Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures

The paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compr...

Full description

Autores:
Rosell, Jan
Suárez, Raúl
Rosales, Carlos
Pérez Ruíz, Alexander
Tipo de recurso:
Article of investigation
Fecha de publicación:
2011
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2324
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2324
https://doi.org/10.1007/s10514-011-9232-5
https://link.springer.com/article/10.1007/s10514-011-9232-5#article-info
Palabra clave:
Manos robóticas
Manipuladores (Mecanismo)
Robótica
Robot hands
Manipulators (Mechanism)
Robotics
Motion planning
Grasping
Manipulation
Mechanical hands
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_6f95247107bc1fa4747bc07356bf8400
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2324
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
title Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
spellingShingle Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
Manos robóticas
Manipuladores (Mecanismo)
Robótica
Robot hands
Manipulators (Mechanism)
Robotics
Motion planning
Grasping
Manipulation
Mechanical hands
title_short Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
title_full Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
title_fullStr Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
title_full_unstemmed Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
title_sort Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures
dc.creator.fl_str_mv Rosell, Jan
Suárez, Raúl
Rosales, Carlos
Pérez Ruíz, Alexander
dc.contributor.author.none.fl_str_mv Rosell, Jan
Suárez, Raúl
Rosales, Carlos
Pérez Ruíz, Alexander
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Ecitrónica
dc.subject.armarc.spa.fl_str_mv Manos robóticas
Manipuladores (Mecanismo)
Robótica
topic Manos robóticas
Manipuladores (Mecanismo)
Robótica
Robot hands
Manipulators (Mechanism)
Robotics
Motion planning
Grasping
Manipulation
Mechanical hands
dc.subject.armarc.eng.fl_str_mv Robot hands
Manipulators (Mechanism)
Robotics
dc.subject.proposal.eng.fl_str_mv Motion planning
Grasping
Manipulation
Mechanical hands
description The paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compromise between motion optimality and planning complexity (time). Basically, the work includes the following phases: capturing the human hand workspace using a sensorized glove and mapping it to the mechanical hand workspace, reducing the space dimension by looking for the most relevant principal motion directions, and planning the hand movements using a probabilistic roadmap planner. The approach has been implemented for a four finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) assembled on an industrial robot (6 independent degrees of freedom), and experimental examples are included to illustrate its validity.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2023-05-11T22:05:53Z
dc.date.available.none.fl_str_mv 2023-05-11T22:05:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0929-5593
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2324
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10514-011-9232-5
dc.identifier.eissn.spa.fl_str_mv 1573-7527
dc.identifier.url.none.fl_str_mv https://link.springer.com/article/10.1007/s10514-011-9232-5#article-info
identifier_str_mv 0929-5593
1573-7527
url https://repositorio.escuelaing.edu.co/handle/001/2324
https://doi.org/10.1007/s10514-011-9232-5
https://link.springer.com/article/10.1007/s10514-011-9232-5#article-info
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 102
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 87
dc.relation.citationvolume.spa.fl_str_mv 31
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Autonomous Robots
dc.relation.references.spa.fl_str_mv Ali, M. S., Kyriakopoulos, K. J., & Stephanou, H. E. (1993). The kinematics of the Anthrobot-2 dextrous hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 705–710).
Bekey, G. A., Tomovic, R., & Zeljkovic, I. (1990). Control architecture for the Belgrade/USC hand (pp. 136–149). New York: Springer.
Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In Proc. of the IEEERAS international conference on humanoid robots.
Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In Proc. of the IEEE int. conf. on robotics and automation (pp. 625–632).
Biagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? a review on anthropomorphic robotic endeffectors (Tech. rep.). University of Bologna.
Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.
Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., & Magruder, D. (2003). Robonaut: a robot designed to work with humans in space. Autonomous Robots, 14(2), 179–197.
Boor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1018–1023).
Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., & Hirzinger, G. (2004). Design and experiences with DLR hand II. In Proc. of the world automation congress (Vol. 15, pp. 105–110).
Caffaz, A., & Cannata, G. (1998). The design and development of the DIST-Hand dextrous gripper. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2075–2080).
Cheng, H. L., Hsu, D., Latombe, J. C., & Sanchez-Ante, G. (2006). Multi-level free space dilation for sampling narrow passages in prm planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1255–1260).
Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press.
Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.
Cortés, J., & Siméon, T. (2004). Sampling-based motion planning under kinematic loop closure constraints. In Proc. of the 6th int. workshop on the algorithmic foundations of robotics (pp. 59–74).
Gabiccini, M., & Bicchi, A. (2010). On the role of hand synergies in the optimal choice of grasping forces. In Proc. of robotics: science and systems.
Gazeau, J. P., Zehloul, S., Arsicault, M., & Lallemand, J. P. (2001). The LMS hand: force and position controls in the aim of the fine manipulation of objects. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2642–2648).
Geraerts, R., & Overmars, M. H. (2006). Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54, 165–173.
Gropp, W., Skjellum, A., Lusk, E. (1999). Using MPI: Portable parallel programming with the message-passing interface. Cambridge: MIT Press.
Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90.
Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4420–4426).
Hsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE int. conf. on robotics and automation (pp. 3874–3880).
Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The International Journal of Robotics Research, 25(7), 627–643.
Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: work in progress. The International Journal of Robotics Research, 3(4), 21–50.
Jolliffe, I. (2002). Springer series in statistics. Principal component analysis. Upper Saddle River: Springer.
Kavraki, LE, & Latombe, J. C. (1994). Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2138–2145).
Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.
Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.
Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: an efficient approach to single-query path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 995–1001).
Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1), 285–300.
Kuipers, L., & Niederreiter, H. (2005). Uniform distribution of sequences. New York: Dover.
Kurniawati, H., & Hsu, D. (2006). Workspace-based connectivity oracle: an adaptive sampling strategy for PRM planning. In S. Akella et al. (Eds.), Algorithmic foundations of robotics VII. Berlin: Springer.
Lin, L. R., & Huang, H. P. (1996). Mechanism design of a new multifingered robot hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 1471–1476).
Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of UB hand 3: early results. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4488–4493).
Lovchik, C. S., Diftler, M. A. (1999). The robonaut hand: a dexterous robot hand for space. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 907–912).
Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238.
Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A samplingbased motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.
Peña, E., Yang, J., & Abdel-Malek, K. (2005). SantosTM hand: a 25- degree-of-freedom model. In Proc. of SAE digital human modeling for design and engineering, Iowa City, Iowa, USA.
Pérez, A., & Rosell, J. (2009). A roadmap to robot motion planning software development. Computer Applications in Engineering Education. doi:101002/cae20269.
Roa, M., & Suárez, R. (2009). Finding locally optimum force-closure grasps. Robotics and Computer-Integrated Manufacturing, 25(3), 536–544.
Rodríguez, A., Pérez, A., Rosell, J., & Basañez, L. (2009). Samplingbased path planning for geometrically-constrained objects. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2074– 2079).
Rosales, C., Ros, L., Porta, J. M., & Suárez, R. (2011). Synthesizing grasp configurations with specified contact regions. The International Journal of Robotics Research, 30(4), 431–443.
Rosell, J., Sierra, X., Palomo, L., & Suárez, R. (2005). Finding grasping configurations of a dexterous hand and an industrial robot. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1178–1183).
Rosell, J., Roa, M., Pérez, A., & García, F. (2007). A general deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems, 50(4), 361–374.
Rosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4025– 4030).
Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional behaviorspecific spaces. ACM Transactions on Graphics, 23(3), 514–521.
Saha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Autonomous Robots, 19(3), 301–319.
Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18(23), 10,105– 10,115.
Schunk GmbH & Co KG (2006). Schunk anthropomorphic hand. http://www.schunk.com/.
Shadow Robot Company (2003). Design of a dextrous hand for advanced clawar applications. In Climbing and walking robots and the supporting technologies for mobile machines (pp. 691–698).
Stilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576– 584.
Suárez, R., & Grosch, P. (2005). Mechanical hand MA-I as experimental system for grasping and manipulation. In VideoProc. of the IEEE int. conf. on robotics and automation, Barcelona.
Suárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1773– 1778).
Tsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. In Proc. of the RSS 2007 workshop on robot manipulation: sensing and adapting to the real world.
van der Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s10514-011-9232-5#article-info
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2324/4/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2324/3/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2324/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2324/1/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf
bitstream.checksum.fl_str_mv 56866c33a3fc13329d19de03cc0e4bb3
4bded1a41d3fc300983eed818cc0355e
5a7ca94c2e5326ee169f979d71d0f06e
1f262b675c2fa963a37adad5a24de8cf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355628434391040
spelling Rosell, Jancd397ba9a746703b1ef736e468ed9318600Suárez, Raúl0b29c00bf56a86f48b4481138f5da205600Rosales, Carlosf31a3c00d71708a4593fa590a16704ca600Pérez Ruíz, Alexanderefb7b77fb01793337d093b4f464eb41b600Grupo de Investigación Ecitrónica2023-05-11T22:05:53Z2023-05-11T22:05:53Z20110929-5593https://repositorio.escuelaing.edu.co/handle/001/2324https://doi.org/10.1007/s10514-011-9232-51573-7527https://link.springer.com/article/10.1007/s10514-011-9232-5#article-infoThe paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compromise between motion optimality and planning complexity (time). Basically, the work includes the following phases: capturing the human hand workspace using a sensorized glove and mapping it to the mechanical hand workspace, reducing the space dimension by looking for the most relevant principal motion directions, and planning the hand movements using a probabilistic roadmap planner. The approach has been implemented for a four finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) assembled on an industrial robot (6 independent degrees of freedom), and experimental examples are included to illustrate its validity.El artículo aborda el problema de la planificación del movimiento de manos mecánicas antropomórficas evitando colisiones e intentando imitar posturas reales de manos humanas. El enfoque utiliza el concepto de "direcciones principales de movimiento" para reducir la dimensión del espacio de búsqueda con el fin de obtener resultados con un compromiso entre la optimalidad del movimiento y la complejidad de la planificación (tiempo). Básicamente, el trabajo incluye las siguientes fases: capturar el espacio de trabajo de la mano humana utilizando un guante sensorizado y mapearlo al espacio de trabajo de la mano mecánica, reducir la dimensión del espacio buscando las direcciones principales de movimiento más relevantes, y planificar los movimientos de la mano utilizando un planificador probabilístico de hojas de ruta. El enfoque se ha aplicado a una mano mecánica antropomórfica de cuatro dedos (17 articulaciones con 13 grados de libertad independientes) montada en un robot industrial (6 grados de libertad independientes), y se incluyen ejemplos experimentales para ilustrar su validez.16 páginasapplication/pdfengSpringerEstados Unidoshttps://link.springer.com/article/10.1007/s10514-011-9232-5#article-infoAutonomous motion planning of a hand-arm robotic system based on captured human-like hand posturesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8510218731N/AAutonomous RobotsAli, M. S., Kyriakopoulos, K. J., & Stephanou, H. E. (1993). The kinematics of the Anthrobot-2 dextrous hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 705–710).Bekey, G. A., Tomovic, R., & Zeljkovic, I. (1990). Control architecture for the Belgrade/USC hand (pp. 136–149). New York: Springer.Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In Proc. of the IEEERAS international conference on humanoid robots.Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In Proc. of the IEEE int. conf. on robotics and automation (pp. 625–632).Biagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? a review on anthropomorphic robotic endeffectors (Tech. rep.). University of Bologna.Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., & Magruder, D. (2003). Robonaut: a robot designed to work with humans in space. Autonomous Robots, 14(2), 179–197.Boor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1018–1023).Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., & Hirzinger, G. (2004). Design and experiences with DLR hand II. In Proc. of the world automation congress (Vol. 15, pp. 105–110).Caffaz, A., & Cannata, G. (1998). The design and development of the DIST-Hand dextrous gripper. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2075–2080).Cheng, H. L., Hsu, D., Latombe, J. C., & Sanchez-Ante, G. (2006). Multi-level free space dilation for sampling narrow passages in prm planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1255–1260).Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press.Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.Cortés, J., & Siméon, T. (2004). Sampling-based motion planning under kinematic loop closure constraints. In Proc. of the 6th int. workshop on the algorithmic foundations of robotics (pp. 59–74).Gabiccini, M., & Bicchi, A. (2010). On the role of hand synergies in the optimal choice of grasping forces. In Proc. of robotics: science and systems.Gazeau, J. P., Zehloul, S., Arsicault, M., & Lallemand, J. P. (2001). The LMS hand: force and position controls in the aim of the fine manipulation of objects. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2642–2648).Geraerts, R., & Overmars, M. H. (2006). Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54, 165–173.Gropp, W., Skjellum, A., Lusk, E. (1999). Using MPI: Portable parallel programming with the message-passing interface. Cambridge: MIT Press.Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90.Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4420–4426).Hsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE int. conf. on robotics and automation (pp. 3874–3880).Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The International Journal of Robotics Research, 25(7), 627–643.Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: work in progress. The International Journal of Robotics Research, 3(4), 21–50.Jolliffe, I. (2002). Springer series in statistics. Principal component analysis. Upper Saddle River: Springer.Kavraki, LE, & Latombe, J. C. (1994). Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2138–2145).Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: an efficient approach to single-query path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 995–1001).Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1), 285–300.Kuipers, L., & Niederreiter, H. (2005). Uniform distribution of sequences. New York: Dover.Kurniawati, H., & Hsu, D. (2006). Workspace-based connectivity oracle: an adaptive sampling strategy for PRM planning. In S. Akella et al. (Eds.), Algorithmic foundations of robotics VII. Berlin: Springer.Lin, L. R., & Huang, H. P. (1996). Mechanism design of a new multifingered robot hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 1471–1476).Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of UB hand 3: early results. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4488–4493).Lovchik, C. S., Diftler, M. A. (1999). The robonaut hand: a dexterous robot hand for space. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 907–912).Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238.Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A samplingbased motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.Peña, E., Yang, J., & Abdel-Malek, K. (2005). SantosTM hand: a 25- degree-of-freedom model. In Proc. of SAE digital human modeling for design and engineering, Iowa City, Iowa, USA.Pérez, A., & Rosell, J. (2009). A roadmap to robot motion planning software development. Computer Applications in Engineering Education. doi:101002/cae20269.Roa, M., & Suárez, R. (2009). Finding locally optimum force-closure grasps. Robotics and Computer-Integrated Manufacturing, 25(3), 536–544.Rodríguez, A., Pérez, A., Rosell, J., & Basañez, L. (2009). Samplingbased path planning for geometrically-constrained objects. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2074– 2079).Rosales, C., Ros, L., Porta, J. M., & Suárez, R. (2011). Synthesizing grasp configurations with specified contact regions. The International Journal of Robotics Research, 30(4), 431–443.Rosell, J., Sierra, X., Palomo, L., & Suárez, R. (2005). Finding grasping configurations of a dexterous hand and an industrial robot. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1178–1183).Rosell, J., Roa, M., Pérez, A., & García, F. (2007). A general deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems, 50(4), 361–374.Rosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4025– 4030).Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional behaviorspecific spaces. ACM Transactions on Graphics, 23(3), 514–521.Saha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Autonomous Robots, 19(3), 301–319.Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18(23), 10,105– 10,115.Schunk GmbH & Co KG (2006). Schunk anthropomorphic hand. http://www.schunk.com/.Shadow Robot Company (2003). Design of a dextrous hand for advanced clawar applications. In Climbing and walking robots and the supporting technologies for mobile machines (pp. 691–698).Stilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576– 584.Suárez, R., & Grosch, P. (2005). Mechanical hand MA-I as experimental system for grasping and manipulation. In VideoProc. of the IEEE int. conf. on robotics and automation, Barcelona.Suárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1773– 1778).Tsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. In Proc. of the RSS 2007 workshop on robot manipulation: sensing and adapting to the real world.van der Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Manos robóticasManipuladores (Mecanismo)RobóticaRobot handsManipulators (Mechanism)RoboticsMotion planningGraspingManipulationMechanical handsTHUMBNAILAutonomous motion planning of a hand-arm robotic system based.pdf.jpgAutonomous motion planning of a hand-arm robotic system based.pdf.jpgGenerated Thumbnailimage/jpeg14380https://repositorio.escuelaing.edu.co/bitstream/001/2324/4/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf.jpg56866c33a3fc13329d19de03cc0e4bb3MD54open accessTEXTAutonomous motion planning of a hand-arm robotic system based.pdf.txtAutonomous motion planning of a hand-arm robotic system based.pdf.txtExtracted texttext/plain60630https://repositorio.escuelaing.edu.co/bitstream/001/2324/3/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf.txt4bded1a41d3fc300983eed818cc0355eMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2324/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALAutonomous motion planning of a hand-arm robotic system based.pdfAutonomous motion planning of a hand-arm robotic system based.pdfArtículo de revistaapplication/pdf2616115https://repositorio.escuelaing.edu.co/bitstream/001/2324/1/Autonomous%20motion%20planning%20of%20a%20hand-arm%20robotic%20system%20based.pdf1f262b675c2fa963a37adad5a24de8cfMD51open access001/2324oai:repositorio.escuelaing.edu.co:001/23242023-09-12 15:23:39.762open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK