.subject.proposal.spa.fl_str_mv |
Innovaciones tecnológicas Ingeniería |
dc.subject.proposal.eng.fl_str_mv |
Technological innovations Engineering |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-08-31T18:28:58Z 2021-10-01T17:42:34Z |
dc.date.available.none.fl_str_mv |
2021-08-31T18:28:58Z 2021-10-01T17:42:34Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9789585233300 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1703 |
identifier_str_mv |
9789585233300 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1703 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.spa.fl_str_mv |
507 |
dc.relation.citationstartpage.spa.fl_str_mv |
497 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofbook.spa.fl_str_mv |
Desarrollo e Innovación en Ingeniería |
dc.relation.references.spa.fl_str_mv |
Sood, R. Ohdar y S. Mahapatra, «Experimental investigation and empirical modelling of FDM process for compressive strength improvement,» Journal of Advance Research, vol. 3, nº 1, pp. 81-90, 2 Junio 2011. K. V. Wong y A. Hernandez, «A Review of Additive Manufacturing,» ISRN Mechanical Engineering, vol. 2012, p. 10, 2012. T. D. Ngo, A. Kashani, G. Imbalzano, K. Nguyen y D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,» Composites Part B: Engineering, vol. 143, pp. 172-196, 2018. G. Cicala, A. Latteri, B. Del Curto, A. Lo Russo, G. Recca and S. Fare, "Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications," JABFM, p. 9, 2017 K. Chua, K. F. Leong y C. S. Lim, Rapid prototyping: principles and applications, World Scientific Publishing Company, 2010 K. Cooper, Rapid prototyping technology: selection and application, CRC Press, 2001 L. Ventola, «Medical applications for 3D printing: current and projected uses,» Pharmacy and Therapeutics, vol. 39, nº 10, p. 704, 2014. «Rengier, Fabian; Mehndiratta, Amit; Von Tengg-Kobligk, Hendrik; Zechmann, Christian M; Unterhinninghofen, Roland; Kauczor, H-U; Giesel, Frederik L,» International journal of computer assisted radiology and surgery, vol. 5, nº 4, pp. 335-341, 2010. H. Dodziuk, «Applications of 3D printing in healthcare,» Polish journal of cardio-thoracic surgery, vol. 13, nº 3, p. 283, 2016 B. Lu, D. Li y X. Tian, «Development trends in additive manufacturing and 3D printing,» Engineering, vol. 1, nº 1, pp. 85-89, 2015. S. C. Joshi y A. A. Sheikh, «3D printing in aerospace and its long-term sustainability,» Virtual and Physical Prototyping, vol. 10, nº 4, pp. 175-185, 2015. B. Berman, «3-D printing: The new industrial revolution,» Business horizons, vol. 55, nº 2, pp. 155-162, 2012. Canessa, C. Fonda, M. Zennaro y N. Deadline, «Low-cost 3D printing for science, education and sustainable development,» Low-Cost 3D Printing, vol. 11, 2013. B. G. Compton y J. A. Lewis, «3D-printing of lightweight cellular composites,» Advanced materials, vol. 26, nº 34, pp. 5930- 5935, 2014. X. Wang, M. Jiang, Z. Zhou, J. Gou y D. Hui, «3D printing of polymer matrix composites: A review and prospective,» Composites Part B: Engineering, vol. 110, pp. 442-458, 2017 J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler y T. M. Pollock, «3D printing of high-strength aluminium alloys,» Nature, vol. 549, nº 7672, p. 365, 2017. C. W. Visser, R. Pohl, C. Sun, G.-W. Romer, B. Huis in ‘t Veld y D. Lohse, «Toward 3D printing of pure metals by laser-induced forward transfer,» Advanced materials, vol. 27, nº 27, pp. 4087-4092, 2015. C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger y P. Morel, «Large-scale 3D printing of ultra-high performance concrete--a new processing route for architects and builders,» Materials & Design, vol. 100, pp. 102-109, 2016. Bos, R. Wolfs, Z. Ahmed y T. Salet, «Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,» Virtual and Physical Prototyping, vol. 11, nº 3, pp. 209-225, 2016. R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates y H. A. Awad, «3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery,» Annals of biomedical engineering, vol. 45, nº 1, pp. 23-44, 2017. Vorndran, M. Klarner, U. Klammert, L. M. Grover, S. Patel, J. E. Barralet y U. Gbureck, «3D powder printing of beta-tricalcium phosphate ceramics using different strategies,» Advanced Engineering Materials, vol. 10, nº 12, pp. B67-B71, 2008. C. Minas, D. Carnelli, E. Tervoort y R. Studart, «3D printing of emulsions and foams into hierarchical porous ceramics,» Advanced Materials, vol. 28, nº 45, pp. 9993-9999, 2016 T. T. Wohlers, 3D Printing and Additive Manufacturing, State of the Industry, Annual Worldwide Progress Report, Wohlers Associates Incorporated, 2014. B. Redwood, F. Schffer y B. Garret, The 3D Printing Handbook: Technologies, design and applications, 3D Hubs, 2017 N. G. Tanikella, B. Wittbrodt y J. M. Pearce, «Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,» Additive Manufacturing, vol. 15, pp. 40-47, 2017. B. Tymrak, M. Kreiger y J. M. Pearce, «echanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,» Materials & Design, vol. 58, pp. 242-246, 2014. J. R. C. Dizon, A. H. Espera Jr, Q. Chen y R. C. Advincula, «Mechanical characterization of 3D-printed polymers,» Additive Manufacturing, vol. 20, pp. 44-67, 2018. J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, Young, ie, A. Jerez, D. Steinbach, C. Kroese y others, «Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts,» Rapid Prototyping Journal, vol. 23, nº 4, pp. 811-824, 2017. D. F. Adams, L. A. Carllsson y R. B. Pipes, Experimental characterization of advanced composite materials, CRC Press, 2002. ASTM International, ASTM D3039 Standard Test Method for Tensile Propeties if Polymer Matrix Composite Materials, ASTM, 2002. Prusament, «Green PLA Filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/40-greenpla-filament-1kg.html. [Último acceso: 15 Marzo 2018]. Prusament, «Blue EasyABS filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/57- blue-easyabs-filament-1kg.html. [Último acceso: 15 Marzo 2018]. ASTM Internacional, ASTM E111 Standard Test Method for Young`s Modulus, Tangent modulus, and Chord Modulus, ASTM, 1997. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Ed. Corporación Instituto Antioqueño de Investigación |
dc.publisher.place.spa.fl_str_mv |
Colombia |
dc.source.spa.fl_str_mv |
https://www.researchgate.net/publication/335973217_Caracterizacion_mecanica_a_tension_de_impresiones_3D_de_PLA_y_ABS_modeladas_por_deposicion_fundida |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1703/3/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1703/4/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1703/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1703/2/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf |
bitstream.checksum.fl_str_mv |
3898fb48aefeb3a1202b286be56afe49 e6fd2f13c8c9a0b0ddc67e6e49de0b97 5a7ca94c2e5326ee169f979d71d0f06e 094a0e912fecad8412e5c5fa62beaf5a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355585864302592 |
spelling |
Montoya Vallejo, Miguel Fernando33ece91dbe4b3015be245353bc77bd11600Hernandez Acevedo, Camilofaee17a9529dc25b1843c7111495eaef600Diseño Sostenible en Ingeniería Mecánica (DSIM)2021-08-31T18:28:58Z2021-10-01T17:42:34Z2021-08-31T18:28:58Z2021-10-01T17:42:34Z20199789585233300https://repositorio.escuelaing.edu.co/handle/001/170314 páginasapplication/pdfspaEd. Corporación Instituto Antioqueño de InvestigaciónColombiahttps://www.researchgate.net/publication/335973217_Caracterizacion_mecanica_a_tension_de_impresiones_3D_de_PLA_y_ABS_modeladas_por_deposicion_fundidaCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundidaCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85507497N/ADesarrollo e Innovación en IngenieríaSood, R. Ohdar y S. Mahapatra, «Experimental investigation and empirical modelling of FDM process for compressive strength improvement,» Journal of Advance Research, vol. 3, nº 1, pp. 81-90, 2 Junio 2011.K. V. Wong y A. Hernandez, «A Review of Additive Manufacturing,» ISRN Mechanical Engineering, vol. 2012, p. 10, 2012.T. D. Ngo, A. Kashani, G. Imbalzano, K. Nguyen y D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,» Composites Part B: Engineering, vol. 143, pp. 172-196, 2018.G. Cicala, A. Latteri, B. Del Curto, A. Lo Russo, G. Recca and S. Fare, "Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications," JABFM, p. 9, 2017K. Chua, K. F. Leong y C. S. Lim, Rapid prototyping: principles and applications, World Scientific Publishing Company, 2010K. Cooper, Rapid prototyping technology: selection and application, CRC Press, 2001L. Ventola, «Medical applications for 3D printing: current and projected uses,» Pharmacy and Therapeutics, vol. 39, nº 10, p. 704, 2014.«Rengier, Fabian; Mehndiratta, Amit; Von Tengg-Kobligk, Hendrik; Zechmann, Christian M; Unterhinninghofen, Roland; Kauczor, H-U; Giesel, Frederik L,» International journal of computer assisted radiology and surgery, vol. 5, nº 4, pp. 335-341, 2010.H. Dodziuk, «Applications of 3D printing in healthcare,» Polish journal of cardio-thoracic surgery, vol. 13, nº 3, p. 283, 2016B. Lu, D. Li y X. Tian, «Development trends in additive manufacturing and 3D printing,» Engineering, vol. 1, nº 1, pp. 85-89, 2015.S. C. Joshi y A. A. Sheikh, «3D printing in aerospace and its long-term sustainability,» Virtual and Physical Prototyping, vol. 10, nº 4, pp. 175-185, 2015.B. Berman, «3-D printing: The new industrial revolution,» Business horizons, vol. 55, nº 2, pp. 155-162, 2012.Canessa, C. Fonda, M. Zennaro y N. Deadline, «Low-cost 3D printing for science, education and sustainable development,» Low-Cost 3D Printing, vol. 11, 2013.B. G. Compton y J. A. Lewis, «3D-printing of lightweight cellular composites,» Advanced materials, vol. 26, nº 34, pp. 5930- 5935, 2014.X. Wang, M. Jiang, Z. Zhou, J. Gou y D. Hui, «3D printing of polymer matrix composites: A review and prospective,» Composites Part B: Engineering, vol. 110, pp. 442-458, 2017J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler y T. M. Pollock, «3D printing of high-strength aluminium alloys,» Nature, vol. 549, nº 7672, p. 365, 2017.C. W. Visser, R. Pohl, C. Sun, G.-W. Romer, B. Huis in ‘t Veld y D. Lohse, «Toward 3D printing of pure metals by laser-induced forward transfer,» Advanced materials, vol. 27, nº 27, pp. 4087-4092, 2015.C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger y P. Morel, «Large-scale 3D printing of ultra-high performance concrete--a new processing route for architects and builders,» Materials & Design, vol. 100, pp. 102-109, 2016.Bos, R. Wolfs, Z. Ahmed y T. Salet, «Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,» Virtual and Physical Prototyping, vol. 11, nº 3, pp. 209-225, 2016.R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates y H. A. Awad, «3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery,» Annals of biomedical engineering, vol. 45, nº 1, pp. 23-44, 2017.Vorndran, M. Klarner, U. Klammert, L. M. Grover, S. Patel, J. E. Barralet y U. Gbureck, «3D powder printing of beta-tricalcium phosphate ceramics using different strategies,» Advanced Engineering Materials, vol. 10, nº 12, pp. B67-B71, 2008.C. Minas, D. Carnelli, E. Tervoort y R. Studart, «3D printing of emulsions and foams into hierarchical porous ceramics,» Advanced Materials, vol. 28, nº 45, pp. 9993-9999, 2016T. T. Wohlers, 3D Printing and Additive Manufacturing, State of the Industry, Annual Worldwide Progress Report, Wohlers Associates Incorporated, 2014.B. Redwood, F. Schffer y B. Garret, The 3D Printing Handbook: Technologies, design and applications, 3D Hubs, 2017N. G. Tanikella, B. Wittbrodt y J. M. Pearce, «Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,» Additive Manufacturing, vol. 15, pp. 40-47, 2017.B. Tymrak, M. Kreiger y J. M. Pearce, «echanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,» Materials & Design, vol. 58, pp. 242-246, 2014.J. R. C. Dizon, A. H. Espera Jr, Q. Chen y R. C. Advincula, «Mechanical characterization of 3D-printed polymers,» Additive Manufacturing, vol. 20, pp. 44-67, 2018.J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, Young, ie, A. Jerez, D. Steinbach, C. Kroese y others, «Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts,» Rapid Prototyping Journal, vol. 23, nº 4, pp. 811-824, 2017.D. F. Adams, L. A. Carllsson y R. B. Pipes, Experimental characterization of advanced composite materials, CRC Press, 2002.ASTM International, ASTM D3039 Standard Test Method for Tensile Propeties if Polymer Matrix Composite Materials, ASTM, 2002.Prusament, «Green PLA Filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/40-greenpla-filament-1kg.html. [Último acceso: 15 Marzo 2018].Prusament, «Blue EasyABS filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/57- blue-easyabs-filament-1kg.html. [Último acceso: 15 Marzo 2018].ASTM Internacional, ASTM E111 Standard Test Method for Young`s Modulus, Tangent modulus, and Chord Modulus, ASTM, 1997.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ingeniería - Innovaciones tecnológicas - InvestigacionesEngineering - Technological innovations - ResearchInnovaciones tecnológicasIngenieríaTechnological innovationsEngineeringTEXTCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.txtCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.txtExtracted texttext/plain49516https://repositorio.escuelaing.edu.co/bitstream/001/1703/3/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.txt3898fb48aefeb3a1202b286be56afe49MD53open accessTHUMBNAILCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.jpgCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.jpgGenerated Thumbnailimage/jpeg5764https://repositorio.escuelaing.edu.co/bitstream/001/1703/4/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.jpge6fd2f13c8c9a0b0ddc67e6e49de0b97MD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1703/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdfapplication/pdf1577166https://repositorio.escuelaing.edu.co/bitstream/001/1703/2/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf094a0e912fecad8412e5c5fa62beaf5aMD52open access001/1703oai:repositorio.escuelaing.edu.co:001/17032022-05-19 11:23:44.565open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |