New forms of strong compactness in terms of ideals
The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types...
- Autores:
-
Pachon Rubiano, Néstor Raúl
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1399
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1399
http://dx.doi.org/10.12732/ijpam.v106i2.12
- Palabra clave:
- Matemáticas
Matemáticas - Fórmulas
ideal
I-compact
SI-compact
αI-compact
βI-compact
γI-compact
ideal
I-compacto
SI-compacto
αI-compacto
βI-compacto
γI-compacto
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_66d06ae3b9e2661080333d751e1bc52b |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1399 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
New forms of strong compactness in terms of ideals |
title |
New forms of strong compactness in terms of ideals |
spellingShingle |
New forms of strong compactness in terms of ideals Matemáticas Matemáticas - Fórmulas ideal I-compact SI-compact αI-compact βI-compact γI-compact ideal I-compacto SI-compacto αI-compacto βI-compacto γI-compacto |
title_short |
New forms of strong compactness in terms of ideals |
title_full |
New forms of strong compactness in terms of ideals |
title_fullStr |
New forms of strong compactness in terms of ideals |
title_full_unstemmed |
New forms of strong compactness in terms of ideals |
title_sort |
New forms of strong compactness in terms of ideals |
dc.creator.fl_str_mv |
Pachon Rubiano, Néstor Raúl |
dc.contributor.author.none.fl_str_mv |
Pachon Rubiano, Néstor Raúl |
dc.contributor.researchgroup.spa.fl_str_mv |
Matemáticas |
dc.subject.armarc.none.fl_str_mv |
Matemáticas Matemáticas - Fórmulas |
topic |
Matemáticas Matemáticas - Fórmulas ideal I-compact SI-compact αI-compact βI-compact γI-compact ideal I-compacto SI-compacto αI-compacto βI-compacto γI-compacto |
dc.subject.proposal.spa.fl_str_mv |
ideal I-compact SI-compact αI-compact βI-compact γI-compact ideal I-compacto SI-compacto αI-compacto βI-compacto γI-compacto |
description |
The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types of strong compactness modulo an ideal. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2021-05-06T02:32:07Z 2021-10-01T17:20:46Z |
dc.date.available.none.fl_str_mv |
2021-05-05 2021-10-01T17:20:46Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1311-8080 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1399 |
dc.identifier.doi.none.fl_str_mv |
10.12732/ijpam.v106i2.12 |
dc.identifier.url.none.fl_str_mv |
http://dx.doi.org/10.12732/ijpam.v106i2.12 |
identifier_str_mv |
1311-8080 10.12732/ijpam.v106i2.12 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1399 http://dx.doi.org/10.12732/ijpam.v106i2.12 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
IJPAM: Volumen 106, No. 2 (2016) |
dc.relation.citationendpage.spa.fl_str_mv |
493 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.spa.fl_str_mv |
481 |
dc.relation.citationvolume.spa.fl_str_mv |
106 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Pure and Applied Mathematics |
dc.relation.references.eng.fl_str_mv |
M. E. Abd El-Monsef, S. N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90. M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24, No. 4 (1993), 431-443. A. A. El Atik, A study of some types of mappings on topological spaces, Master’s thesis, Faculty of Science, Tanta University, Tanta, Egypt, (1997). M. K. Gupta and T. Noiri, C-compactness modulo an ideal, International J. Math. and Math. Sci., 2006, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135 A. Gupta and R. Kaur, Compact spaces with respect to an ideal, International. J. P. and Ap. Math., 92, No. 3 (2014), 443-448. DOI: 10.12732/ijpam.v92i3.11 T. R. Hamlett and D. Jancovi´c, Compactness with respect to an ideal, Boll. Un. Math. Ital., 7, No. 4B (1990), 849-861. T. R. Hamlett, D. Jancovi´c and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20, (1991), 109-126. R. A. Hosny, Some types of compactness via ideal, International J. Sci. & Eng. Res., 4, No. 5 (2013), 1293-1296. N. Levine, Semi-open and semi-continuity in topological spaces, Amer. Math. Mountly, 70, (1963), 36-41. DOI: 10.2307/2312781 N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96. A. A. Nasef and T. Noiri, On α-compact modulo an ideal, Far East J. Math. Sci., 6, No. 6 (1998), 857-865. A. A. Nasef, Some classes of compactness in terms of ideals, Soochow Jour. of Math., 27, No. 3 (2001), 343-352. R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation, Univ. of Cal. at Santa Barbara, (1967). O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970. DOI: 10.2140/pjm.1965.15.961 D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, No. 1 (1972), 193-197. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Publicaciones académicas Ltd. |
dc.publisher.place.spa.fl_str_mv |
Colombia |
dc.source.spa.fl_str_mv |
https://ijpam.eu/contents/2016-106-2/12/ |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1399/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1399/2/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1399/3/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1399/4/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a7ca94c2e5326ee169f979d71d0f06e bb27de8953ba54c0e907039b35f0c2c2 c00d4734e52598a0ac3a5316b7b8d9d9 d3c203a7965773d6b7da55a98bc2ce5c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355637868429312 |
spelling |
Pachon Rubiano, Néstor Raúld4f3434d033e2adbaa8e0f46ee7c56db600Matemáticas2021-05-06T02:32:07Z2021-10-01T17:20:46Z2021-05-052021-10-01T17:20:46Z20161311-8080https://repositorio.escuelaing.edu.co/handle/001/139910.12732/ijpam.v106i2.12http://dx.doi.org/10.12732/ijpam.v106i2.12The aim of this paper is to introduce and study new types of strong compactness, modulo an ideal, called ρI-compactness and σI-compactness. Several of their properties are presented and some effects of various kinds of functions on them are studied. We compare this new spaces with other known types of strong compactness modulo an ideal.El objetivo de este trabajo es introducir y estudiar nuevos tipos de compacidad fuerte, módulo de un ideal, denominados ρI-compacticidad y σI-compacticidad. Se presentan varias de sus propiedades y se estudian algunos efectos de varios tipos de funciones sobre ellos. Comparamos estos nuevos espacios con otros tipos conocidos de compacidad fuerte módulo a un ideal.14 páginasapplication/pdfengPublicaciones académicas Ltd.Colombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://ijpam.eu/contents/2016-106-2/12/New forms of strong compactness in terms of idealsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85IJPAM: Volumen 106, No. 2 (2016)4932481106N/AInternational Journal of Pure and Applied MathematicsM. E. Abd El-Monsef, S. N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24, No. 4 (1993), 431-443.A. A. El Atik, A study of some types of mappings on topological spaces, Master’s thesis, Faculty of Science, Tanta University, Tanta, Egypt, (1997).M. K. Gupta and T. Noiri, C-compactness modulo an ideal, International J. Math. and Math. Sci., 2006, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135A. Gupta and R. Kaur, Compact spaces with respect to an ideal, International. J. P. and Ap. Math., 92, No. 3 (2014), 443-448. DOI: 10.12732/ijpam.v92i3.11T. R. Hamlett and D. Jancovi´c, Compactness with respect to an ideal, Boll. Un. Math. Ital., 7, No. 4B (1990), 849-861.T. R. Hamlett, D. Jancovi´c and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20, (1991), 109-126.R. A. Hosny, Some types of compactness via ideal, International J. Sci. & Eng. Res., 4, No. 5 (2013), 1293-1296.N. Levine, Semi-open and semi-continuity in topological spaces, Amer. Math. Mountly, 70, (1963), 36-41. DOI: 10.2307/2312781N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96.A. A. Nasef and T. Noiri, On α-compact modulo an ideal, Far East J. Math. Sci., 6, No. 6 (1998), 857-865.A. A. Nasef, Some classes of compactness in terms of ideals, Soochow Jour. of Math., 27, No. 3 (2001), 343-352.R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation, Univ. of Cal. at Santa Barbara, (1967).O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970. DOI: 10.2140/pjm.1965.15.961D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, No. 1 (1972), 193-197.MatemáticasMatemáticas - FórmulasidealI-compactSI-compactαI-compactβI-compactγI-compactidealI-compactoSI-compactoαI-compactoβI-compactoγI-compactoLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1399/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdfapplication/pdf143266https://repositorio.escuelaing.edu.co/bitstream/001/1399/2/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdfbb27de8953ba54c0e907039b35f0c2c2MD52open accessTEXTNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.txtNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.txtExtracted texttext/plain25423https://repositorio.escuelaing.edu.co/bitstream/001/1399/3/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.txtc00d4734e52598a0ac3a5316b7b8d9d9MD53open accessTHUMBNAILNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.jpgNEW FORMS OF STRONG COMPACTNESS IN TERMS OF.pdf.jpgGenerated Thumbnailimage/jpeg10667https://repositorio.escuelaing.edu.co/bitstream/001/1399/4/NEW%20FORMS%20OF%20STRONG%20COMPACTNESS%20IN%20TERMS%20OF.pdf.jpgd3c203a7965773d6b7da55a98bc2ce5cMD54open access001/1399oai:repositorio.escuelaing.edu.co:001/13992021-10-01 17:53:41.703open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |