Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial
En este artículo se presentan los resultados de la caracterización física de agregado reciclado fino (ARF) comercial y el efecto del uso del proceso de carbonatación para mejorar sus propiedades físicas. Antes y después del proceso de carbonatación, se determinaron las propiedades físicas de los agr...
- Autores:
-
Guzmán Aponte, Alvaro
Torres Castellanos, Nancy
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2528
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2528
https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/
- Palabra clave:
- Agregado reciclado fino comercial
Carbonatación
Absorción de agua
Concreto
Commercial fine recycled aggregates
Carbonation
Water absorption
Concrete
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
ESCUELAIG2_6cd9b2d21dfb49f8da764034f8271965 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2528 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
dc.title.alternative.eng.fl_str_mv |
Effect of carbonation on the physical properties of a comercial fine recycled aggregates |
title |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
spellingShingle |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial Agregado reciclado fino comercial Carbonatación Absorción de agua Concreto Commercial fine recycled aggregates Carbonation Water absorption Concrete |
title_short |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
title_full |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
title_fullStr |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
title_full_unstemmed |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
title_sort |
Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial |
dc.creator.fl_str_mv |
Guzmán Aponte, Alvaro Torres Castellanos, Nancy |
dc.contributor.author.none.fl_str_mv |
Guzmán Aponte, Alvaro Torres Castellanos, Nancy |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Estructuras y Materiales - Gimeci |
dc.subject.proposal.spa.fl_str_mv |
Agregado reciclado fino comercial Carbonatación Absorción de agua Concreto |
topic |
Agregado reciclado fino comercial Carbonatación Absorción de agua Concreto Commercial fine recycled aggregates Carbonation Water absorption Concrete |
dc.subject.proposal.eng.fl_str_mv |
Commercial fine recycled aggregates Carbonation Water absorption Concrete |
description |
En este artículo se presentan los resultados de la caracterización física de agregado reciclado fino (ARF) comercial y el efecto del uso del proceso de carbonatación para mejorar sus propiedades físicas. Antes y después del proceso de carbonatación, se determinaron las propiedades físicas de los agregados reciclados finos comerciales, incluyendo la absorción de agua y la densidad. Se evidenció que la carbonatación no causa un cambio marcado en la densidad del ARF, pero sí ocasiona una reducción significativa de la absorción de los ARF (7,3 y 3,1 % en ARF y ARFC-20, respectivamente). Además, en las condiciones de carbonatación utilizadas en esta investigación (concentraciones de CO2 del 10 %, humedad relativa del 65 % y temperatura de 25 °C), tiempos de exposición a carbonatación mayores de quince días (ARFC-15) no evidencian un cambio marcado en las propiedades físicas de absorción y densidad de los ARF. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2023-07-29T14:54:59Z |
dc.date.available.none.fl_str_mv |
2023-07-29T14:54:59Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0121-5132 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2528 |
dc.identifier.url.none.fl_str_mv |
https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/ |
identifier_str_mv |
0121-5132 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2528 https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.spa.fl_str_mv |
54 |
dc.relation.citationissue.spa.fl_str_mv |
107 |
dc.relation.citationstartpage.spa.fl_str_mv |
47 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Revista de la Escuela Colombiana de Ingeniería |
dc.relation.references.spa.fl_str_mv |
Airaksinen, M. & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4, 1197-1210. Bin-Shafique, S., Walton, J., Gutiérrez, N., Smith, R. & Tarquin, A. (1998). Influence of carbonation on leaching of cementitious waste forms. J. Environ. Eng, 22, 463-467. Bleischwitz, R. & Bahn-Walkowiak, B. (2011). Aggregates and construction markets in Europe: towards a sectorial action plan on sustainable resource management. Miner Eng, 22, 159-176. Bobicki, E., Liu, Q., Xu, Z. & Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320. Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556. Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42. Engelsen, C., Mehus, J. & Pade, C. (2005). Carbon Dioxide Uptake in Demolished and Crushed Concrete. Disponible en <http:// nordicinnovation.org/Global/_Publications/Reports/2005/03018_ carbon_dioxide_uptake_in_demolished_and_crushed_concrete. pdf>>, Consultado el 10 de marzo de 2017. In Tech. Rep., Oslo: Norwegian Building Research Institute. European Aggregates Association Annual Review (2012). Brussels, Belgium. Fernández, M., Simons S., Hills, C. & Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cementbased materials and sequestration of CO2. Journal of Hazardous Materials, 112(3), 193-205. Geng, J. & Sun, J. (2013). Characteristics of the carbonation resistance of recycled fine aggregate concrete. Construction and Building Materials, 49, 814-820. Guggemos, A. & Horvath A. (2005). Comparison of environmental effects of steel and concrete-framed buildings. Journal of Infrastructure Systems, 11(8), 93-101. Gunning, J. (2011). Accelerated carbonation of hazardous wastes. Disponible en <http://gala.gre.ac.uk/7135/1/Peter_John_ Gunning_Accelerated_carbonation_2011.pdf>. Consultado el 20 de marzo de 2017. In School of Science, University of Greenwich, p. 236. Hendriks, C., Worrell, E., De Jager, D., Blok, K. & Riemer, P. (1998). Emission reduction of greenhouse gases from the cement industry. in Fourth International Conference on Greenhouse Gas Control Technologies. Disponible en <http://www.wbcsdcement. org/pdf/tf1/prghgt42.pdf>. Consultado el 5 de marzo de 2017. Austria: IEA GHG R&D Program. Huijgen, G.R., Comans, R. & Witkamp, G. (2006). Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation. Industry Engineering Chemistry, 45, 184-194. Humphreys, K. & Mahasenan, M. (2002). Toward a sustainable cement industry. Substudy 8, climate change. Disponible en <http://www.cement.ca/images/stories/wbcsd-batelle_2002_climate_change_-_substudy_8.pdf>, Consultado el 5 de marzo de 2017. World Business Council for Sustainable Development. Johannesson, B. & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31, 925-931. Jonsson, G. & Wallevik, O. (2005). Information on the use of concrete in Denmark, Sweden, Norway and Iceland. Disponible en <http://www.nordicinnovation.org/Global/_Publications/Reports/2005/03018_background_report_information_on_ the_use_of_concrete_in_nordic_countries.pdf>, Consultado el 5 de marzo de 2017. In Tech. Rep. Reykjavik: Icelandic Building Research Institute. Khatib, J. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete, 35, 763-769. Kosmatka, S., Kherkhoff, B. & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5. Kou, S. & Poon, C. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76. Kou, S., Zhan, B. & Poon, C. (2012). Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction Building Materials, 28, 549–56. Kou, S., Zhan, B. & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28. Lagerblad, B. (2005). Carbon Dioxide Uptake During Concrete Life Cycle: State of the Art. Disponible en <https://www.dti.dk/_/ media/21043_769417_Task%201_final%20report_CBI_Bjorn%20 Lagerblad.pdf>. Consultado el 8 de marzo de 2017. Swedish Cement and Concrete Research Institute. Lange, L.C. (1997). Carbonation of Cement Solidified Hazardous Wastes. Queen Mary and Westfield College. Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Hong Kong: Department of Building and Real Estate. The Hong Kong Polytechnic University. Liu, Q., Xiao, J. & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete, 241, 1050-1057. Macias, A., Kindness, A. & Glasser, F.P. (1997). Impact of carbon dioxide on the immobilisation potential of cemented wastes: chromium. Cement & Concrete Research, 27(2), 215-225. McNeil, K. & Kang, T. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61-71. Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina (GRAL)”. Pan, S., Chang, E., & Chiang, P. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12(5), 770-791. Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. Bogotá: Universidad Militar Nueva Granada. Poon, C. & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293-305. Ravindrarajah, R.S. & Tam, T.C. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29-38. Rehan, R. & Nehdi, M. (2005). Carbon dioxide emissions and climate change: policy implications for the cement industry. Environmental Science & Policy, 8(2), 105-114. Richardson, G., Groves, G., Brought, A. & Dobson, C. (1993). The carbonation of OPC and OPC/silica fume hardened cement pastes in air under conditions of fixed humidity. Advances in Cement Research, 5(18), 81-86. Roussat, N., Dujet, C. & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20. Sanna, A., Dri, M., Hall, M. & Maroto-Valer, M. (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective. Applied Energy, 99, 545-554. Slegers, P. & Rouxhet, P. (1976). Carbonation of the hydration products of tricalcium silicate. Cement and Concrete Research, 6(3), 381-388. Urge, D. (2007). Climate change mitigation in the building sector: the findings of the 4th Assessment report of the IPCC. Disponible en <https://www.ipcc.ch/pdf/presentations/poznanCOP-14/diane-urge-vorsatz.pdf>. Consultado el 1 de marzo de 2017. Center for climate change and sustainable energy policy. Valls, S. & Vázquez, E. (2001). Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cement & Concrete Research, 31(9), 1271-1276. Venhuis, M.A. & Reardon, E.J. (2001). Vacuum method for carbonation of cementitious waste forms. Environ. Sci. Technol, 35(20), 4120-4125. Walton, J., Bin-Shafique, S., Smith, R., Gutiérrez, N. & Tarquin, A. (1997). Role of carbonation in transient leaching of cementitious waste forms. Environ. Sci. Technol, 31(8), 2345-2349. Yamasaki, A. (2003). An Overview of CO2 Mitigation Options for Global Warming-Emphasizing CO2 Sequestration Options. Journal of Chemical engineering of Japan, 36 (4), 361-375. Yousuf, M., Mollah, A., Hess, R., Tsai, Y. & Cocke, D. (1993). An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cement and Concrete Research, 23(4), 773-784. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.source.spa.fl_str_mv |
https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/ |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2528/4/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2528/3/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20d%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.png https://repositorio.escuelaing.edu.co/bitstream/001/2528/5/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2528/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2528/1/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf |
bitstream.checksum.fl_str_mv |
fb0d3b8f3e6fa5dc589013a4fb146852 fa387e2e370368d9415bff04e1b56c69 435ea1906e6d80713f31950a99a4a0a9 5a7ca94c2e5326ee169f979d71d0f06e 1c94db6c872e78c89d020ee276aa9a73 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355639594385408 |
spelling |
Guzmán Aponte, Alvaroe18a1f2d6308043784df9c4ddbc2e6a7600Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Grupo de Investigación Estructuras y Materiales - Gimeci2023-07-29T14:54:59Z2023-07-29T14:54:59Z20170121-5132https://repositorio.escuelaing.edu.co/handle/001/2528https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/En este artículo se presentan los resultados de la caracterización física de agregado reciclado fino (ARF) comercial y el efecto del uso del proceso de carbonatación para mejorar sus propiedades físicas. Antes y después del proceso de carbonatación, se determinaron las propiedades físicas de los agregados reciclados finos comerciales, incluyendo la absorción de agua y la densidad. Se evidenció que la carbonatación no causa un cambio marcado en la densidad del ARF, pero sí ocasiona una reducción significativa de la absorción de los ARF (7,3 y 3,1 % en ARF y ARFC-20, respectivamente). Además, en las condiciones de carbonatación utilizadas en esta investigación (concentraciones de CO2 del 10 %, humedad relativa del 65 % y temperatura de 25 °C), tiempos de exposición a carbonatación mayores de quince días (ARFC-15) no evidencian un cambio marcado en las propiedades físicas de absorción y densidad de los ARF.In this paper, the results of the physical characterization of commercial fine recycled aggregates (FRA) and the use of a carbonation process to enhance their properties are presented. Before and after the laboratory carbonation process, the physical properties of the FRA, including water absorption and density were estimated. Carbonation showed no significant changes in density values, but resulted in reduction in water absorption values (7.3% and 3.1% in ARF and ARFC-20, respectively). Moreover, under the carbonation conditions (10% CO2, 65% HR and 25 °C) exposure times greater than 15 days (ARFC-15) did not show a marked change in the physical properties (absorption and density) of the RFA.8 páginasapplication/pdfspaUniversidad Escuela Colombiana de Ingeniería Julio GaravitoBogotáhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/Efecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercialEffect of carbonation on the physical properties of a comercial fine recycled aggregatesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a855410747N/ARevista de la Escuela Colombiana de IngenieríaAiraksinen, M. & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4, 1197-1210.Bin-Shafique, S., Walton, J., Gutiérrez, N., Smith, R. & Tarquin, A. (1998). Influence of carbonation on leaching of cementitious waste forms. J. Environ. Eng, 22, 463-467.Bleischwitz, R. & Bahn-Walkowiak, B. (2011). Aggregates and construction markets in Europe: towards a sectorial action plan on sustainable resource management. Miner Eng, 22, 159-176.Bobicki, E., Liu, Q., Xu, Z. & Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320.Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42.Engelsen, C., Mehus, J. & Pade, C. (2005). Carbon Dioxide Uptake in Demolished and Crushed Concrete. Disponible en <http:// nordicinnovation.org/Global/_Publications/Reports/2005/03018_ carbon_dioxide_uptake_in_demolished_and_crushed_concrete. pdf>>, Consultado el 10 de marzo de 2017. In Tech. Rep., Oslo: Norwegian Building Research Institute.European Aggregates Association Annual Review (2012). Brussels, Belgium.Fernández, M., Simons S., Hills, C. & Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cementbased materials and sequestration of CO2. Journal of Hazardous Materials, 112(3), 193-205.Geng, J. & Sun, J. (2013). Characteristics of the carbonation resistance of recycled fine aggregate concrete. Construction and Building Materials, 49, 814-820.Guggemos, A. & Horvath A. (2005). Comparison of environmental effects of steel and concrete-framed buildings. Journal of Infrastructure Systems, 11(8), 93-101.Gunning, J. (2011). Accelerated carbonation of hazardous wastes. Disponible en <http://gala.gre.ac.uk/7135/1/Peter_John_ Gunning_Accelerated_carbonation_2011.pdf>. Consultado el 20 de marzo de 2017. In School of Science, University of Greenwich, p. 236.Hendriks, C., Worrell, E., De Jager, D., Blok, K. & Riemer, P. (1998). Emission reduction of greenhouse gases from the cement industry. in Fourth International Conference on Greenhouse Gas Control Technologies. Disponible en <http://www.wbcsdcement. org/pdf/tf1/prghgt42.pdf>. Consultado el 5 de marzo de 2017. Austria: IEA GHG R&D Program.Huijgen, G.R., Comans, R. & Witkamp, G. (2006). Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation. Industry Engineering Chemistry, 45, 184-194.Humphreys, K. & Mahasenan, M. (2002). Toward a sustainable cement industry. Substudy 8, climate change. Disponible en <http://www.cement.ca/images/stories/wbcsd-batelle_2002_climate_change_-_substudy_8.pdf>, Consultado el 5 de marzo de 2017. World Business Council for Sustainable Development.Johannesson, B. & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31, 925-931.Jonsson, G. & Wallevik, O. (2005). Information on the use of concrete in Denmark, Sweden, Norway and Iceland. Disponible en <http://www.nordicinnovation.org/Global/_Publications/Reports/2005/03018_background_report_information_on_ the_use_of_concrete_in_nordic_countries.pdf>, Consultado el 5 de marzo de 2017. In Tech. Rep. Reykjavik: Icelandic Building Research Institute.Khatib, J. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete, 35, 763-769. Kosmatka, S., Kherkhoff, B. & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5.Kou, S. & Poon, C. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76.Kou, S., Zhan, B. & Poon, C. (2012). Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction Building Materials, 28, 549–56.Kou, S., Zhan, B. & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28.Lagerblad, B. (2005). Carbon Dioxide Uptake During Concrete Life Cycle: State of the Art. Disponible en <https://www.dti.dk/_/ media/21043_769417_Task%201_final%20report_CBI_Bjorn%20 Lagerblad.pdf>. Consultado el 8 de marzo de 2017. Swedish Cement and Concrete Research Institute.Lange, L.C. (1997). Carbonation of Cement Solidified Hazardous Wastes. Queen Mary and Westfield College.Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Hong Kong: Department of Building and Real Estate. The Hong Kong Polytechnic University.Liu, Q., Xiao, J. & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete, 241, 1050-1057.Macias, A., Kindness, A. & Glasser, F.P. (1997). Impact of carbon dioxide on the immobilisation potential of cemented wastes: chromium. Cement & Concrete Research, 27(2), 215-225.McNeil, K. & Kang, T. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61-71.Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina (GRAL)”.Pan, S., Chang, E., & Chiang, P. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12(5), 770-791.Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. Bogotá: Universidad Militar Nueva Granada.Poon, C. & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293-305.Ravindrarajah, R.S. & Tam, T.C. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29-38.Rehan, R. & Nehdi, M. (2005). Carbon dioxide emissions and climate change: policy implications for the cement industry. Environmental Science & Policy, 8(2), 105-114.Richardson, G., Groves, G., Brought, A. & Dobson, C. (1993). The carbonation of OPC and OPC/silica fume hardened cement pastes in air under conditions of fixed humidity. Advances in Cement Research, 5(18), 81-86.Roussat, N., Dujet, C. & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20.Sanna, A., Dri, M., Hall, M. & Maroto-Valer, M. (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective. Applied Energy, 99, 545-554.Slegers, P. & Rouxhet, P. (1976). Carbonation of the hydration products of tricalcium silicate. Cement and Concrete Research, 6(3), 381-388.Urge, D. (2007). Climate change mitigation in the building sector: the findings of the 4th Assessment report of the IPCC. Disponible en <https://www.ipcc.ch/pdf/presentations/poznanCOP-14/diane-urge-vorsatz.pdf>. Consultado el 1 de marzo de 2017. Center for climate change and sustainable energy policy.Valls, S. & Vázquez, E. (2001). Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cement & Concrete Research, 31(9), 1271-1276.Venhuis, M.A. & Reardon, E.J. (2001). Vacuum method for carbonation of cementitious waste forms. Environ. Sci. Technol, 35(20), 4120-4125.Walton, J., Bin-Shafique, S., Smith, R., Gutiérrez, N. & Tarquin, A. (1997). Role of carbonation in transient leaching of cementitious waste forms. Environ. Sci. Technol, 31(8), 2345-2349.Yamasaki, A. (2003). An Overview of CO2 Mitigation Options for Global Warming-Emphasizing CO2 Sequestration Options. Journal of Chemical engineering of Japan, 36 (4), 361-375.Yousuf, M., Mollah, A., Hess, R., Tsai, Y. & Cocke, D. (1993). An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cement and Concrete Research, 23(4), 773-784.Agregado reciclado fino comercialCarbonataciónAbsorción de aguaConcretoCommercial fine recycled aggregatesCarbonationWater absorptionConcreteTEXTEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdf.txtEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdf.txtExtracted texttext/plain33894https://repositorio.escuelaing.edu.co/bitstream/001/2528/4/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf.txtfb0d3b8f3e6fa5dc589013a4fb146852MD54open accessTHUMBNAILEfecto de la carbonatación sobre las propiedades dísicas de un agregado reciclado fino comercial.pngEfecto de la carbonatación sobre las propiedades dísicas de un agregado reciclado fino comercial.pngimage/png152082https://repositorio.escuelaing.edu.co/bitstream/001/2528/3/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20d%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pngfa387e2e370368d9415bff04e1b56c69MD53open accessEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdf.jpgEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdf.jpgGenerated Thumbnailimage/jpeg13201https://repositorio.escuelaing.edu.co/bitstream/001/2528/5/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf.jpg435ea1906e6d80713f31950a99a4a0a9MD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2528/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdfEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercial.pdfArtículo de revistaapplication/pdf544779https://repositorio.escuelaing.edu.co/bitstream/001/2528/1/Efecto%20de%20la%20carbonataci%c3%b3n%20sobre%20las%20propiedades%20f%c3%adsicas%20de%20un%20agregado%20reciclado%20fino%20comercial.pdf1c94db6c872e78c89d020ee276aa9a73MD51open access001/2528oai:repositorio.escuelaing.edu.co:001/25282024-03-04 16:24:56.562open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |