The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct

This new material is based on an oxide dispersion strengthened iron, obtained by a partial chemical reduction of ground mill scale for subsequent compaction and sintering. The mechanical properties depend on the porosity level and the quantity of the iron oxide reinforcement. Having into account the...

Full description

Autores:
Ortiz, Christian H.
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Bermúdez Castañeda, Ángela
Caicedo Angulo, Julio César
Aguilar, Yesid
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3141
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3141
https://doi.org/10.1016/j.triboint.2022.107834
https://www.sciencedirect.com/science/article/pii/S0301679X22004066
Palabra clave:
Recycling
High temperature
Wear
Friction coefficient
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id ESCUELAIG2_74d3a5bd9b35ac1c6f83c2cf56e55222
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3141
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
title The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
spellingShingle The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
Recycling
High temperature
Wear
Friction coefficient
title_short The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
title_full The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
title_fullStr The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
title_full_unstemmed The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
title_sort The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
dc.creator.fl_str_mv Ortiz, Christian H.
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Bermúdez Castañeda, Ángela
Caicedo Angulo, Julio César
Aguilar, Yesid
dc.contributor.author.none.fl_str_mv Ortiz, Christian H.
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Bermúdez Castañeda, Ángela
Caicedo Angulo, Julio César
Aguilar, Yesid
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Diseños sostenibles en ingeniería mecánica
dc.subject.proposal.eng.fl_str_mv Recycling
High temperature
Wear
Friction coefficient
topic Recycling
High temperature
Wear
Friction coefficient
description This new material is based on an oxide dispersion strengthened iron, obtained by a partial chemical reduction of ground mill scale for subsequent compaction and sintering. The mechanical properties depend on the porosity level and the quantity of the iron oxide reinforcement. Having into account the characteristics of the reinforcement, the tribological behavior was evaluated at two types or ironox compounds under dry sliding conditions. The effect of porosity was evaluated and a comparison with an AISI 1040 steel was done. Experimental test was carried out using a pin on disk tribometer at different temperature. It was found that, on the contrary of AISI 1040 steel, the wear rate of ironox compounds with temperature tends to slow down.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-07-02T19:43:05Z
dc.date.available.none.fl_str_mv 2024-07-02T19:43:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0301-679X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3141
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.triboint.2022.107834
dc.identifier.eissn.spa.fl_str_mv 1879-2464
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0301679X22004066
identifier_str_mv 0301-679X
1879-2464
url https://repositorio.escuelaing.edu.co/handle/001/3141
https://doi.org/10.1016/j.triboint.2022.107834
https://www.sciencedirect.com/science/article/pii/S0301679X22004066
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv November 2022
dc.relation.citationendpage.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 175
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Tribology International
dc.relation.references.spa.fl_str_mv Eissa M, Ahmed A, El-Fawkhry M. Conversion of mill scale waste into valuable products via carbothermic reduction. J Met 2015;2015:1–9. https://doi.org/ 10.1155/2015/926028
Sustainable consumption and production – United Nations Sustainable Development, (n.d.). 〈https://www.un.org/sustainabledevelopment/sustainable -consumption-production/〉 (accessed November 15, 2021).
Política Nacional de Produccion ´ y Consumo Sostenible - Red de Desarrollo Sostenible de Colombia, (n.d.). 〈https://www.rds.org.co/es/recursos/politica-nac ional-de-produccion-y-consumo-sostenible〉 (accessed November 16, 2021).
Tirado Gonz´ alez JG, Reyes Segura BT, Esguerra-Arce J, Bermúdez Castaneda ˜ A, Aguilar Y, Esguerra-Arce A. An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy. J Clean Prod 2020;268:122362. https://doi.org/10.1016/j. jclepro.2020.122362.
Howson TE, Mervyn DA, Tien JK. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy. Metall Trans A 1980;11:1609–16. https://doi.org/10.1007/BF02654525.
Zhou Y, Gao Y, Wei S, Pan K, Hu Y. Preparation and characterization of Mo/Al2O3 composites. Int J Refract Met Hard Mater 2016;54:186–95. https://doi.org/ 10.1016/j.ijrmhm.2015.07.033.
Tu S. Emering to structural integrity technology for high-temperature applications. Front Mech Eng 2007:375–87.
Sista KS, Dwarapudi S, Nerune VP. Direct reduction recycling of mill scale through iron powder synthesis. ISIJ Int 2019;59:787–94. https://doi.org/10.2355/ isijinternational.ISIJINT-2018-628.
Askeland DR. The science and engineering of materials. Sci Eng Mater 1996. https://doi.org/10.1007/978-1-4613-0443-2.
Elhadi A, Bouchoucha A, Jomaa W, Zedan Y, Schmitt T, Bocher P. Study of surface wear and damage induced by dry sliding of tempered AISI 4140 steel against hardened AISI 1055 steel. Tribol Ind 2017;38:475–85.
Panin V, Kolubaev A, Tarasov S, Popov V. Subsurface layer formation during sliding friction. Wear 2001;249:860–7. https://doi.org/10.1016/S0043-1648(01) 00819-5.
Fleming JR, Suh NP. Mechanics of crack propagation in delamination wear. Wear 1977;44:39–56. https://doi.org/10.1016/0043-1648(77)90083-7.
Study of surface wear and damage induced by dry sliding of tempered, (n.d.).
Zambrano OA, Gomez ´ JA, Coronado JJ, Rodríguez SA. The sliding wear behaviour of steels with the same hardness. Wear 2019;418–419:201–7. https://doi.org/ 10.1016/j.wear.2018.12.002.
Surface film formation and metallic wear, Wear. 1 (1957) 163. 〈https://doi. org/10.1016/0043–1648(57)90019–4.
Bahrami A, Soltani N, Pech-Canul MI, Guti´errez CA. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit Rev Environ Sci Technol 2016;46:143–208. https://doi.org/10.1080/ 10643389.2015.1077067.
Deaquino-Lara R, Soltani N, Bahrami A, Guti´errez-Castaneda ˜ E, García-Sanchez ´ E, Hernandez-Rodríguez MAL. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater Des 2015; 67:224–31. https://doi.org/10.1016/j.matdes.2014.11.045.
Bahrami A, Pech-Canul MI, Gutierrez CA, Soltani N. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. J Alloy Compd 2015;644:256–66. https://doi.org/ 10.1016/j.jallcom.2015.04.194.
Soltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu W, Wu G. Effect of hot extrusion on wear properties of Al–15wt% Mg2Si in situ metal matrix composites. Mater Des 2014;53:774–81. https://doi.org/10.1016/j. matdes.2013.07.084.
Bahrami A, Soltani N, Pech-Canul M. Effect of sintering temperature on tribological behavior of Ce-TZP/Al 2 O 3 -aluminum nanocomposite. J Compos Mater 2015;49: 3507–14. https://doi.org/10.1177/0021998314567010.
Agrawal R, Mukhopadhyay A. Optimization of wear performance and COF of AISI 1040 steel using grey relational analysis. Mater Today Proc 2022. https://doi.org/ 10.1016/j.matpr.2022.03.665.
Li X, Sosa M, Olofsson U. A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 2015;340–341:31–40. https:// doi.org/10.1016/j.wear.2015.01.032.
Conshohocken W. Standard test method for wear testing with a pin-on-disk apparatus 1. Wear V 2007:1–5.
King PC, Reynoldson RW, Brownrigg A, Long JM. Pin on disc wear investigation of nitrocarburised H13 tool steel. Surf Eng 2005;21:99–106. https://doi.org/ 10.1179/174329405×40911.
Federici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: modelling of the contact temperature evolution. Tribol Lett 2017;65:121. https://doi.org/10.1007/s11249- 017-0904-y
Munagala VNV, Chromik RR. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites. Surf Coat Technol 2021;411: 126974. https://doi.org/10.1016/j.surfcoat.2021.126974.
Poquillon D, Baco-Carles V, Tailhades P, Andrieu E. Cold compaction of iron powders - relations between powder morphology and mechanical properties: Part II. Bending tests: results and analysis. Powder Technol 2002;126:75–84. https:// doi.org/10.1016/S0032-5910(02)00035-9.
Korim NS, Hu L. Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method. Mater Res Express 2020;7. https:// doi.org/10.1088/2053-1591/ab8cf6.
Vergne C, Boher C, Levaillant C, Gras R. Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear 2001;250: 322–33. https://doi.org/10.1016/S0043-1648(01)00598-1.
Liang C, Wang C, Zhang K, Tan H, Liang M, Xie Y, et al. The study of mechanical and tribology properties at room- and high-temperature in a (NiCoFe)86.5(AlTi)12 (WMoV)1.5 high-entropy alloy. J Alloy Compd 2022;911:165082. https://doi.org/ 10.1016/j.jallcom.2022.165082.
Serebriakov I, Puchi-Cabrera ES, Dubar L, Moreau P, Meresse D, BarberaSosa JGLa. Friction analysis during deformation of steels under hot-working conditions. Tribol Int 2021;158:106928. https://doi.org/10.1016/j. triboint.2021.106928.
Lancaster JK. The influence of temperature on metallic wear. Proc Phys Soc Sect B 1957;70:112–8. https://doi.org/10.1088/0370-1301/70/1/316.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv ElSevier
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0301679X22004066
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3141/4/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3141/3/Portada%20-%20The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened.png
https://repositorio.escuelaing.edu.co/bitstream/001/3141/5/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3141/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3141/1/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf
bitstream.checksum.fl_str_mv e46ebe1a05a585b6a715a10699977586
92076efa0c192f5ba11d52441b8415be
72620e12753bdc23c255981fbaf4cccb
5a7ca94c2e5326ee169f979d71d0f06e
3b97d88c0b2ddef26a0cb1dde7012a0c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1808494289337974784
spelling Ortiz, Christian H.6ff784a15f912cbb5e8a792100e68846Esguerra Arce, Johanna147c0a0162a4b3689186e50e396cfbdd600Esguerra Arce, Adriana6ff2e418e5f33a06cac9149759877ea5600Bermúdez Castañeda, Ángela878b2ebd59222b5075aa9a58eb99589f600Caicedo Angulo, Julio Césarf992baa0bb173e69c42dd9c1ed408b05Aguilar, Yesidb8748db992e54c95f9395658cc581eba600Grupo de Investigación en Diseños sostenibles en ingeniería mecánica2024-07-02T19:43:05Z2024-07-02T19:43:05Z20220301-679Xhttps://repositorio.escuelaing.edu.co/handle/001/3141https://doi.org/10.1016/j.triboint.2022.1078341879-2464https://www.sciencedirect.com/science/article/pii/S0301679X22004066This new material is based on an oxide dispersion strengthened iron, obtained by a partial chemical reduction of ground mill scale for subsequent compaction and sintering. The mechanical properties depend on the porosity level and the quantity of the iron oxide reinforcement. Having into account the characteristics of the reinforcement, the tribological behavior was evaluated at two types or ironox compounds under dry sliding conditions. The effect of porosity was evaluated and a comparison with an AISI 1040 steel was done. Experimental test was carried out using a pin on disk tribometer at different temperature. It was found that, on the contrary of AISI 1040 steel, the wear rate of ironox compounds with temperature tends to slow down.Este nuevo material se basa en una dispersión de óxido de hierro reforzado, obtenida mediante una reducción química parcial de cascarilla de laminación molida para su posterior compactación y sinterización. Las propiedades mecánicas dependen del nivel de porosidad y de la cantidad del refuerzo de óxido de hierro. Teniendo en cuenta las características del refuerzo, se evaluó el comportamiento tribológico en dos tipos o compuestos ironox en condiciones de deslizamiento en seco. Se evaluó el efecto de la porosidad y se realizó una comparación con un acero AISI 1040. La prueba experimental se llevó a cabo utilizando un tribómetro de perno sobre disco a diferentes temperaturas. Se observó que, a diferencia del acero AISI 1040, la velocidad de desgaste de los compuestos ironox con la temperatura tiende a disminuir.10 páginasapplication/pdfengElSevierhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0301679X22004066The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproductArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85November 2022101175N/ATribology InternationalEissa M, Ahmed A, El-Fawkhry M. Conversion of mill scale waste into valuable products via carbothermic reduction. J Met 2015;2015:1–9. https://doi.org/ 10.1155/2015/926028Sustainable consumption and production – United Nations Sustainable Development, (n.d.). 〈https://www.un.org/sustainabledevelopment/sustainable -consumption-production/〉 (accessed November 15, 2021).Política Nacional de Produccion ´ y Consumo Sostenible - Red de Desarrollo Sostenible de Colombia, (n.d.). 〈https://www.rds.org.co/es/recursos/politica-nac ional-de-produccion-y-consumo-sostenible〉 (accessed November 16, 2021).Tirado Gonz´ alez JG, Reyes Segura BT, Esguerra-Arce J, Bermúdez Castaneda ˜ A, Aguilar Y, Esguerra-Arce A. An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy. J Clean Prod 2020;268:122362. https://doi.org/10.1016/j. jclepro.2020.122362.Howson TE, Mervyn DA, Tien JK. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy. Metall Trans A 1980;11:1609–16. https://doi.org/10.1007/BF02654525.Zhou Y, Gao Y, Wei S, Pan K, Hu Y. Preparation and characterization of Mo/Al2O3 composites. Int J Refract Met Hard Mater 2016;54:186–95. https://doi.org/ 10.1016/j.ijrmhm.2015.07.033.Tu S. Emering to structural integrity technology for high-temperature applications. Front Mech Eng 2007:375–87.Sista KS, Dwarapudi S, Nerune VP. Direct reduction recycling of mill scale through iron powder synthesis. ISIJ Int 2019;59:787–94. https://doi.org/10.2355/ isijinternational.ISIJINT-2018-628.Askeland DR. The science and engineering of materials. Sci Eng Mater 1996. https://doi.org/10.1007/978-1-4613-0443-2.Elhadi A, Bouchoucha A, Jomaa W, Zedan Y, Schmitt T, Bocher P. Study of surface wear and damage induced by dry sliding of tempered AISI 4140 steel against hardened AISI 1055 steel. Tribol Ind 2017;38:475–85.Panin V, Kolubaev A, Tarasov S, Popov V. Subsurface layer formation during sliding friction. Wear 2001;249:860–7. https://doi.org/10.1016/S0043-1648(01) 00819-5.Fleming JR, Suh NP. Mechanics of crack propagation in delamination wear. Wear 1977;44:39–56. https://doi.org/10.1016/0043-1648(77)90083-7.Study of surface wear and damage induced by dry sliding of tempered, (n.d.).Zambrano OA, Gomez ´ JA, Coronado JJ, Rodríguez SA. The sliding wear behaviour of steels with the same hardness. Wear 2019;418–419:201–7. https://doi.org/ 10.1016/j.wear.2018.12.002.Surface film formation and metallic wear, Wear. 1 (1957) 163. 〈https://doi. org/10.1016/0043–1648(57)90019–4.Bahrami A, Soltani N, Pech-Canul MI, Guti´errez CA. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit Rev Environ Sci Technol 2016;46:143–208. https://doi.org/10.1080/ 10643389.2015.1077067.Deaquino-Lara R, Soltani N, Bahrami A, Guti´errez-Castaneda ˜ E, García-Sanchez ´ E, Hernandez-Rodríguez MAL. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater Des 2015; 67:224–31. https://doi.org/10.1016/j.matdes.2014.11.045.Bahrami A, Pech-Canul MI, Gutierrez CA, Soltani N. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. J Alloy Compd 2015;644:256–66. https://doi.org/ 10.1016/j.jallcom.2015.04.194.Soltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu W, Wu G. Effect of hot extrusion on wear properties of Al–15wt% Mg2Si in situ metal matrix composites. Mater Des 2014;53:774–81. https://doi.org/10.1016/j. matdes.2013.07.084.Bahrami A, Soltani N, Pech-Canul M. Effect of sintering temperature on tribological behavior of Ce-TZP/Al 2 O 3 -aluminum nanocomposite. J Compos Mater 2015;49: 3507–14. https://doi.org/10.1177/0021998314567010.Agrawal R, Mukhopadhyay A. Optimization of wear performance and COF of AISI 1040 steel using grey relational analysis. Mater Today Proc 2022. https://doi.org/ 10.1016/j.matpr.2022.03.665.Li X, Sosa M, Olofsson U. A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 2015;340–341:31–40. https:// doi.org/10.1016/j.wear.2015.01.032.Conshohocken W. Standard test method for wear testing with a pin-on-disk apparatus 1. Wear V 2007:1–5.King PC, Reynoldson RW, Brownrigg A, Long JM. Pin on disc wear investigation of nitrocarburised H13 tool steel. Surf Eng 2005;21:99–106. https://doi.org/ 10.1179/174329405×40911.Federici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: modelling of the contact temperature evolution. Tribol Lett 2017;65:121. https://doi.org/10.1007/s11249- 017-0904-yMunagala VNV, Chromik RR. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites. Surf Coat Technol 2021;411: 126974. https://doi.org/10.1016/j.surfcoat.2021.126974.Poquillon D, Baco-Carles V, Tailhades P, Andrieu E. Cold compaction of iron powders - relations between powder morphology and mechanical properties: Part II. Bending tests: results and analysis. Powder Technol 2002;126:75–84. https:// doi.org/10.1016/S0032-5910(02)00035-9.Korim NS, Hu L. Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method. Mater Res Express 2020;7. https:// doi.org/10.1088/2053-1591/ab8cf6.Vergne C, Boher C, Levaillant C, Gras R. Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear 2001;250: 322–33. https://doi.org/10.1016/S0043-1648(01)00598-1.Liang C, Wang C, Zhang K, Tan H, Liang M, Xie Y, et al. The study of mechanical and tribology properties at room- and high-temperature in a (NiCoFe)86.5(AlTi)12 (WMoV)1.5 high-entropy alloy. J Alloy Compd 2022;911:165082. https://doi.org/ 10.1016/j.jallcom.2022.165082.Serebriakov I, Puchi-Cabrera ES, Dubar L, Moreau P, Meresse D, BarberaSosa JGLa. Friction analysis during deformation of steels under hot-working conditions. Tribol Int 2021;158:106928. https://doi.org/10.1016/j. triboint.2021.106928.Lancaster JK. The influence of temperature on metallic wear. Proc Phys Soc Sect B 1957;70:112–8. https://doi.org/10.1088/0370-1301/70/1/316.RecyclingHigh temperatureWearFriction coefficientTEXTThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdf.txtThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdf.txtExtracted texttext/plain51210https://repositorio.escuelaing.edu.co/bitstream/001/3141/4/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf.txte46ebe1a05a585b6a715a10699977586MD54open accessTHUMBNAILPortada - The high temperature tribological behavior of an iron oxide strengthened.pngPortada - The high temperature tribological behavior of an iron oxide strengthened.pngimage/png155313https://repositorio.escuelaing.edu.co/bitstream/001/3141/3/Portada%20-%20The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened.png92076efa0c192f5ba11d52441b8415beMD53open accessThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdf.jpgThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdf.jpgGenerated Thumbnailimage/jpeg14015https://repositorio.escuelaing.edu.co/bitstream/001/3141/5/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf.jpg72620e12753bdc23c255981fbaf4cccbMD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3141/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdfThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct.pdfArtículo de revistaapplication/pdf7996663https://repositorio.escuelaing.edu.co/bitstream/001/3141/1/The%20high%20temperature%20tribological%20behavior%20of%20an%20iron%20oxide%20strengthened%20iron%20compound%20obtained%20from%20an%20industrial%20byproduct.pdf3b97d88c0b2ddef26a0cb1dde7012a0cMD51open access001/3141oai:repositorio.escuelaing.edu.co:001/31412024-07-03 03:00:59.117open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK