Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida

Autores:
Montoya Vallejo, Miguel Fernando
Hernandez Acevedo, Camilo
Tipo de recurso:
Part of book
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
spa
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1703
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1703
Palabra clave:
Ingeniería - Innovaciones tecnológicas - Investigaciones
Engineering - Technological innovations - Research
Innovaciones tecnológicas
Ingeniería
Technological innovations
Engineering
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_75dfdcc987c691b4ea6cfcb68ee35cdb
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1703
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
title Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
spellingShingle Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
Ingeniería - Innovaciones tecnológicas - Investigaciones
Engineering - Technological innovations - Research
Innovaciones tecnológicas
Ingeniería
Technological innovations
Engineering
title_short Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
title_full Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
title_fullStr Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
title_full_unstemmed Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
title_sort Caracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida
dc.creator.fl_str_mv Montoya Vallejo, Miguel Fernando
Hernandez Acevedo, Camilo
dc.contributor.author.none.fl_str_mv Montoya Vallejo, Miguel Fernando
Hernandez Acevedo, Camilo
dc.contributor.researchgroup.spa.fl_str_mv Diseño Sostenible en Ingeniería Mecánica (DSIM)
dc.subject.armarc.none.fl_str_mv Ingeniería - Innovaciones tecnológicas - Investigaciones
topic Ingeniería - Innovaciones tecnológicas - Investigaciones
Engineering - Technological innovations - Research
Innovaciones tecnológicas
Ingeniería
Technological innovations
Engineering
dc.subject.armarc.eng.fl_str_mv Engineering - Technological innovations - Research
dc.subject.lemb.none.fl_str_mv
dc.subject.proposal.spa.fl_str_mv Innovaciones tecnológicas
Ingeniería
dc.subject.proposal.eng.fl_str_mv Technological innovations
Engineering
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-08-31T18:28:58Z
2021-10-01T17:42:34Z
dc.date.available.none.fl_str_mv 2021-08-31T18:28:58Z
2021-10-01T17:42:34Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9789585233300
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1703
identifier_str_mv 9789585233300
url https://repositorio.escuelaing.edu.co/handle/001/1703
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 507
dc.relation.citationstartpage.spa.fl_str_mv 497
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofbook.spa.fl_str_mv Desarrollo e Innovación en Ingeniería
dc.relation.references.spa.fl_str_mv Sood, R. Ohdar y S. Mahapatra, «Experimental investigation and empirical modelling of FDM process for compressive strength improvement,» Journal of Advance Research, vol. 3, nº 1, pp. 81-90, 2 Junio 2011.
K. V. Wong y A. Hernandez, «A Review of Additive Manufacturing,» ISRN Mechanical Engineering, vol. 2012, p. 10, 2012.
T. D. Ngo, A. Kashani, G. Imbalzano, K. Nguyen y D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,» Composites Part B: Engineering, vol. 143, pp. 172-196, 2018.
G. Cicala, A. Latteri, B. Del Curto, A. Lo Russo, G. Recca and S. Fare, "Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications," JABFM, p. 9, 2017
K. Chua, K. F. Leong y C. S. Lim, Rapid prototyping: principles and applications, World Scientific Publishing Company, 2010
K. Cooper, Rapid prototyping technology: selection and application, CRC Press, 2001
L. Ventola, «Medical applications for 3D printing: current and projected uses,» Pharmacy and Therapeutics, vol. 39, nº 10, p. 704, 2014.
«Rengier, Fabian; Mehndiratta, Amit; Von Tengg-Kobligk, Hendrik; Zechmann, Christian M; Unterhinninghofen, Roland; Kauczor, H-U; Giesel, Frederik L,» International journal of computer assisted radiology and surgery, vol. 5, nº 4, pp. 335-341, 2010.
H. Dodziuk, «Applications of 3D printing in healthcare,» Polish journal of cardio-thoracic surgery, vol. 13, nº 3, p. 283, 2016
B. Lu, D. Li y X. Tian, «Development trends in additive manufacturing and 3D printing,» Engineering, vol. 1, nº 1, pp. 85-89, 2015.
S. C. Joshi y A. A. Sheikh, «3D printing in aerospace and its long-term sustainability,» Virtual and Physical Prototyping, vol. 10, nº 4, pp. 175-185, 2015.
B. Berman, «3-D printing: The new industrial revolution,» Business horizons, vol. 55, nº 2, pp. 155-162, 2012.
Canessa, C. Fonda, M. Zennaro y N. Deadline, «Low-cost 3D printing for science, education and sustainable development,» Low-Cost 3D Printing, vol. 11, 2013.
B. G. Compton y J. A. Lewis, «3D-printing of lightweight cellular composites,» Advanced materials, vol. 26, nº 34, pp. 5930- 5935, 2014.
X. Wang, M. Jiang, Z. Zhou, J. Gou y D. Hui, «3D printing of polymer matrix composites: A review and prospective,» Composites Part B: Engineering, vol. 110, pp. 442-458, 2017
J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler y T. M. Pollock, «3D printing of high-strength aluminium alloys,» Nature, vol. 549, nº 7672, p. 365, 2017.
C. W. Visser, R. Pohl, C. Sun, G.-W. Romer, B. Huis in ‘t Veld y D. Lohse, «Toward 3D printing of pure metals by laser-induced forward transfer,» Advanced materials, vol. 27, nº 27, pp. 4087-4092, 2015.
C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger y P. Morel, «Large-scale 3D printing of ultra-high performance concrete--a new processing route for architects and builders,» Materials & Design, vol. 100, pp. 102-109, 2016.
Bos, R. Wolfs, Z. Ahmed y T. Salet, «Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,» Virtual and Physical Prototyping, vol. 11, nº 3, pp. 209-225, 2016.
R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates y H. A. Awad, «3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery,» Annals of biomedical engineering, vol. 45, nº 1, pp. 23-44, 2017.
Vorndran, M. Klarner, U. Klammert, L. M. Grover, S. Patel, J. E. Barralet y U. Gbureck, «3D powder printing of beta-tricalcium phosphate ceramics using different strategies,» Advanced Engineering Materials, vol. 10, nº 12, pp. B67-B71, 2008.
C. Minas, D. Carnelli, E. Tervoort y R. Studart, «3D printing of emulsions and foams into hierarchical porous ceramics,» Advanced Materials, vol. 28, nº 45, pp. 9993-9999, 2016
T. T. Wohlers, 3D Printing and Additive Manufacturing, State of the Industry, Annual Worldwide Progress Report, Wohlers Associates Incorporated, 2014.
B. Redwood, F. Schffer y B. Garret, The 3D Printing Handbook: Technologies, design and applications, 3D Hubs, 2017
N. G. Tanikella, B. Wittbrodt y J. M. Pearce, «Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,» Additive Manufacturing, vol. 15, pp. 40-47, 2017.
B. Tymrak, M. Kreiger y J. M. Pearce, «echanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,» Materials & Design, vol. 58, pp. 242-246, 2014.
J. R. C. Dizon, A. H. Espera Jr, Q. Chen y R. C. Advincula, «Mechanical characterization of 3D-printed polymers,» Additive Manufacturing, vol. 20, pp. 44-67, 2018.
J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, Young, ie, A. Jerez, D. Steinbach, C. Kroese y others, «Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts,» Rapid Prototyping Journal, vol. 23, nº 4, pp. 811-824, 2017.
D. F. Adams, L. A. Carllsson y R. B. Pipes, Experimental characterization of advanced composite materials, CRC Press, 2002.
ASTM International, ASTM D3039 Standard Test Method for Tensile Propeties if Polymer Matrix Composite Materials, ASTM, 2002.
Prusament, «Green PLA Filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/40-greenpla-filament-1kg.html. [Último acceso: 15 Marzo 2018].
Prusament, «Blue EasyABS filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/57- blue-easyabs-filament-1kg.html. [Último acceso: 15 Marzo 2018].
ASTM Internacional, ASTM E111 Standard Test Method for Young`s Modulus, Tangent modulus, and Chord Modulus, ASTM, 1997.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Ed. Corporación Instituto Antioqueño de Investigación
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://www.researchgate.net/publication/335973217_Caracterizacion_mecanica_a_tension_de_impresiones_3D_de_PLA_y_ABS_modeladas_por_deposicion_fundida
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1703/3/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1703/4/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1703/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1703/2/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf
bitstream.checksum.fl_str_mv 3898fb48aefeb3a1202b286be56afe49
e6fd2f13c8c9a0b0ddc67e6e49de0b97
5a7ca94c2e5326ee169f979d71d0f06e
094a0e912fecad8412e5c5fa62beaf5a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355585864302592
spelling Montoya Vallejo, Miguel Fernando33ece91dbe4b3015be245353bc77bd11600Hernandez Acevedo, Camilofaee17a9529dc25b1843c7111495eaef600Diseño Sostenible en Ingeniería Mecánica (DSIM)2021-08-31T18:28:58Z2021-10-01T17:42:34Z2021-08-31T18:28:58Z2021-10-01T17:42:34Z20199789585233300https://repositorio.escuelaing.edu.co/handle/001/170314 páginasapplication/pdfspaEd. Corporación Instituto Antioqueño de InvestigaciónColombiahttps://www.researchgate.net/publication/335973217_Caracterizacion_mecanica_a_tension_de_impresiones_3D_de_PLA_y_ABS_modeladas_por_deposicion_fundidaCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundidaCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85507497N/ADesarrollo e Innovación en IngenieríaSood, R. Ohdar y S. Mahapatra, «Experimental investigation and empirical modelling of FDM process for compressive strength improvement,» Journal of Advance Research, vol. 3, nº 1, pp. 81-90, 2 Junio 2011.K. V. Wong y A. Hernandez, «A Review of Additive Manufacturing,» ISRN Mechanical Engineering, vol. 2012, p. 10, 2012.T. D. Ngo, A. Kashani, G. Imbalzano, K. Nguyen y D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,» Composites Part B: Engineering, vol. 143, pp. 172-196, 2018.G. Cicala, A. Latteri, B. Del Curto, A. Lo Russo, G. Recca and S. Fare, "Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications," JABFM, p. 9, 2017K. Chua, K. F. Leong y C. S. Lim, Rapid prototyping: principles and applications, World Scientific Publishing Company, 2010K. Cooper, Rapid prototyping technology: selection and application, CRC Press, 2001L. Ventola, «Medical applications for 3D printing: current and projected uses,» Pharmacy and Therapeutics, vol. 39, nº 10, p. 704, 2014.«Rengier, Fabian; Mehndiratta, Amit; Von Tengg-Kobligk, Hendrik; Zechmann, Christian M; Unterhinninghofen, Roland; Kauczor, H-U; Giesel, Frederik L,» International journal of computer assisted radiology and surgery, vol. 5, nº 4, pp. 335-341, 2010.H. Dodziuk, «Applications of 3D printing in healthcare,» Polish journal of cardio-thoracic surgery, vol. 13, nº 3, p. 283, 2016B. Lu, D. Li y X. Tian, «Development trends in additive manufacturing and 3D printing,» Engineering, vol. 1, nº 1, pp. 85-89, 2015.S. C. Joshi y A. A. Sheikh, «3D printing in aerospace and its long-term sustainability,» Virtual and Physical Prototyping, vol. 10, nº 4, pp. 175-185, 2015.B. Berman, «3-D printing: The new industrial revolution,» Business horizons, vol. 55, nº 2, pp. 155-162, 2012.Canessa, C. Fonda, M. Zennaro y N. Deadline, «Low-cost 3D printing for science, education and sustainable development,» Low-Cost 3D Printing, vol. 11, 2013.B. G. Compton y J. A. Lewis, «3D-printing of lightweight cellular composites,» Advanced materials, vol. 26, nº 34, pp. 5930- 5935, 2014.X. Wang, M. Jiang, Z. Zhou, J. Gou y D. Hui, «3D printing of polymer matrix composites: A review and prospective,» Composites Part B: Engineering, vol. 110, pp. 442-458, 2017J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler y T. M. Pollock, «3D printing of high-strength aluminium alloys,» Nature, vol. 549, nº 7672, p. 365, 2017.C. W. Visser, R. Pohl, C. Sun, G.-W. Romer, B. Huis in ‘t Veld y D. Lohse, «Toward 3D printing of pure metals by laser-induced forward transfer,» Advanced materials, vol. 27, nº 27, pp. 4087-4092, 2015.C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger y P. Morel, «Large-scale 3D printing of ultra-high performance concrete--a new processing route for architects and builders,» Materials & Design, vol. 100, pp. 102-109, 2016.Bos, R. Wolfs, Z. Ahmed y T. Salet, «Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,» Virtual and Physical Prototyping, vol. 11, nº 3, pp. 209-225, 2016.R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates y H. A. Awad, «3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery,» Annals of biomedical engineering, vol. 45, nº 1, pp. 23-44, 2017.Vorndran, M. Klarner, U. Klammert, L. M. Grover, S. Patel, J. E. Barralet y U. Gbureck, «3D powder printing of beta-tricalcium phosphate ceramics using different strategies,» Advanced Engineering Materials, vol. 10, nº 12, pp. B67-B71, 2008.C. Minas, D. Carnelli, E. Tervoort y R. Studart, «3D printing of emulsions and foams into hierarchical porous ceramics,» Advanced Materials, vol. 28, nº 45, pp. 9993-9999, 2016T. T. Wohlers, 3D Printing and Additive Manufacturing, State of the Industry, Annual Worldwide Progress Report, Wohlers Associates Incorporated, 2014.B. Redwood, F. Schffer y B. Garret, The 3D Printing Handbook: Technologies, design and applications, 3D Hubs, 2017N. G. Tanikella, B. Wittbrodt y J. M. Pearce, «Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,» Additive Manufacturing, vol. 15, pp. 40-47, 2017.B. Tymrak, M. Kreiger y J. M. Pearce, «echanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,» Materials & Design, vol. 58, pp. 242-246, 2014.J. R. C. Dizon, A. H. Espera Jr, Q. Chen y R. C. Advincula, «Mechanical characterization of 3D-printed polymers,» Additive Manufacturing, vol. 20, pp. 44-67, 2018.J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, Young, ie, A. Jerez, D. Steinbach, C. Kroese y others, «Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts,» Rapid Prototyping Journal, vol. 23, nº 4, pp. 811-824, 2017.D. F. Adams, L. A. Carllsson y R. B. Pipes, Experimental characterization of advanced composite materials, CRC Press, 2002.ASTM International, ASTM D3039 Standard Test Method for Tensile Propeties if Polymer Matrix Composite Materials, ASTM, 2002.Prusament, «Green PLA Filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/40-greenpla-filament-1kg.html. [Último acceso: 15 Marzo 2018].Prusament, «Blue EasyABS filament for 3D printing,» [En línea]. Available: https://shop.prusa3d.com/en/filament/57- blue-easyabs-filament-1kg.html. [Último acceso: 15 Marzo 2018].ASTM Internacional, ASTM E111 Standard Test Method for Young`s Modulus, Tangent modulus, and Chord Modulus, ASTM, 1997.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ingeniería - Innovaciones tecnológicas - InvestigacionesEngineering - Technological innovations - ResearchInnovaciones tecnológicasIngenieríaTechnological innovationsEngineeringTEXTCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.txtCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.txtExtracted texttext/plain49516https://repositorio.escuelaing.edu.co/bitstream/001/1703/3/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.txt3898fb48aefeb3a1202b286be56afe49MD53open accessTHUMBNAILCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.jpgCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdf.jpgGenerated Thumbnailimage/jpeg5764https://repositorio.escuelaing.edu.co/bitstream/001/1703/4/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf.jpge6fd2f13c8c9a0b0ddc67e6e49de0b97MD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1703/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALCaracterización mecánica a tensión de impresiones 3D de PLA y ABS modeladas por deposición fundida.pdfapplication/pdf1577166https://repositorio.escuelaing.edu.co/bitstream/001/1703/2/Caracterizaci%c3%b3n%20mec%c3%a1nica%20a%20tensi%c3%b3n%20de%20impresiones%203D%20de%20PLA%20y%20ABS%20modeladas%20por%20deposici%c3%b3n%20fundida.pdf094a0e912fecad8412e5c5fa62beaf5aMD52open access001/1703oai:repositorio.escuelaing.edu.co:001/17032022-05-19 11:23:44.565open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK