New forms of strong compactness in terms of ideals

The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types...

Full description

Autores:
Pachon Rubiano, Néstor Raúl
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1399
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1399
http://dx.doi.org/10.12732/ijpam.v106i2.12
Palabra clave:
Matemáticas
Matemáticas - Fórmulas
ideal
I-compact
SI-compact
αI-compact
βI-compact
γI-compact
ideal
I-compacto
SI-compacto
αI-compacto
βI-compacto
γI-compacto
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_66d06ae3b9e2661080333d751e1bc52b
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1399
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv New forms of strong compactness in terms of ideals
title New forms of strong compactness in terms of ideals
spellingShingle New forms of strong compactness in terms of ideals
Matemáticas
Matemáticas - Fórmulas
ideal
I-compact
SI-compact
αI-compact
βI-compact
γI-compact
ideal
I-compacto
SI-compacto
αI-compacto
βI-compacto
γI-compacto
title_short New forms of strong compactness in terms of ideals
title_full New forms of strong compactness in terms of ideals
title_fullStr New forms of strong compactness in terms of ideals
title_full_unstemmed New forms of strong compactness in terms of ideals
title_sort New forms of strong compactness in terms of ideals
dc.creator.fl_str_mv Pachon Rubiano, Néstor Raúl
dc.contributor.author.none.fl_str_mv Pachon Rubiano, Néstor Raúl
dc.contributor.researchgroup.spa.fl_str_mv Matemáticas
dc.subject.armarc.none.fl_str_mv Matemáticas
Matemáticas - Fórmulas
topic Matemáticas
Matemáticas - Fórmulas
ideal
I-compact
SI-compact
αI-compact
βI-compact
γI-compact
ideal
I-compacto
SI-compacto
αI-compacto
βI-compacto
γI-compacto
dc.subject.proposal.spa.fl_str_mv ideal
I-compact
SI-compact
αI-compact
βI-compact
γI-compact
ideal
I-compacto
SI-compacto
αI-compacto
βI-compacto
γI-compacto
description The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types of strong compactness modulo an ideal.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-05-06T02:32:07Z
2021-10-01T17:20:46Z
dc.date.available.none.fl_str_mv 2021-05-05
2021-10-01T17:20:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1311-8080
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1399
dc.identifier.doi.none.fl_str_mv 10.12732/ijpam.v106i2.12
dc.identifier.url.none.fl_str_mv http://dx.doi.org/10.12732/ijpam.v106i2.12
identifier_str_mv 1311-8080
10.12732/ijpam.v106i2.12
url https://repositorio.escuelaing.edu.co/handle/001/1399
http://dx.doi.org/10.12732/ijpam.v106i2.12
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv IJPAM: Volumen 106, No. 2 (2016)
dc.relation.citationendpage.spa.fl_str_mv 493
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 481
dc.relation.citationvolume.spa.fl_str_mv 106
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Pure and Applied Mathematics
dc.relation.references.eng.fl_str_mv M. E. Abd El-Monsef, S. N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24, No. 4 (1993), 431-443.
A. A. El Atik, A study of some types of mappings on topological spaces, Master’s thesis, Faculty of Science, Tanta University, Tanta, Egypt, (1997).
M. K. Gupta and T. Noiri, C-compactness modulo an ideal, International J. Math. and Math. Sci., 2006, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135
A. Gupta and R. Kaur, Compact spaces with respect to an ideal, International. J. P. and Ap. Math., 92, No. 3 (2014), 443-448. DOI: 10.12732/ijpam.v92i3.11
T. R. Hamlett and D. Jancovi´c, Compactness with respect to an ideal, Boll. Un. Math. Ital., 7, No. 4B (1990), 849-861.
T. R. Hamlett, D. Jancovi´c and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20, (1991), 109-126.
R. A. Hosny, Some types of compactness via ideal, International J. Sci. & Eng. Res., 4, No. 5 (2013), 1293-1296.
N. Levine, Semi-open and semi-continuity in topological spaces, Amer. Math. Mountly, 70, (1963), 36-41. DOI: 10.2307/2312781
N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96.
A. A. Nasef and T. Noiri, On α-compact modulo an ideal, Far East J. Math. Sci., 6, No. 6 (1998), 857-865.
A. A. Nasef, Some classes of compactness in terms of ideals, Soochow Jour. of Math., 27, No. 3 (2001), 343-352.
R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970. DOI: 10.2140/pjm.1965.15.961
D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, No. 1 (1972), 193-197.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Publicaciones académicas Ltd.
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://ijpam.eu/contents/2016-106-2/12/
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1399/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1399/2/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1399/3/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1399/4/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
bb27de8953ba54c0e907039b35f0c2c2
c00d4734e52598a0ac3a5316b7b8d9d9
d3c203a7965773d6b7da55a98bc2ce5c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355637868429312
spelling Pachon Rubiano, Néstor Raúld4f3434d033e2adbaa8e0f46ee7c56db600Matemáticas2021-05-06T02:32:07Z2021-10-01T17:20:46Z2021-05-052021-10-01T17:20:46Z20161311-8080https://repositorio.escuelaing.edu.co/handle/001/139910.12732/ijpam.v106i2.12http://dx.doi.org/10.12732/ijpam.v106i2.12The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types of strong compactness modulo an ideal.El objetivo de este trabajo es introducir y estudiar nuevos tipos de compacidad fuerte, módulo de un ideal, denominados ρI-compacticidad y σI-compacticidad. Se presentan varias de sus propiedades y se estudian algunos efectos de varios tipos de funciones sobre ellos. Comparamos estos nuevos espacios con otros tipos conocidos de compacidad fuerte módulo a un ideal.14 páginasapplication/pdfengPublicaciones académicas Ltd.Colombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://ijpam.eu/contents/2016-106-2/12/New forms of strong compactness in terms of idealsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85IJPAM: Volumen 106, No. 2 (2016)4932481106N/AInternational Journal of Pure and Applied MathematicsM. E. Abd El-Monsef, S. N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24, No. 4 (1993), 431-443.A. A. El Atik, A study of some types of mappings on topological spaces, Master’s thesis, Faculty of Science, Tanta University, Tanta, Egypt, (1997).M. K. Gupta and T. Noiri, C-compactness modulo an ideal, International J. Math. and Math. Sci., 2006, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135A. Gupta and R. Kaur, Compact spaces with respect to an ideal, International. J. P. and Ap. Math., 92, No. 3 (2014), 443-448. DOI: 10.12732/ijpam.v92i3.11T. R. Hamlett and D. Jancovi´c, Compactness with respect to an ideal, Boll. Un. Math. Ital., 7, No. 4B (1990), 849-861.T. R. Hamlett, D. Jancovi´c and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20, (1991), 109-126.R. A. Hosny, Some types of compactness via ideal, International J. Sci. & Eng. Res., 4, No. 5 (2013), 1293-1296.N. Levine, Semi-open and semi-continuity in topological spaces, Amer. Math. Mountly, 70, (1963), 36-41. DOI: 10.2307/2312781N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96.A. A. Nasef and T. Noiri, On α-compact modulo an ideal, Far East J. Math. Sci., 6, No. 6 (1998), 857-865.A. A. Nasef, Some classes of compactness in terms of ideals, Soochow Jour. of Math., 27, No. 3 (2001), 343-352.R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation, Univ. of Cal. at Santa Barbara, (1967).O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970. DOI: 10.2140/pjm.1965.15.961D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, No. 1 (1972), 193-197.MatemáticasMatemáticas - FórmulasidealI-compactSI-compactαI-compactβI-compactγI-compactidealI-compactoSI-compactoαI-compactoβI-compactoγI-compactoLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1399/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdfapplication/pdf143266https://repositorio.escuelaing.edu.co/bitstream/001/1399/2/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdfbb27de8953ba54c0e907039b35f0c2c2MD52open accessTEXTNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.txtNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.txtExtracted texttext/plain25423https://repositorio.escuelaing.edu.co/bitstream/001/1399/3/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.txtc00d4734e52598a0ac3a5316b7b8d9d9MD53open accessTHUMBNAILNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.jpgNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.jpgGenerated Thumbnailimage/jpeg10667https://repositorio.escuelaing.edu.co/bitstream/001/1399/4/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.jpgd3c203a7965773d6b7da55a98bc2ce5cMD54open access001/1399oai:repositorio.escuelaing.edu.co:001/13992021-10-01 17:53:41.703open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK