Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation

In this study, the resistance of blended concrete containing catalytic cracking residue (FCC) to chloride ion penetration and carbonation was examined. FCC was added at the levels of 10%, 20%, and 30% as partial replacement for cement. Concretes with 10% of silica fume (SF), 10% of metakaolin (MK),...

Full description

Autores:
Torres Castellanos, Nancy
Torres Agredo, Janneth
De Gutiérrez, Ruby
Izquierdo García, Silvia Raquel
Mejía de Gutiérrez, Ruby
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2412
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2412
https://doi.org/10.15446/ing.investig.v34n1.38730
https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730
Palabra clave:
Fluid catalytic cracking
Metakaolin
Silica fume
Pozzolanic additions
Blended concrete
Carbonation resistance
Chloride ion penetration
Catalizador de craqueo catalítico
Metacaolín
Humo de sílice
Adiciones puzolánicas
Concreto adicionado
Resistencia a carbonatació
Penetración de ión cloruro
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_6f2727ce17f91bbd6a4e5b9500c707f7
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2412
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
dc.title.alternative.spa.fl_str_mv Resistencia a la penetración del ión cloruro y a la carbonatación de concretos adicionados, con un residuo de la industria petroquímica
title Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
spellingShingle Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
Fluid catalytic cracking
Metakaolin
Silica fume
Pozzolanic additions
Blended concrete
Carbonation resistance
Chloride ion penetration
Catalizador de craqueo catalítico
Metacaolín
Humo de sílice
Adiciones puzolánicas
Concreto adicionado
Resistencia a carbonatació
Penetración de ión cloruro
title_short Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
title_full Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
title_fullStr Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
title_full_unstemmed Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
title_sort Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation
dc.creator.fl_str_mv Torres Castellanos, Nancy
Torres Agredo, Janneth
De Gutiérrez, Ruby
Izquierdo García, Silvia Raquel
Mejía de Gutiérrez, Ruby
dc.contributor.author.none.fl_str_mv Torres Castellanos, Nancy
Torres Agredo, Janneth
De Gutiérrez, Ruby
Izquierdo García, Silvia Raquel
Mejía de Gutiérrez, Ruby
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Estructuras y Materiales - Gimeci
dc.subject.proposal.eng.fl_str_mv Fluid catalytic cracking
Metakaolin
Silica fume
Pozzolanic additions
Blended concrete
Carbonation resistance
Chloride ion penetration
topic Fluid catalytic cracking
Metakaolin
Silica fume
Pozzolanic additions
Blended concrete
Carbonation resistance
Chloride ion penetration
Catalizador de craqueo catalítico
Metacaolín
Humo de sílice
Adiciones puzolánicas
Concreto adicionado
Resistencia a carbonatació
Penetración de ión cloruro
dc.subject.proposal.spa.fl_str_mv Catalizador de craqueo catalítico
Metacaolín
Humo de sílice
Adiciones puzolánicas
Concreto adicionado
Resistencia a carbonatació
Penetración de ión cloruro
description In this study, the resistance of blended concrete containing catalytic cracking residue (FCC) to chloride ion penetration and carbonation was examined. FCC was added at the levels of 10%, 20%, and 30% as partial replacement for cement. Concretes with 10% of silica fume (SF), 10% of metakaolin (MK), and without additives were evaluated as reference materials. The rapid chloride permeability test (RCPT) performed according to ASTM C1202 standards and an accelerated carbonation test in a climatic chamber under controlled conditions (23 °C, 60% RH and 4.0% CO2), were used in order to evaluate the performance of these concretes. Additionally, their compressive strength was determined. The results indicate that binary blends with 10% FCC had similar compressive strength to concrete without additives and had lower chloride permeability. 10% SF and 10% MK exhibited better mechanical behavior and a significant decrease in chloride penetration when compared to 10% FCC. It is noted that there was an increase in concrete carbonation when FCC or MK were used as additives. It was also observed that with longer curing time, the samples with and without additives, presented higher resistance to carbonation. The accelerated corrosion test by impressed voltage was also performed to verify the findings and to investigate the characteristics of corrosion using a 3.5% NaCl solution as electrolyte. The mixtures that contained 10% FCC were highly resistant to chloride ion penetration and did not present cracking within the testing period.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2023-06-14T16:34:11Z
dc.date.available.none.fl_str_mv 2023-06-14T16:34:11Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0120-5609
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2412
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15446/ing.investig.v34n1.38730
dc.identifier.eissn.spa.fl_str_mv 2248-8723
dc.identifier.url.none.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730
identifier_str_mv 0120-5609
2248-8723
url https://repositorio.escuelaing.edu.co/handle/001/2412
https://doi.org/10.15446/ing.investig.v34n1.38730
https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 16
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 11
dc.relation.citationvolume.spa.fl_str_mv 34
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Aguirre, A. M., Mejía de Gutiérrez, R., Durability of reinforced concrete exposed to aggressive conditions., Materiales de Construcción, Vol. 63, No. 309, 2013, pp. 7-38.
Antiohos, S. K., Chouliara, E., Tsimas, S., Re-use of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material., China Particuology, Vol. 4, No. 2, Apr., 2006, pp. 73-76.
Borrachero, M., Monzó, J., Payá, J., Peris-Mora, E., Vunda, C., Velásquez, S., Soriano, L., El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Pórtland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica, VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia 2002.
Castro, A., Ferreira, R., Lopes, A. M., Cascudo, O., Carasel, H., Relationship between Results of Accelerated and Natural Carbonation in various Concretes., Proc. International RILEM conference on the use of recycled materials in buildings and structures, Barcelona, 2004, pp. 988-997.
Gruyaert, E., Van den Heede, P., De Belie., N., Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure., Cement and Concrete Composites, Vol. 35, 2013, pp. 39–48.
Ho, D. W. S., Lewis, R. K., Carbonation of concrete and its prediction., Cement and Concrete Research, Vol. 17, 1987, pp. 489-504.
Loser, R., Lothenbach, B., Leemann, A., Tuchschmid, M., Chloride resistance of concrete and its binding capacity – Comparison between experimental results and thermodynamic modeling., Cement and Concrete Composites, Vol. 32, No. 1, 2010, pp. 3442.
Mejía de Gutiérrez, R., Delvasto, S., Talero Morales, R., Una Nueva Puzolana para Materiales Cementicios de Elevadas Prestaciones., Materiales de Construcción, Vol. 50, No. 259, 2000, pp. 5-12.
Mejía de Gutiérrez, R., Rodríguez, C., Rodríguez, E., Torres, J., Delvasto, S., Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros., Revista Facultad de Ingeniería Universidad de Antioquia, Vol. 48, 2009, pp. 55-64.
Morozov, Y., Castela, A. S., Dias, A. P. S., Montemor, M. F., Chlorideinduced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars., Cement and Concrete Research, Vol. 47, 2013, pp. 1–7.
Pacheco - Torgal, F., Miraldo, S. B., Labrincha, J. A., De Brito, J., An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC., Construction and Building Materials, Vol. 36, 2012, pp. 141–150.
Papadakis, V. G., Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress., Cement and Concrete Research, Vol. 30, 2000, pp. 291-299.
Parrot, L. J., A Review of Carbonation in Reinforced Concrete, Cement and Concrete Association., Building Research Establishment, 1987, pp. 43.
Payá, J., Monzó, J., Borrachero, M. V., Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements., Cement and concrete research, Vol. 31, Jan., 2001, pp. 57-61.
Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R), Thermogravimetric Analysis Studies on FC3R Portland Cement Pastes., Cement and Concrete Research, Vol. 33, Apr., 2003, pp. 603-609.
Roberts, M. H., Carbonation of Concrete Made with Dense Natural Aggregates., BRE Information Paper, 1981.
Sideris, K. K., Savva, A. E., Papayianni, J., Sulfate Resistance of carbonation of plain and blended cements., Cement and Concrete Composites, Vol. 28, 2006, pp. 47-56.
Soriano, M. L., Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC), a PhD Thesis presented at Universidad Politécnica de Valencia, España, 2008.
Torres, J., Mejía de Gutiérrez, R., Puertas, F., Effect of Kaolin treatment temperature on mortar chloride permeability., Materiales de Construcción, Vol. 57, No. 285, 2007, pp. 61-69.
Torres, J., Izquierdo, S., Trochez, J., Mejía de Gutiérrez, R., Estudio comparativo de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC), y metacaolin (MK)., Revista Ciencia e Ingeniería Neogranadina, Vol. 22, No. 12, 2012, pp. 7-17.
Torres, J., Trochez, J., Mejía de Gutiérrez, R., Reutilización de un residuo de la industria petroquímica como adición al cemento Portland., Revista Ingeniería y Ciencia, Vol. 8, No. 15, 2012, pp. 141-156.
Torres Castellanos, N., Torres, J., Mejía de Gutiérrez, R., Performance under sulfate attack of concrete additioned with fluid catalytic cracking catalyst residue (FCC) and metakaolin (MK)., Revista Ingeniería e Investigación, Vol. 33, No. 1, 2013, pp. 18-22.
Trochez, J., Torres Agredo, J., Mejía de Gutiérrez, R., Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC) de una refinería colombiana., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 55, 2010, pp. 26-34.
Tsuyoshi, M. K. H., Takeda, H., Tangtermsirikul, S., Numerical Modeling of steel corrosion in concrete structures due to chloride ion, oxygen and water movement., Journal of Advanced Concrete Technology, Vol. 1, No. 2, 2003, pp. 147- 160.
Zornoza, E., Garcés, P., Payá, J., Climente, M. A., Improvement of the Chloride Ingress Resistance of OPC Mortars by Using Spent Cracking Catalyst., Cement and Concrete Research, Vol. 39, 2009, pp. 126–139.
Zornoza, E., Garcés, P., Monzó, J., Borrachero, M. V., Payá J. E., Accelerated Carbonation of Cement Pastes Partially Substituted with Fluid Catalytic Cracking Catalyst Residue (FC3R)., Cement and Concrete Composites, Vol. 31, 2009, pp. 134-138.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2412/4/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2412/3/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2412/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2412/1/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf
bitstream.checksum.fl_str_mv 7df4160fcf8c5f918281c1884eebacca
0e47152450ada53a81d2adf98e07f8ed
5a7ca94c2e5326ee169f979d71d0f06e
713421eb203155da212406b0a089dac6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355587719233536
spelling Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Torres Agredo, Jannethfd1b7e8459ceffd8bd79ade65d117e45600De Gutiérrez, Rubyed51822e4a47164b135e944f934298c9Izquierdo García, Silvia Raquelac859af30dd0fcd87748ef3b4faa0ac6Mejía de Gutiérrez, Ruby9b3c54fb16571bdf9cbf0af25bca34d3600Grupo de Investigación Estructuras y Materiales - Gimeci2023-06-14T16:34:11Z2023-06-14T16:34:11Z20140120-5609https://repositorio.escuelaing.edu.co/handle/001/2412https://doi.org/10.15446/ing.investig.v34n1.387302248-8723https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730In this study, the resistance of blended concrete containing catalytic cracking residue (FCC) to chloride ion penetration and carbonation was examined. FCC was added at the levels of 10%, 20%, and 30% as partial replacement for cement. Concretes with 10% of silica fume (SF), 10% of metakaolin (MK), and without additives were evaluated as reference materials. The rapid chloride permeability test (RCPT) performed according to ASTM C1202 standards and an accelerated carbonation test in a climatic chamber under controlled conditions (23 °C, 60% RH and 4.0% CO2), were used in order to evaluate the performance of these concretes. Additionally, their compressive strength was determined. The results indicate that binary blends with 10% FCC had similar compressive strength to concrete without additives and had lower chloride permeability. 10% SF and 10% MK exhibited better mechanical behavior and a significant decrease in chloride penetration when compared to 10% FCC. It is noted that there was an increase in concrete carbonation when FCC or MK were used as additives. It was also observed that with longer curing time, the samples with and without additives, presented higher resistance to carbonation. The accelerated corrosion test by impressed voltage was also performed to verify the findings and to investigate the characteristics of corrosion using a 3.5% NaCl solution as electrolyte. The mixtures that contained 10% FCC were highly resistant to chloride ion penetration and did not present cracking within the testing period.Se estudió la resistencia a la penetración del ión cloruro y a la carbonatación de concretos adicionados, con un residuo de catalizador de craqueo catalítico (FCC). El FCC fue adicionado en proporciones de 10%, 20% y 30%; como reemplazo parcial del cemento. Se evaluaron concretos como referencia con 10% de humo de sílice (HS), 10% de metacaolín (MK) y sin adición, así mismo, para evaluar el desempeño de estos concretos, se realizaron los ensayos de permeabilidad rápida a cloruros (PRC) de acuerdo con la norma ASTM C1202, y un ensayo de carbonatación acelerado bajo condiciones controladas (23 °C, 60% HR and 4.0% CO2). Adicionalmente, se determinó la resistencia a la compresión y de esta manera los resultados muestran que las mezclas binarias con 10% de FCC tuvieron una resistencia a la compresión, similar al concreto sin adición y más baja permeabilidad a los cloruros. Las mezclas con 10% HS y 10% MK, mostraron un mejor comportamiento mecánico y significativo, se evidenció menor penetración de cloruros comparado con FCC al 10%. Se observó también, un incremento en la carbonatación del concreto cuando se utilizó adición de FCC o MK y es claro que a mayor tiempo de curado, las muestras con y sin adición, presentan mayor resistencia a la carbonatación. El ensayo de corrosión acelerado por voltaje impreso, fue realizado para investigar y verificar las características corrosivas, usando como electrolito una solución de NaCl al 3.5%. Las muestras con FCC al 10%, tuvieron una mayor resistencia a la penetración del ión cloruro, y el tiempo del ensayo no fue suficiente para iniciar un agrietamiento.6 páginasapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/ingeinv/article/view/38730Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonationResistencia a la penetración del ión cloruro y a la carbonatación de concretos adicionados, con un residuo de la industria petroquímicaArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a851611134N/AIngeniería e InvestigaciónAguirre, A. M., Mejía de Gutiérrez, R., Durability of reinforced concrete exposed to aggressive conditions., Materiales de Construcción, Vol. 63, No. 309, 2013, pp. 7-38.Antiohos, S. K., Chouliara, E., Tsimas, S., Re-use of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material., China Particuology, Vol. 4, No. 2, Apr., 2006, pp. 73-76.Borrachero, M., Monzó, J., Payá, J., Peris-Mora, E., Vunda, C., Velásquez, S., Soriano, L., El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Pórtland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica, VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia 2002.Castro, A., Ferreira, R., Lopes, A. M., Cascudo, O., Carasel, H., Relationship between Results of Accelerated and Natural Carbonation in various Concretes., Proc. International RILEM conference on the use of recycled materials in buildings and structures, Barcelona, 2004, pp. 988-997.Gruyaert, E., Van den Heede, P., De Belie., N., Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure., Cement and Concrete Composites, Vol. 35, 2013, pp. 39–48.Ho, D. W. S., Lewis, R. K., Carbonation of concrete and its prediction., Cement and Concrete Research, Vol. 17, 1987, pp. 489-504.Loser, R., Lothenbach, B., Leemann, A., Tuchschmid, M., Chloride resistance of concrete and its binding capacity – Comparison between experimental results and thermodynamic modeling., Cement and Concrete Composites, Vol. 32, No. 1, 2010, pp. 3442.Mejía de Gutiérrez, R., Delvasto, S., Talero Morales, R., Una Nueva Puzolana para Materiales Cementicios de Elevadas Prestaciones., Materiales de Construcción, Vol. 50, No. 259, 2000, pp. 5-12.Mejía de Gutiérrez, R., Rodríguez, C., Rodríguez, E., Torres, J., Delvasto, S., Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros., Revista Facultad de Ingeniería Universidad de Antioquia, Vol. 48, 2009, pp. 55-64.Morozov, Y., Castela, A. S., Dias, A. P. S., Montemor, M. F., Chlorideinduced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars., Cement and Concrete Research, Vol. 47, 2013, pp. 1–7.Pacheco - Torgal, F., Miraldo, S. B., Labrincha, J. A., De Brito, J., An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC., Construction and Building Materials, Vol. 36, 2012, pp. 141–150.Papadakis, V. G., Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress., Cement and Concrete Research, Vol. 30, 2000, pp. 291-299.Parrot, L. J., A Review of Carbonation in Reinforced Concrete, Cement and Concrete Association., Building Research Establishment, 1987, pp. 43.Payá, J., Monzó, J., Borrachero, M. V., Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements., Cement and concrete research, Vol. 31, Jan., 2001, pp. 57-61.Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R), Thermogravimetric Analysis Studies on FC3R Portland Cement Pastes., Cement and Concrete Research, Vol. 33, Apr., 2003, pp. 603-609.Roberts, M. H., Carbonation of Concrete Made with Dense Natural Aggregates., BRE Information Paper, 1981.Sideris, K. K., Savva, A. E., Papayianni, J., Sulfate Resistance of carbonation of plain and blended cements., Cement and Concrete Composites, Vol. 28, 2006, pp. 47-56.Soriano, M. L., Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC), a PhD Thesis presented at Universidad Politécnica de Valencia, España, 2008.Torres, J., Mejía de Gutiérrez, R., Puertas, F., Effect of Kaolin treatment temperature on mortar chloride permeability., Materiales de Construcción, Vol. 57, No. 285, 2007, pp. 61-69.Torres, J., Izquierdo, S., Trochez, J., Mejía de Gutiérrez, R., Estudio comparativo de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC), y metacaolin (MK)., Revista Ciencia e Ingeniería Neogranadina, Vol. 22, No. 12, 2012, pp. 7-17.Torres, J., Trochez, J., Mejía de Gutiérrez, R., Reutilización de un residuo de la industria petroquímica como adición al cemento Portland., Revista Ingeniería y Ciencia, Vol. 8, No. 15, 2012, pp. 141-156.Torres Castellanos, N., Torres, J., Mejía de Gutiérrez, R., Performance under sulfate attack of concrete additioned with fluid catalytic cracking catalyst residue (FCC) and metakaolin (MK)., Revista Ingeniería e Investigación, Vol. 33, No. 1, 2013, pp. 18-22.Trochez, J., Torres Agredo, J., Mejía de Gutiérrez, R., Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC) de una refinería colombiana., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 55, 2010, pp. 26-34.Tsuyoshi, M. K. H., Takeda, H., Tangtermsirikul, S., Numerical Modeling of steel corrosion in concrete structures due to chloride ion, oxygen and water movement., Journal of Advanced Concrete Technology, Vol. 1, No. 2, 2003, pp. 147- 160.Zornoza, E., Garcés, P., Payá, J., Climente, M. A., Improvement of the Chloride Ingress Resistance of OPC Mortars by Using Spent Cracking Catalyst., Cement and Concrete Research, Vol. 39, 2009, pp. 126–139.Zornoza, E., Garcés, P., Monzó, J., Borrachero, M. V., Payá J. E., Accelerated Carbonation of Cement Pastes Partially Substituted with Fluid Catalytic Cracking Catalyst Residue (FC3R)., Cement and Concrete Composites, Vol. 31, 2009, pp. 134-138.Fluid catalytic crackingMetakaolinSilica fumePozzolanic additionsBlended concreteCarbonation resistanceChloride ion penetrationCatalizador de craqueo catalíticoMetacaolínHumo de síliceAdiciones puzolánicasConcreto adicionadoResistencia a carbonatacióPenetración de ión cloruroTHUMBNAILResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdf.jpgResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdf.jpgGenerated Thumbnailimage/jpeg15609https://repositorio.escuelaing.edu.co/bitstream/001/2412/4/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf.jpg7df4160fcf8c5f918281c1884eebaccaMD54open accessTEXTResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdf.txtResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdf.txtExtracted texttext/plain33310https://repositorio.escuelaing.edu.co/bitstream/001/2412/3/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf.txt0e47152450ada53a81d2adf98e07f8edMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2412/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdfResistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation.pdfArtículo de revistaapplication/pdf859690https://repositorio.escuelaing.edu.co/bitstream/001/2412/1/Resistance%20of%20blended%20concrete%20containing%20an%20industrial%20petrochemical%20residue%20to%20chloride%20ion%20penetration%20and%20carbonation.pdf713421eb203155da212406b0a089dac6MD51open access001/2412oai:repositorio.escuelaing.edu.co:001/24122023-06-15 03:00:22.325open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK