Automatic estimation of pose and falls in videos using computer vision model

Human pose estimation is defined as the process of locating joints of a person or a crowd given an image or video. Currently, this estimation is widely used for the evaluation of athletes, workers, and the monitoring of patients in clinical settings. However, human pose estimation is not an easy tas...

Full description

Autores:
Calvache, Daniela
Bernal, Hernán
Guarín, Juan F.
Aguía, Karen
Orjuela Cañón, Álvaro D.
Perdomo, Oscar J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3292
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3292
https://repositorio.escuelaing.edu.co/
Palabra clave:
Tecnología médica
Medical technology
Monitoreo del paciente - Equipo y accesorios
Patient monitoring - Equipment and supplies
Trastornos de la postura
Posture disorders
Caídas (Accidentes)
Falls (Accidents)
Aprendizaje profundo
Estimación de la postura humana
Detección de caídas
Visión por computadora
Procesamiento de video digital
Deep learning
Human pose estimation
Fall detection
Computer vision
Digital video processing
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
Description
Summary:Human pose estimation is defined as the process of locating joints of a person or a crowd given an image or video. Currently, this estimation is widely used for the evaluation of athletes, workers, and the monitoring of patients in clinical settings. However, human pose estimation is not an easy task as it requires experts to manually assess the person’s position by using specialized equipment such as e-health devices (watches, bands, handles), markers, and high-cost cameras to monitor a limited scenario. The main goal of this article is to evaluate a marker-less low-cost computer vision system to get the automatic estimation of poses and fall detection on video by calculating the person’s joint angle with a high level of adaptability to any space. The proposed model is the first step in the construction of a tool that allows monitoring and generating alerts to prevent falls at home and clinical settings.