Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic
Several challenges to guarantee medical care have been exposed during the current COVID-19 pandemic. Although the literature has shown some robotics applications to overcome the potential hazards and risks in hospital environments, the implementation of those developments is limited, and few studies...
- Autores:
-
Sierra Marín, Sergio D.
Gomez Vargas, Daniel
Céspedes, Nathalia
Múnera, Marcela
Roberti, Flavio
Barria, Patricio
Ramamoorthy, Subramanian
Becker, Marcelo
Carelli, Ricardo
Cifuentes, Carlos A
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3243
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3243
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Tecnología médica
Medical technology
Teleatención (Medicina)
Telecare (Medicine)
Atención hospitalaria
Hospital care
Innovaciones en medicina
Medical innovations
Robotics
Healthcare professionals’ expectations
COVID-19
Hospital environments
Robot applications
UV robot
Telemedicine
Robótica
expectativas de los profesionales sanitarios
Entornos hospitalarios
Aplicaciones de robots
Robot UV
Telemedicina
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_6ae26db4f1987afbf7b008ff41e0728f |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3243 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
title |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
spellingShingle |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic Tecnología médica Medical technology Teleatención (Medicina) Telecare (Medicine) Atención hospitalaria Hospital care Innovaciones en medicina Medical innovations Robotics Healthcare professionals’ expectations COVID-19 Hospital environments Robot applications UV robot Telemedicine Robótica expectativas de los profesionales sanitarios Entornos hospitalarios Aplicaciones de robots Robot UV Telemedicina |
title_short |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
title_full |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
title_fullStr |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
title_full_unstemmed |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
title_sort |
Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic |
dc.creator.fl_str_mv |
Sierra Marín, Sergio D. Gomez Vargas, Daniel Céspedes, Nathalia Múnera, Marcela Roberti, Flavio Barria, Patricio Ramamoorthy, Subramanian Becker, Marcelo Carelli, Ricardo Cifuentes, Carlos A |
dc.contributor.author.none.fl_str_mv |
Sierra Marín, Sergio D. Gomez Vargas, Daniel Céspedes, Nathalia Múnera, Marcela Roberti, Flavio Barria, Patricio Ramamoorthy, Subramanian Becker, Marcelo Carelli, Ricardo Cifuentes, Carlos A |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Tecnología médica Medical technology Teleatención (Medicina) Telecare (Medicine) Atención hospitalaria Hospital care Innovaciones en medicina Medical innovations |
topic |
Tecnología médica Medical technology Teleatención (Medicina) Telecare (Medicine) Atención hospitalaria Hospital care Innovaciones en medicina Medical innovations Robotics Healthcare professionals’ expectations COVID-19 Hospital environments Robot applications UV robot Telemedicine Robótica expectativas de los profesionales sanitarios Entornos hospitalarios Aplicaciones de robots Robot UV Telemedicina |
dc.subject.proposal.eng.fl_str_mv |
Robotics Healthcare professionals’ expectations COVID-19 Hospital environments Robot applications UV robot Telemedicine |
dc.subject.proposal.spa.fl_str_mv |
Robótica expectativas de los profesionales sanitarios Entornos hospitalarios Aplicaciones de robots Robot UV Telemedicina |
description |
Several challenges to guarantee medical care have been exposed during the current COVID-19 pandemic. Although the literature has shown some robotics applications to overcome the potential hazards and risks in hospital environments, the implementation of those developments is limited, and few studies measure the perception and the acceptance of clinicians. This work presents the design and implementation of several perception questionnaires to assess healthcare provider’s level of acceptance and education toward robotics for COVID-19 control in clinic scenarios. Specifically, 41 healthcare professionals satisfactorily accomplished the surveys, exhibiting a low level of knowledge about robotics applications in this scenario. Likewise, the surveys revealed that the fear of being replaced by robots remains in the medical community. In the Colombian context, 82.9% of participants indicated a positive perception concerning the development and implementation of robotics in clinic environments. Finally, in general terms, the participants exhibited a positive attitude toward using robots and recommended them to be used in the current panorama. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-06 |
dc.date.accessioned.none.fl_str_mv |
2024-09-04T15:18:23Z |
dc.date.available.none.fl_str_mv |
2024-09-04T15:18:23Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3243 |
dc.identifier.eissn.spa.fl_str_mv |
2296-9144 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
url |
https://repositorio.escuelaing.edu.co/handle/001/3243 https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
2296-9144 Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Vol. 8 No. 612746, 2021 |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationissue.spa.fl_str_mv |
612746 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
8 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Frontiers in Robotics and AI |
dc.relation.references.spa.fl_str_mv |
Aarts, J. (2004). IT in health care: sociotechnical approaches “To Err is System”. Int. J. Med. Inform. 76, 6–8. doi: 10.1016/S1386-5056(07)00078-0 Achenbach, S. J. (2020). Telemedicine: benefits, challenges, and its great potential. Health Law Policy Brief 14:1. Available online at: https://digitalcommons.wcl. american.edu/hlp/vol14/iss1/ Alaiad, A., and Zhou, L. (2014). The determinants of home healthcare robots adoption: an empirical investigation. Int. J. Med. Inform. 83, 825–840. doi: 10.1016/j.ijmedinf.2014.07.003 Andersen, B. M., Rasch, M., Hochlin, K., Jensen, F. H., Wismar, P., and Fredriksen, J. E. (2006). Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 62, 149–155. doi: 10.1016/j.jhin.2005.07.020 Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5 Barroy, H., Wang, D., Pescetto, C., and Kutzin, J. (2020). How to Budget for COVID-19 Response? A Rapid Scan of Budgetary Mechanisms in Highly Affected Countries. Health Systems Governance and Financing & COVID-19. Available online at: https://www.who.int/publications/m/item/how-tobudget-for-covid19-response Betriana, F., Tanioka, T., Locsin, R., Malini, H., and Lenggogeni, D. P. (2020). Are indonesian nurses ready for healthcare robots during the covid-19 pandemic? Belit. Nurs. J. 6, 63–66. doi: 10.33546/bnj.1114 Bettinelli, M., Lei, Y., Beane, M., Mackey, C., and Liesching, T. N. (2015). Does robotic telerounding enhance nurse-physician collaboration satisfaction about care decisions? Telemed. e-Health 21, 637–643. doi: 10.1089/tmj.2014.0162 Blair, R. C., and Higgins, J. J. (1980). A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 5:309. doi: 10.2307/1164905 Bloss, R. (2011). Mobile hospital robots cure numerous logistic needs. Ind. Robot 38, 567–571. doi: 10.1108/01439911111179075 Boston Dynamics (2020). Boston Dynamics COVID-19 Response. Available online at: https://www.bostondynamics.com/resources/COVID-19 Boyce, J. M. (2016). Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 5, 1–10. doi: 10.1186/s13756-016-0111-x Brohi, S. N., Jhanjhi, N., Brohi, N. N., and Brohi, M. N. (2020). Key Applications of State-of-the-Art Technologies to Mitigate and Eliminate Covid19. doi: 10.36227/techrxiv.12115596 Center for Disease Control and Prevention (2020). Reopening Guidance for Cleaning and Disinfecting Public Spaces, Workplaces, Businesses, Schools, and Homes. Available online at: https://stacks.cdc.gov/view/cdc/87297 Chatterjee, S., and Kagwe, M. (2020). “Health workers are the frontline soldiers against Covid-19. Let’s protect them | Africa renewal,” in Africa Renewal–Special Edition on COVID-19 (New York, NY), 1. Coombs, C. (2020). Will COVID-19 be the tipping point for the intelligent automation of work? A review of the debate and implications for research. Int. J. Inform. Manage. 55:102182. doi: 10.1016/j.ijinfomgt.2020.102182 Couto, B. R. G. M., Alvim, A. L. S., da Silva, I. L. A., Horta, M. M. B., da Cunha Júnior, J. J., and Starling, C. E. F. (2017). “Using ozires, a humanoid robot, to continuing education of healthcare workers: a pilot study,” in CSEDU (Vila Nova de Gaia), 293–299. Cremer, S., Doelling, K., Lundberg, C. L., McNair, M., Shin, J., and Popa, D. (2016). “Application requirements for robotic nursing assistants in hospital environments,” in Sensors for Next-Generation Robotics III, Vol. 9859 (Baltimore, MD: International Society for Optics and Photonics), 98590E. doi: 10.1117/12.2229241 Cresswell, K., Cunningham-Burley, S., and Sheikh, A. (2018). Health care robotics: qualitative exploration of key challenges and future directions. J. Med. Internet Res. 20:e10410. doi: 10.2196/10410 Dao, N., Hai, X., Huu, L., Nam, T., and Thinh, N. T. (2019). “Remote healthcare for the elderly, patients by tele-presence robot,” in 2019 International Conference on System Science and Engineering (ICSSE) (Dong Hoi: IEEE), 506–510. Demaitre, E. (2020). Coronavirus Response Growing From Robotics Companies. Available online at: https://www.therobotreport.com/coronavirusresponsegrowing-robotics-companies/ Dobrev, Y., Gulden, P., and Vossiek, M. (2018). An indoor positioning system based on wireless range and angle measurements assisted by multi-modal sensor fusion for service robot applications. IEEE Access 6, 69036–69052. doi: 10.1109/ACCESS.2018.2879029 Douglas, M., Katikireddi, S. V., Taulbut, M., McKee, M., and McCartney, G. (2020). Mitigating the wider health effects of covid-19 pandemic response. BMJ 369:m1557. doi: 10.1136/bmj.m1557 EuRobotics (2020). 10 Ways Robots Fight Against the COVID-19 Pandemic. Available online at: https://www.eurobotics.net/eurobotics/newsroom/press/ robotsagainst-covid-19.html?changelang=1 Favero, C. A., Ichino, A., and Rustichini, A. (2020). Restarting the economy while saving lives under COVID-19. SSRN Electron. J. 1–5. doi: 10.2139/ssrn.3580626 Feil-Seifer, D., Haring, K. S., Rossi, S., Wagner, A. R., and Williams, T. (2020) Where to next? The impact of COVID-19 on human-robot interaction research. ACM Trans. Hum. Robot Interact. 10, 1–7. doi: 10.1145/3405450 Ferdous, M. Z., Islam, M. S., Sikder, M. T., Mosaddek, A. S. M., Zegarra-Valdivia, J. A., and Gozal, D. (2020). Knowledge, attitude, and practice regarding COVID19 outbreak in Bangladesh: an online-based cross-sectional study. PLoS ONE 15:e0239254. doi: 10.1371/journal.pone.0239254 Forbes Staff (2020). El Sena presenta un robot para atender pacientes contagiados de coronavirus–Forbes Colombia. Forbes Colombia Magazine. Garingo, A., Friedlich, P., Chavez, T., Tesoriero, L., Patil, S., Jackson, P., et al. (2016). “Tele-rounding” with a remotely controlled mobile robot in the neonatal intensive care unit. J. Telemed. Telec. 22, 132–138. doi: 10.1177/1357633X15589478 Goh, P. S., and Sandars, J. (2020). A vision of the use of technology in medical education after the COVID-19 pandemic. MedEdPublish 9, 1–8. doi: 10.15694/mep.2020.000049.1 Government of Canada (2020). COVID-19 Pandemic Guidance for the Health Care Sector. Available online at: https://www.canada.ca/en/publichealth/services/ diseases/2019-novel-coronavirusinfection/health-professionals/covid-19- pandemicguidance-health-care-sector.html Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., A’Court, C., et al. (2017). Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J. Med. Internet Res. 19:e367. doi: 10.2196/jmir.8775 Guerra, J., Fabian, Y., and Gamba, S. (2020). Dise˜no de brazo robótico remoto para reducir crisis en el campo médico promoviendo el distanciamiento social en el marco de la contingencia sanitaria del COVID-19. Universidad Santo Tomás. doi: 10.15332/dt.inv.2020.01258 Hebesberger, D., Koertner, T., Gisinger, C., and Pripfl, J. (2017). A long-term autonomous robot at a care hospital: a mixed methods study on social acceptance and experiences of staff and older adults. Int. J. Soc. Robot. 9, 417–429. doi: 10.1007/s12369-016-0391-6 Hjelm, N. (2005). Benefits and drawbacks of telemedicine. J. Telemed. Telec. 11, 60–70. doi: 10.1258/1357633053499886 Hu, J., Edsinger, A., Lim, Y. J., Donaldson, N., Solano, M., Solochek, A., et al. (2011). “An advanced medical robotic system augmenting healthcare capabilities-robotic nursing assistant,” in 2011 IEEE International Conference on Robotics and Automation (Shanghai: IEEE), 6264–6269. doi: 10.1109/ICRA.2011.5980213 IFRC Turkish Red Crescent (2020). Knowledge, Attitudes and Practices (KAP) Assessment on COVID-19–Community Based Migration Programme, September 2020 [EN/TR]–Turkey | ReliefWeb. Available online at: https://reliefweb.int/ report/turkey/knowledgeattitudes-and-practices-kap-assessment-covid-19- community-based-migration Ilias, B., Nagarajan, R., Murugappan, M., Helmy, K., Awang Omar, A. S., and Abdul Rahman, M. A. (2014). Hospital nurse following robot: hardware development and sensor integration. Int. J. Med. Eng. Inform. 6, 1–13. doi: 10.1504/IJMEI.2014.058521 Javaid, M., Haleem, A., Vaishya, R., Bahl, S., Suman, R., and Vaish, A. (2020). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabet. Metab. Syndr. Clin. Res. Rev. 14, 419–422. doi: 10.1016/j.dsx.2020.04.032 Joost, C. F., and Dodou, D. (2010). Five-Point Likert Items: t-test versus Mann-Whitney-Wilcoxon. Pract. Assess. Res. Eval. 15, 1–16. doi: 10.7275/bj1 p-ts64 Khan, Z. H., Siddique, A., and Lee, C. W. (2020). Robotics utilization for healthcare digitization in global covid-19 management. Int. J. Environ. Res. Public Health 17:3819. doi: 10.3390/ijerph17113819 Kirschling, T. E., Rough, S. S., and Ludwig, B. C. (2009). Determining the feasibility of robotic courier medication delivery in a hospital setting. Am. J. Health Syst. Pharm. 66, 1754–1762. doi: 10.2146/ajhp080184 Kovach, C. R., Taneli, Y., Neiman, T., Dyer, E. M., Arzaga, A. J. A., and Kelber, S. T. (2017). Evaluation of an ultraviolet room disinfection protocol to decrease nursing home microbial burden, infection and hospitalization rates. BMC Infect. Dis. 17:186. doi: 10.1186/s12879-017- 2275-2 Krägeloh, C. U., Bharatharaj, J., Sasthan Kutty, S. K., Nirmala, P. R., and Huang, L. (2019). Questionnaires to measure acceptability of social robots: a critical review. Robotics 8:88. doi: 10.3390/robotics8040088 Kramer, A., Schwebke, I., and Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6:130. doi: 10.1186/1471-2334-6-130 Macdonald, E. B. R. S. B. (2009). Acceptance of healthcare robots for the older population: review and future directions. Int. J. Soc. Robot. 1, 319–330. doi: 10.1007/s12369-009-0030-6 Mahdy, L. N., Ezzat, K. A., and Hassanien, A. E. (2018). “Integrated multisensor monitoring robot for inpatient rooms in hospital environment,” in International Conference on Advanced Intelligent Systems and Informatics (Cairo: Springer), 117–126. doi: 10.1007/978-3-319-99010-1_11 Marra, A. R., Schweizer, M. L., and Edmond, M. B. (2018). No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 39, 20–31. doi: 10.1017/ice.2017.226 Maxon Motors Inc. (2020). COVID-19: Drive Technology and Physical Distancing. Available online at: https://drive.tech/en/streamcontent/covid-19-drivetechnology-and-physicaldistancing McGinn, C., Bourke, E., Murtagh, A., Donovan, C., Lynch, P., Cullinan, M. F., et al. (2020). Meet stevie: a socially assistive robot developed through application of a “design-thinking” approach. J. Intell. Robot. Syst. 98, 39–58. doi: 10.1007/s10846-019-01051-9 Meisenzahl, M. (2020). Softbank-Backed Delivery Startup Rappi Is Testing Out Robots for Contactless Delivery—Take a Look. Available online at: https://www. businessinsider.com/delivery-startupusing-robots-in-colombia-to-avoidcoronavirus-2020-4 Miner, H., Fatehi, A., Ring, D., and Reichenberg, J. S. (2020). Clinician telemedicine perceptions during the covid-19 pandemic. Telemed. e-Health. 1–48. doi: 10.1089/tmj.2020.0295 Murray, C., Ortiz, E., and Kubin, C. (2014). Application of a robot for critical care rounding in small rural hospitals. Crit. Care Nurs. Clin. 26, 477–485. doi: 10.1016/j.ccell.2014.08.006 Nayak, J., Balas, V. E., Favorskaya, M. N., Choudhury, B. B., Rao, S. K. M., and Naik, B. (Eds.). (2020). Applications of Robotics in Industry Using Advanced Mechanisms, Volume 5 of Learning and Analytics in Intelligent Systems. Cham: Springer International Publishing. doi: 10.1007/978-3-030-30271-9 Otter, J., Yezli, S., Perl, T., Barbut, F., and French, G. (2014). “A guide to notouch automated room disinfection (NTD) systems,” in Decontamination in Hospitals and Healthcare (Elsevier), 413–460. doi: 10.1533/9780857096692. 2.413 Otter, J. A., Yezli, S., Perl, T. M., Barbut, F., and French, G. L. (2013). The role of ‘no-touch’ automated room disinfection systems in infection prevention and control. J. Hosp. Infect. 83, 1–13. doi: 10.1016/j.jhin.2012.10.002 Pandey, A. K., and Gelin, R. (2018). A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Autom. Mag. 25, 40–48. doi: 10.1109/MRA.2018.2833157 Petelin, J., Nelson, M., and Goodman, J. (2007). Deployment and early experience with remote-presence patient care in a community hospital. Surg. Endosc. 21, 53–56. doi: 10.1007/s00464-005-0261-z Podpora, M., Gardecki, A., Beniak, R., Klin, B., Vicario, J. L., and KawalaSterniuk, A. (2020). Human interaction smart subsystem—extending speechbased human-robot interaction systems with an implementation of external smart sensors. Sensors 20:2376. doi: 10.3390/s20082376 REACH (2020). COVID-19 Knowledge, Attitudes and Practices (KAP) Survey: Northwest Syria–August–September 2020 (Round 4)–Syrian Arab Republic | ReliefWeb. Available online at: https://reliefweb.int/report/syrian-arabrepublic/ covid-19-knowledge-attitudes-and-practiceskap-survey-northwest-syria-4 Riek, L. D. (2017). Healthcare robotics. Communications of the ACM 60, 68–78. doi: 10.1145/3127874 Rincon, F., Vibbert, M., Childs, V., Fry, R., Caliguri, D., Urtecho, J., et al. (2012). Implementation of a model of robotic tele-presence (RTP) in the neuro-ICU: effect on critical care nursing team satisfaction. Neurocrit. Care 17, 97–101. doi: 10.1007/s12028-012-9712-2 Robotnik (2020). The Importance of Collaborative Robotics in the Fight Against COVID-19. Available online at: https://robotnik.eu/collaborative-roboticsinthe-fight-against-covid-19/ San-Juan, D., Ramos, C., Ximenez, C., Cruz-Reyes, L., Aguirre, E., Ramos, G., et al. (2020). Guía para la realización de estudios de neurofisiología clínica durante la pandemia de COVID-19. Available online at: https://www.acmfr.org/ blog/comunicados/guia-parala-realizacion-de-estudios-de-neurofisiologiaclinicadurante-la SENA (2020). Investigadores e instructores del Sena crearon robot que ayuda al personal médico en la atención de pacientes con Covid-19. Available online at: https://id.presidencia.gov.co/Paginas/prensa/2020/Investigadoresinstructores-Sena-crearon-robot-que-ayudaal-personal-medico-en-laatencion-de-pacientes-concovid-19-200430.aspx#:~:text=Investigadores%20e %20instructores%20del%20Centro,familia%20y%20personal%20de%20salud Sermeus, W. (2016). “Robotic assistance in medication management: development and evaluation of a prototype,” in Nursing Informatics (New York, NY), 422. Shinohara, K. (2012). “A new approach for the design of assistive technologies,” in ACM SIGACCESS Accessibility and Computing (New York, NY), 45–48. doi: 10.1145/2140446.2140456 Siciliano, B., and Khatib, O. (Eds.). (2016). Springer Handbook of Robotics, 2nd Edn. Cham: Springer International Publishing. Smith, A. C., Coulthard, M., Clark, R., Armfield, N., Taylor, S., Goff, R., et al. (2005). Wireless telemedicine for the delivery of specialist paediatric services to the bedside. J. Telemed. Telec. 11, 81–85. doi: 10.1258/135763305775124669 SoftBank Robotics (2020). COVID-19: Our Response and Actions. Available onine at: https://www.softbankrobotics.com/emea/en/covid-19-our-responseand-actions Stock, R. M., and Merkle, M. (2018). “Can humanoid service robots perform better than service employees? A comparison of innovative behavior cues,” in Proceedings of the 51st Hawaii International Conference on System Sciences (Waikoloa Village, HI), 1056–1065. doi: 10.24251/HICSS.2018.133 Sucher, J. F., Todd, S. R., Jones, S. L., Throckmorton, T., Turner, K. L., and Moore, F. A. (2011). Robotic telepresence: a helpful adjunct that is viewed favorably by critically ill surgical patients. Am. J. Surg. 202, 843–847. doi: 10.1016/j.amjsurg.2011.08.001 Takahashi, M., Moriguchi, T., Tanaka, S., Namikawa, H., Shitamoto, H., Nakano, T., et al. (2012). Development of a mobile robot for transport application in hospital. J. Robot. Mechatron. 24, 1046–1053. doi: 10.20965/jrm.2012.p1046 Takahashi, M., Suzuki, T., Shitamoto, H., Moriguchi, T., and Yoshida, K. (2010). Developing a mobile robot for transport applications in the hospital domain. Robot. Auton. Syst. 58, 889–899. doi: 10.1016/j.robot.2010.03.010 Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID–19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071 The World Bank (2020). World Bank Group and COVID-19 (Coronavirus). Available online at: https://www.worldbank.org/en/who-weare/news/ coronavirus-covid19 Tonin, L., Carlson, T., Leeb, R., and Millán, J. R. (2011). “Brain-controlled telepresence robot by motor-disabled people,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Boston, MA: IEEE), 4227–4230. doi: 10.1109/IEMBS.2011.6091049 United Nations Development Programme (2020). COVID-19 Pandemic: Humanity Needs Leadership and Solidarity to Defeat the Coronavirus. Available online at: https://www.undp.org/content/undp/en/home/coronavirus.html Vasileiou, K., Barnett, J., Thorpe, S., and Young, T. (2018). Characterising and justifying sample size sufficiency in interview-based studies: systematic analysis of qualitative health research over a 15-year period. BMC Med. Res. Methodol. 18:148. doi: 10.1186/s12874-018-0594-7 Viswanathan, R., Myers, M. F., and Fanous, A. H. (2020). Support groups and individual mental health care via video conferencing for frontline clinicians during the covid-19 pandemic. Psychosomatics 61, 538–543. doi: 10.1016/j.psym.2020.06.014 Wang, J., Wei, B., Zhang, Y., and Chen, H. (2009). “Design of an autonomous mobile robot for hospital,” in 2009 IEEE International Symposium on IT in Medicine & Education, Vol. 1 (Jinan: IEEE), 1181–1186. doi: 10.1109/ITIME.2009.5236275 White, P., Marston, H. R., Shore, L., and Turner, R. (2020). Learning from COVID19: design, age-friendly technology, hacking and mental models. Emerald Open Res. 2:21. doi: 10.35241/emeraldopenres.13599.1 Wootton, R. (2001). Telemedicine. BMJ 323, 557–560. doi: 10.1136/bmj.323.7312.557 World Health Organization (2014). Knowledge, Attitudes, and Practices (KAP) Surveys During Cholera Vaccination Campaigns: Guidance for Oral Cholera Vaccine Stockpile Campaigns “Working Copy”. Technical Report June, World Health Organization. World Health Organization (2020a). Coronavirus Disease (COVID-19) Outbreak. Available online at: http://www.euro.who.int/en/healthtopics/healthemergencies/coronavirus-covid-19 World Health Organization (2020b). Strengthening and Adjusting Public Health Measures Throughout the COVID-19 Transition Phases. Available online at: http://www.euro.who.int/en/healthtopics/health-emergencies/ coronavirus-covid-19/technical-guidance/2020/strengthening-andadjustingpublic-health-measures-throughout-thecovid-19-transition-phases.-policyconsiderations-forthe-who-european-region,-24-ap World Health Organization (2020c). WHO Coronavirus Disease (COVID-19) Dashboard. Available online at: https://covid19.who.in Yang, G. Z., J. Nelson, B., Murphy, R. R., Choset, H., Christensen, H., H. Collins, S., et al. (2020). Combating COVID-19—the role of robotics in managing public health and infectious diseases. Sci. Robot. 5:eabb5589. doi: 10.1126/scirobotics.abb5589 Yang, J. H., Wu, U. I., Tai, H. M., and Sheng, W. H. (2019). Effectiveness of an ultraviolet-C disinfection system for reduction of healthcareassociated pathogens. J. Microbiol. Immunol. Infect. 52, 487–493. doi: 10.1016/j.jmii.2017.08.017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
New York University |
dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
dc.source.spa.fl_str_mv |
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.612746/full |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3243/4/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3243/3/Portada%20Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.PNG https://repositorio.escuelaing.edu.co/bitstream/001/3243/5/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3243/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3243/1/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf |
bitstream.checksum.fl_str_mv |
912c3a4e4c07866e1834cb55dd96b325 d48004ec712ff1da335ee1e601277677 ddb6286570b1e7d95cb2915ea0eab6d1 5a7ca94c2e5326ee169f979d71d0f06e 6b46a9e907c8881754603ef95cfc6576 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355635838386176 |
spelling |
Sierra Marín, Sergio D.cdfb7c280bb370415cf1b893cc1a82aaGomez Vargas, Daniel5ff3db3ae07cf9b63849c33c764c6401Céspedes, Nathalia60511aded7d8a09c17c810c00f67c2d8Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Roberti, Flavioa6ebcb85fc69fb3a057ea96153bd8088Barria, Patriciofcc8e4d03ad1f2b10cfb1691fcf950d7Ramamoorthy, Subramanian14d53cd72277e80e4c99eec178793b6cBecker, Marcelo4389e3e2587bbbd7439266ba01aacfb8Carelli, Ricardo0126fce1e119ceae816d354195cd8a1eCifuentes, Carlos A168f396cc12a6767341004f079ddd31aGiBiome2024-09-04T15:18:23Z2024-09-04T15:18:23Z2021-06https://repositorio.escuelaing.edu.co/handle/001/32432296-9144Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Several challenges to guarantee medical care have been exposed during the current COVID-19 pandemic. Although the literature has shown some robotics applications to overcome the potential hazards and risks in hospital environments, the implementation of those developments is limited, and few studies measure the perception and the acceptance of clinicians. This work presents the design and implementation of several perception questionnaires to assess healthcare provider’s level of acceptance and education toward robotics for COVID-19 control in clinic scenarios. Specifically, 41 healthcare professionals satisfactorily accomplished the surveys, exhibiting a low level of knowledge about robotics applications in this scenario. Likewise, the surveys revealed that the fear of being replaced by robots remains in the medical community. In the Colombian context, 82.9% of participants indicated a positive perception concerning the development and implementation of robotics in clinic environments. Finally, in general terms, the participants exhibited a positive attitude toward using robots and recommended them to be used in the current panorama.En la actual pandemia de COVID-19 se han expuesto diversos retos para garantizar la atención médica. Aunque la literatura ha mostrado algunas aplicaciones de la robótica para superar los peligros y riesgos potenciales en entornos hospitalarios, la implementación de esos desarrollos es limitada y pocos estudios miden la percepción y la aceptación de los médicos. En este trabajo se presenta el diseño e implementación de varios cuestionarios de percepción para evaluar el nivel de aceptación y educación de los proveedores de atención médica hacia la robótica para el control de COVID-19 en escenarios clínicos. Específicamente, 41 profesionales de la salud completaron satisfactoriamente las encuestas, mostrando un bajo nivel de conocimiento sobre las aplicaciones de la robótica en este escenario. Asimismo, las encuestas revelaron que el temor a ser reemplazados por robots persiste en la comunidad médica. En el contexto colombiano, el 82,9% de los participantes indicó una percepción positiva sobre el desarrollo e implementación de la robótica en entornos clínicos. Finalmente, en términos generales, los participantes mostraron una actitud positiva hacia el uso de robots y recomendaron su uso en el panorama actual.15 páginasapplication/pdfengNew York UniversityEstados Unidoshttps://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.612746/fullExpectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 PandemicArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 8 No. 612746, 20211561274618Frontiers in Robotics and AIAarts, J. (2004). IT in health care: sociotechnical approaches “To Err is System”. Int. J. Med. Inform. 76, 6–8. doi: 10.1016/S1386-5056(07)00078-0Achenbach, S. J. (2020). Telemedicine: benefits, challenges, and its great potential. Health Law Policy Brief 14:1. Available online at: https://digitalcommons.wcl. american.edu/hlp/vol14/iss1/Alaiad, A., and Zhou, L. (2014). The determinants of home healthcare robots adoption: an empirical investigation. Int. J. Med. Inform. 83, 825–840. doi: 10.1016/j.ijmedinf.2014.07.003Andersen, B. M., Rasch, M., Hochlin, K., Jensen, F. H., Wismar, P., and Fredriksen, J. E. (2006). Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 62, 149–155. doi: 10.1016/j.jhin.2005.07.020Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5Barroy, H., Wang, D., Pescetto, C., and Kutzin, J. (2020). How to Budget for COVID-19 Response? A Rapid Scan of Budgetary Mechanisms in Highly Affected Countries. Health Systems Governance and Financing & COVID-19. Available online at: https://www.who.int/publications/m/item/how-tobudget-for-covid19-responseBetriana, F., Tanioka, T., Locsin, R., Malini, H., and Lenggogeni, D. P. (2020). Are indonesian nurses ready for healthcare robots during the covid-19 pandemic? Belit. Nurs. J. 6, 63–66. doi: 10.33546/bnj.1114Bettinelli, M., Lei, Y., Beane, M., Mackey, C., and Liesching, T. N. (2015). Does robotic telerounding enhance nurse-physician collaboration satisfaction about care decisions? Telemed. e-Health 21, 637–643. doi: 10.1089/tmj.2014.0162Blair, R. C., and Higgins, J. J. (1980). A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 5:309. doi: 10.2307/1164905Bloss, R. (2011). Mobile hospital robots cure numerous logistic needs. Ind. Robot 38, 567–571. doi: 10.1108/01439911111179075Boston Dynamics (2020). Boston Dynamics COVID-19 Response. Available online at: https://www.bostondynamics.com/resources/COVID-19Boyce, J. M. (2016). Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 5, 1–10. doi: 10.1186/s13756-016-0111-xBrohi, S. N., Jhanjhi, N., Brohi, N. N., and Brohi, M. N. (2020). Key Applications of State-of-the-Art Technologies to Mitigate and Eliminate Covid19. doi: 10.36227/techrxiv.12115596Center for Disease Control and Prevention (2020). Reopening Guidance for Cleaning and Disinfecting Public Spaces, Workplaces, Businesses, Schools, and Homes. Available online at: https://stacks.cdc.gov/view/cdc/87297Chatterjee, S., and Kagwe, M. (2020). “Health workers are the frontline soldiers against Covid-19. Let’s protect them | Africa renewal,” in Africa Renewal–Special Edition on COVID-19 (New York, NY), 1.Coombs, C. (2020). Will COVID-19 be the tipping point for the intelligent automation of work? A review of the debate and implications for research. Int. J. Inform. Manage. 55:102182. doi: 10.1016/j.ijinfomgt.2020.102182Couto, B. R. G. M., Alvim, A. L. S., da Silva, I. L. A., Horta, M. M. B., da Cunha Júnior, J. J., and Starling, C. E. F. (2017). “Using ozires, a humanoid robot, to continuing education of healthcare workers: a pilot study,” in CSEDU (Vila Nova de Gaia), 293–299.Cremer, S., Doelling, K., Lundberg, C. L., McNair, M., Shin, J., and Popa, D. (2016). “Application requirements for robotic nursing assistants in hospital environments,” in Sensors for Next-Generation Robotics III, Vol. 9859 (Baltimore, MD: International Society for Optics and Photonics), 98590E. doi: 10.1117/12.2229241Cresswell, K., Cunningham-Burley, S., and Sheikh, A. (2018). Health care robotics: qualitative exploration of key challenges and future directions. J. Med. Internet Res. 20:e10410. doi: 10.2196/10410Dao, N., Hai, X., Huu, L., Nam, T., and Thinh, N. T. (2019). “Remote healthcare for the elderly, patients by tele-presence robot,” in 2019 International Conference on System Science and Engineering (ICSSE) (Dong Hoi: IEEE), 506–510.Demaitre, E. (2020). Coronavirus Response Growing From Robotics Companies. Available online at: https://www.therobotreport.com/coronavirusresponsegrowing-robotics-companies/Dobrev, Y., Gulden, P., and Vossiek, M. (2018). An indoor positioning system based on wireless range and angle measurements assisted by multi-modal sensor fusion for service robot applications. IEEE Access 6, 69036–69052. doi: 10.1109/ACCESS.2018.2879029Douglas, M., Katikireddi, S. V., Taulbut, M., McKee, M., and McCartney, G. (2020). Mitigating the wider health effects of covid-19 pandemic response. BMJ 369:m1557. doi: 10.1136/bmj.m1557EuRobotics (2020). 10 Ways Robots Fight Against the COVID-19 Pandemic. Available online at: https://www.eurobotics.net/eurobotics/newsroom/press/ robotsagainst-covid-19.html?changelang=1Favero, C. A., Ichino, A., and Rustichini, A. (2020). Restarting the economy while saving lives under COVID-19. SSRN Electron. J. 1–5. doi: 10.2139/ssrn.3580626 Feil-Seifer, D., Haring, K. S., Rossi, S., Wagner, A. R., and Williams, T. (2020)Where to next? The impact of COVID-19 on human-robot interaction research. ACM Trans. Hum. Robot Interact. 10, 1–7. doi: 10.1145/3405450Ferdous, M. Z., Islam, M. S., Sikder, M. T., Mosaddek, A. S. M., Zegarra-Valdivia, J. A., and Gozal, D. (2020). Knowledge, attitude, and practice regarding COVID19 outbreak in Bangladesh: an online-based cross-sectional study. PLoS ONE 15:e0239254. doi: 10.1371/journal.pone.0239254Forbes Staff (2020). El Sena presenta un robot para atender pacientes contagiados de coronavirus–Forbes Colombia. Forbes Colombia Magazine.Garingo, A., Friedlich, P., Chavez, T., Tesoriero, L., Patil, S., Jackson, P., et al. (2016). “Tele-rounding” with a remotely controlled mobile robot in the neonatal intensive care unit. J. Telemed. Telec. 22, 132–138. doi: 10.1177/1357633X15589478Goh, P. S., and Sandars, J. (2020). A vision of the use of technology in medical education after the COVID-19 pandemic. MedEdPublish 9, 1–8. doi: 10.15694/mep.2020.000049.1Government of Canada (2020). COVID-19 Pandemic Guidance for the Health Care Sector. Available online at: https://www.canada.ca/en/publichealth/services/ diseases/2019-novel-coronavirusinfection/health-professionals/covid-19- pandemicguidance-health-care-sector.htmlGreenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., A’Court, C., et al. (2017). Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J. Med. Internet Res. 19:e367. doi: 10.2196/jmir.8775Guerra, J., Fabian, Y., and Gamba, S. (2020). Dise˜no de brazo robótico remoto para reducir crisis en el campo médico promoviendo el distanciamiento social en el marco de la contingencia sanitaria del COVID-19. Universidad Santo Tomás. doi: 10.15332/dt.inv.2020.01258Hebesberger, D., Koertner, T., Gisinger, C., and Pripfl, J. (2017). A long-term autonomous robot at a care hospital: a mixed methods study on social acceptance and experiences of staff and older adults. Int. J. Soc. Robot. 9, 417–429. doi: 10.1007/s12369-016-0391-6Hjelm, N. (2005). Benefits and drawbacks of telemedicine. J. Telemed. Telec. 11, 60–70. doi: 10.1258/1357633053499886Hu, J., Edsinger, A., Lim, Y. J., Donaldson, N., Solano, M., Solochek, A., et al. (2011). “An advanced medical robotic system augmenting healthcare capabilities-robotic nursing assistant,” in 2011 IEEE International Conference on Robotics and Automation (Shanghai: IEEE), 6264–6269. doi: 10.1109/ICRA.2011.5980213IFRC Turkish Red Crescent (2020). Knowledge, Attitudes and Practices (KAP) Assessment on COVID-19–Community Based Migration Programme, September 2020 [EN/TR]–Turkey | ReliefWeb. Available online at: https://reliefweb.int/ report/turkey/knowledgeattitudes-and-practices-kap-assessment-covid-19- community-based-migrationIlias, B., Nagarajan, R., Murugappan, M., Helmy, K., Awang Omar, A. S., and Abdul Rahman, M. A. (2014). Hospital nurse following robot: hardware development and sensor integration. Int. J. Med. Eng. Inform. 6, 1–13. doi: 10.1504/IJMEI.2014.058521Javaid, M., Haleem, A., Vaishya, R., Bahl, S., Suman, R., and Vaish, A. (2020). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabet. Metab. Syndr. Clin. Res. Rev. 14, 419–422. doi: 10.1016/j.dsx.2020.04.032Joost, C. F., and Dodou, D. (2010). Five-Point Likert Items: t-test versus Mann-Whitney-Wilcoxon. Pract. Assess. Res. Eval. 15, 1–16. doi: 10.7275/bj1 p-ts64Khan, Z. H., Siddique, A., and Lee, C. W. (2020). Robotics utilization for healthcare digitization in global covid-19 management. Int. J. Environ. Res. Public Health 17:3819. doi: 10.3390/ijerph17113819Kirschling, T. E., Rough, S. S., and Ludwig, B. C. (2009). Determining the feasibility of robotic courier medication delivery in a hospital setting. Am. J. Health Syst. Pharm. 66, 1754–1762. doi: 10.2146/ajhp080184Kovach, C. R., Taneli, Y., Neiman, T., Dyer, E. M., Arzaga, A. J. A., and Kelber, S. T. (2017). Evaluation of an ultraviolet room disinfection protocol to decrease nursing home microbial burden, infection and hospitalization rates. BMC Infect. Dis. 17:186. doi: 10.1186/s12879-017- 2275-2Krägeloh, C. U., Bharatharaj, J., Sasthan Kutty, S. K., Nirmala, P. R., and Huang, L. (2019). Questionnaires to measure acceptability of social robots: a critical review. Robotics 8:88. doi: 10.3390/robotics8040088Kramer, A., Schwebke, I., and Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6:130. doi: 10.1186/1471-2334-6-130Macdonald, E. B. R. S. B. (2009). Acceptance of healthcare robots for the older population: review and future directions. Int. J. Soc. Robot. 1, 319–330. doi: 10.1007/s12369-009-0030-6Mahdy, L. N., Ezzat, K. A., and Hassanien, A. E. (2018). “Integrated multisensor monitoring robot for inpatient rooms in hospital environment,” in International Conference on Advanced Intelligent Systems and Informatics (Cairo: Springer), 117–126. doi: 10.1007/978-3-319-99010-1_11Marra, A. R., Schweizer, M. L., and Edmond, M. B. (2018). No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 39, 20–31. doi: 10.1017/ice.2017.226Maxon Motors Inc. (2020). COVID-19: Drive Technology and Physical Distancing. Available online at: https://drive.tech/en/streamcontent/covid-19-drivetechnology-and-physicaldistancingMcGinn, C., Bourke, E., Murtagh, A., Donovan, C., Lynch, P., Cullinan, M. F., et al. (2020). Meet stevie: a socially assistive robot developed through application of a “design-thinking” approach. J. Intell. Robot. Syst. 98, 39–58. doi: 10.1007/s10846-019-01051-9Meisenzahl, M. (2020). Softbank-Backed Delivery Startup Rappi Is Testing Out Robots for Contactless Delivery—Take a Look. Available online at: https://www. businessinsider.com/delivery-startupusing-robots-in-colombia-to-avoidcoronavirus-2020-4Miner, H., Fatehi, A., Ring, D., and Reichenberg, J. S. (2020). Clinician telemedicine perceptions during the covid-19 pandemic. Telemed. e-Health. 1–48. doi: 10.1089/tmj.2020.0295Murray, C., Ortiz, E., and Kubin, C. (2014). Application of a robot for critical care rounding in small rural hospitals. Crit. Care Nurs. Clin. 26, 477–485. doi: 10.1016/j.ccell.2014.08.006Nayak, J., Balas, V. E., Favorskaya, M. N., Choudhury, B. B., Rao, S. K. M., and Naik, B. (Eds.). (2020). Applications of Robotics in Industry Using Advanced Mechanisms, Volume 5 of Learning and Analytics in Intelligent Systems. Cham: Springer International Publishing. doi: 10.1007/978-3-030-30271-9Otter, J., Yezli, S., Perl, T., Barbut, F., and French, G. (2014). “A guide to notouch automated room disinfection (NTD) systems,” in Decontamination in Hospitals and Healthcare (Elsevier), 413–460. doi: 10.1533/9780857096692. 2.413Otter, J. A., Yezli, S., Perl, T. M., Barbut, F., and French, G. L. (2013). The role of ‘no-touch’ automated room disinfection systems in infection prevention and control. J. Hosp. Infect. 83, 1–13. doi: 10.1016/j.jhin.2012.10.002Pandey, A. K., and Gelin, R. (2018). A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Autom. Mag. 25, 40–48. doi: 10.1109/MRA.2018.2833157Petelin, J., Nelson, M., and Goodman, J. (2007). Deployment and early experience with remote-presence patient care in a community hospital. Surg. Endosc. 21, 53–56. doi: 10.1007/s00464-005-0261-zPodpora, M., Gardecki, A., Beniak, R., Klin, B., Vicario, J. L., and KawalaSterniuk, A. (2020). Human interaction smart subsystem—extending speechbased human-robot interaction systems with an implementation of external smart sensors. Sensors 20:2376. doi: 10.3390/s20082376REACH (2020). COVID-19 Knowledge, Attitudes and Practices (KAP) Survey: Northwest Syria–August–September 2020 (Round 4)–Syrian Arab Republic | ReliefWeb. Available online at: https://reliefweb.int/report/syrian-arabrepublic/ covid-19-knowledge-attitudes-and-practiceskap-survey-northwest-syria-4Riek, L. D. (2017). Healthcare robotics. Communications of the ACM 60, 68–78. doi: 10.1145/3127874Rincon, F., Vibbert, M., Childs, V., Fry, R., Caliguri, D., Urtecho, J., et al. (2012). Implementation of a model of robotic tele-presence (RTP) in the neuro-ICU: effect on critical care nursing team satisfaction. Neurocrit. Care 17, 97–101. doi: 10.1007/s12028-012-9712-2Robotnik (2020). The Importance of Collaborative Robotics in the Fight Against COVID-19. Available online at: https://robotnik.eu/collaborative-roboticsinthe-fight-against-covid-19/San-Juan, D., Ramos, C., Ximenez, C., Cruz-Reyes, L., Aguirre, E., Ramos, G., et al. (2020). Guía para la realización de estudios de neurofisiología clínica durante la pandemia de COVID-19. Available online at: https://www.acmfr.org/ blog/comunicados/guia-parala-realizacion-de-estudios-de-neurofisiologiaclinicadurante-laSENA (2020). Investigadores e instructores del Sena crearon robot que ayuda al personal médico en la atención de pacientes con Covid-19. Available online at: https://id.presidencia.gov.co/Paginas/prensa/2020/Investigadoresinstructores-Sena-crearon-robot-que-ayudaal-personal-medico-en-laatencion-de-pacientes-concovid-19-200430.aspx#:~:text=Investigadores%20e %20instructores%20del%20Centro,familia%20y%20personal%20de%20saludSermeus, W. (2016). “Robotic assistance in medication management: development and evaluation of a prototype,” in Nursing Informatics (New York, NY), 422.Shinohara, K. (2012). “A new approach for the design of assistive technologies,” in ACM SIGACCESS Accessibility and Computing (New York, NY), 45–48. doi: 10.1145/2140446.2140456Siciliano, B., and Khatib, O. (Eds.). (2016). Springer Handbook of Robotics, 2nd Edn. Cham: Springer International Publishing.Smith, A. C., Coulthard, M., Clark, R., Armfield, N., Taylor, S., Goff, R., et al. (2005).Wireless telemedicine for the delivery of specialist paediatric services to the bedside. J. Telemed. Telec. 11, 81–85. doi: 10.1258/135763305775124669SoftBank Robotics (2020). COVID-19: Our Response and Actions. Available onine at: https://www.softbankrobotics.com/emea/en/covid-19-our-responseand-actionsStock, R. M., and Merkle, M. (2018). “Can humanoid service robots perform better than service employees? A comparison of innovative behavior cues,” in Proceedings of the 51st Hawaii International Conference on System Sciences (Waikoloa Village, HI), 1056–1065. doi: 10.24251/HICSS.2018.133Sucher, J. F., Todd, S. R., Jones, S. L., Throckmorton, T., Turner, K. L., and Moore, F. A. (2011). Robotic telepresence: a helpful adjunct that is viewed favorably by critically ill surgical patients. Am. J. Surg. 202, 843–847. doi: 10.1016/j.amjsurg.2011.08.001Takahashi, M., Moriguchi, T., Tanaka, S., Namikawa, H., Shitamoto, H., Nakano, T., et al. (2012). Development of a mobile robot for transport application in hospital. J. Robot. Mechatron. 24, 1046–1053. doi: 10.20965/jrm.2012.p1046Takahashi, M., Suzuki, T., Shitamoto, H., Moriguchi, T., and Yoshida, K. (2010). Developing a mobile robot for transport applications in the hospital domain. Robot. Auton. Syst. 58, 889–899. doi: 10.1016/j.robot.2010.03.010Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID–19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071The World Bank (2020). World Bank Group and COVID-19 (Coronavirus). Available online at: https://www.worldbank.org/en/who-weare/news/ coronavirus-covid19Tonin, L., Carlson, T., Leeb, R., and Millán, J. R. (2011). “Brain-controlled telepresence robot by motor-disabled people,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Boston, MA: IEEE), 4227–4230. doi: 10.1109/IEMBS.2011.6091049United Nations Development Programme (2020). COVID-19 Pandemic: Humanity Needs Leadership and Solidarity to Defeat the Coronavirus. Available online at: https://www.undp.org/content/undp/en/home/coronavirus.htmlVasileiou, K., Barnett, J., Thorpe, S., and Young, T. (2018). Characterising and justifying sample size sufficiency in interview-based studies: systematic analysis of qualitative health research over a 15-year period. BMC Med. Res. Methodol. 18:148. doi: 10.1186/s12874-018-0594-7Viswanathan, R., Myers, M. F., and Fanous, A. H. (2020). Support groups and individual mental health care via video conferencing for frontline clinicians during the covid-19 pandemic. Psychosomatics 61, 538–543. doi: 10.1016/j.psym.2020.06.014Wang, J., Wei, B., Zhang, Y., and Chen, H. (2009). “Design of an autonomous mobile robot for hospital,” in 2009 IEEE International Symposium on IT in Medicine & Education, Vol. 1 (Jinan: IEEE), 1181–1186. doi: 10.1109/ITIME.2009.5236275White, P., Marston, H. R., Shore, L., and Turner, R. (2020). Learning from COVID19: design, age-friendly technology, hacking and mental models. Emerald Open Res. 2:21. doi: 10.35241/emeraldopenres.13599.1Wootton, R. (2001). Telemedicine. BMJ 323, 557–560. doi: 10.1136/bmj.323.7312.557World Health Organization (2014). Knowledge, Attitudes, and Practices (KAP) Surveys During Cholera Vaccination Campaigns: Guidance for Oral Cholera Vaccine Stockpile Campaigns “Working Copy”. Technical Report June, World Health Organization.World Health Organization (2020a). Coronavirus Disease (COVID-19) Outbreak. Available online at: http://www.euro.who.int/en/healthtopics/healthemergencies/coronavirus-covid-19World Health Organization (2020b). Strengthening and Adjusting Public Health Measures Throughout the COVID-19 Transition Phases. Available online at: http://www.euro.who.int/en/healthtopics/health-emergencies/ coronavirus-covid-19/technical-guidance/2020/strengthening-andadjustingpublic-health-measures-throughout-thecovid-19-transition-phases.-policyconsiderations-forthe-who-european-region,-24-apWorld Health Organization (2020c). WHO Coronavirus Disease (COVID-19) Dashboard. Available online at: https://covid19.who.inYang, G. Z., J. Nelson, B., Murphy, R. R., Choset, H., Christensen, H., H. Collins, S., et al. (2020). Combating COVID-19—the role of robotics in managing public health and infectious diseases. Sci. Robot. 5:eabb5589. doi: 10.1126/scirobotics.abb5589Yang, J. H., Wu, U. I., Tai, H. M., and Sheng, W. H. (2019). Effectiveness of an ultraviolet-C disinfection system for reduction of healthcareassociated pathogens. J. Microbiol. Immunol. Infect. 52, 487–493. doi: 10.1016/j.jmii.2017.08.017info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbTecnología médicaMedical technologyTeleatención (Medicina)Telecare (Medicine)Atención hospitalariaHospital careInnovaciones en medicinaMedical innovationsRoboticsHealthcare professionals’ expectationsCOVID-19Hospital environmentsRobot applicationsUV robotTelemedicineRobóticaexpectativas de los profesionales sanitariosEntornos hospitalariosAplicaciones de robotsRobot UVTelemedicinaTEXTExpectations and perceptions of healthcare professionals for robot.pdf.txtExpectations and perceptions of healthcare professionals for robot.pdf.txtExtracted texttext/plain76360https://repositorio.escuelaing.edu.co/bitstream/001/3243/4/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf.txt912c3a4e4c07866e1834cb55dd96b325MD54metadata only accessTHUMBNAILPortada Expectations and perceptions of healthcare professionals for robot.PNGPortada Expectations and perceptions of healthcare professionals for robot.PNGimage/png197529https://repositorio.escuelaing.edu.co/bitstream/001/3243/3/Portada%20Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.PNGd48004ec712ff1da335ee1e601277677MD53open accessExpectations and perceptions of healthcare professionals for robot.pdf.jpgExpectations and perceptions of healthcare professionals for robot.pdf.jpgGenerated Thumbnailimage/jpeg15117https://repositorio.escuelaing.edu.co/bitstream/001/3243/5/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf.jpgddb6286570b1e7d95cb2915ea0eab6d1MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3243/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALExpectations and perceptions of healthcare professionals for robot.pdfExpectations and perceptions of healthcare professionals for robot.pdfapplication/pdf1226122https://repositorio.escuelaing.edu.co/bitstream/001/3243/1/Expectations%20and%20perceptions%20of%20healthcare%20professionals%20for%20robot.pdf6b46a9e907c8881754603ef95cfc6576MD51metadata only access001/3243oai:repositorio.escuelaing.edu.co:001/32432024-09-05 03:03:30.633metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |