An Inductive Theorem on the Correctness of General Recursive Programs

We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By cons...

Full description

Autores:
Bohórquez, Jaime
Tipo de recurso:
Article of journal
Fecha de publicación:
2007
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1913
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1913
Palabra clave:
Lenguajes de programación
Teoría de punto fijo
Ecuaciones de operadores no lineales
Programming Lenguages
Fixed point theory
Nonlinear operator equations
Rights
closedAccess
License
© The Author, 2007. Published by Oxford University Press. All rights reserved
id ESCUELAIG2_5f452d49678a70c38635e97d2e104e2f
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1913
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv An Inductive Theorem on the Correctness of General Recursive Programs
title An Inductive Theorem on the Correctness of General Recursive Programs
spellingShingle An Inductive Theorem on the Correctness of General Recursive Programs
Lenguajes de programación
Teoría de punto fijo
Ecuaciones de operadores no lineales
Programming Lenguages
Fixed point theory
Nonlinear operator equations
title_short An Inductive Theorem on the Correctness of General Recursive Programs
title_full An Inductive Theorem on the Correctness of General Recursive Programs
title_fullStr An Inductive Theorem on the Correctness of General Recursive Programs
title_full_unstemmed An Inductive Theorem on the Correctness of General Recursive Programs
title_sort An Inductive Theorem on the Correctness of General Recursive Programs
dc.creator.fl_str_mv Bohórquez, Jaime
dc.contributor.author.none.fl_str_mv Bohórquez, Jaime
dc.contributor.researchgroup.spa.fl_str_mv Informática
dc.subject.armarc.spa.fl_str_mv Lenguajes de programación
Teoría de punto fijo
Ecuaciones de operadores no lineales
topic Lenguajes de programación
Teoría de punto fijo
Ecuaciones de operadores no lineales
Programming Lenguages
Fixed point theory
Nonlinear operator equations
dc.subject.armarc.eng.fl_str_mv Programming Lenguages
Fixed point theory
Nonlinear operator equations
description We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By considering the structure of its code and specification, we propose regularity conditions on the predicate transformer associated to the fixed-point equation of a general (non deterministic) recursive program to prove it correct by induction on a well founded ordering of a covering of the domain of its corresponding input-output relation. All fixed point solutions associated to a predicate transformer satisfying these regularity conditions coincide when restricted to the domain of its least fixed point solution. We find these conditions non unduly restrictive, since continuous operators defining deterministic programs as their corresponding least fixed-point solutions must fulfill them. We couch deterministic programs (viewed as least solutions of fixed-point equations) in a restriction of Hoare and Jifeng's P programming language of (partial) finitary relations into the greatest solutions of fixed-point equations expressed in terms of “total finitary” relations of an adequate restriction of their D language
publishDate 2007
dc.date.issued.none.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2021-12-07T17:38:36Z
dc.date.available.none.fl_str_mv 2021-12-07T17:38:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1913
url https://repositorio.escuelaing.edu.co/handle/001/1913
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 399
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 373
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv Logic Journal of the IGPL
dc.rights.eng.fl_str_mv © The Author, 2007. Published by Oxford University Press. All rights reserved
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
rights_invalid_str_mv © The Author, 2007. Published by Oxford University Press. All rights reserved
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 27 páginas.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Oxford University Press
dc.source.spa.fl_str_mv https://academic.oup.com/jigpal/article-abstract/15/5-6/373/747768?redirectedFrom=fulltext
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1913/1/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1913/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1913/3/IGPL.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1913/5/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1913/4/IGPL.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1913/6/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.jpg
bitstream.checksum.fl_str_mv e4251bf1e20e1596b2eea349c23c6b11
5a7ca94c2e5326ee169f979d71d0f06e
d784fa8b6d98d27699781bd9a7cf19f0
d784fa8b6d98d27699781bd9a7cf19f0
c9b9e1b56518704f53d743feabd9cd9c
c9b9e1b56518704f53d743feabd9cd9c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355622492110848
spelling Bohórquez, Jaime9808ec475ff4148b6ed5c2d2c2e80345600Informática2021-12-07T17:38:36Z2021-12-07T17:38:36Z2007https://repositorio.escuelaing.edu.co/handle/001/1913We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By considering the structure of its code and specification, we propose regularity conditions on the predicate transformer associated to the fixed-point equation of a general (non deterministic) recursive program to prove it correct by induction on a well founded ordering of a covering of the domain of its corresponding input-output relation. All fixed point solutions associated to a predicate transformer satisfying these regularity conditions coincide when restricted to the domain of its least fixed point solution. We find these conditions non unduly restrictive, since continuous operators defining deterministic programs as their corresponding least fixed-point solutions must fulfill them. We couch deterministic programs (viewed as least solutions of fixed-point equations) in a restriction of Hoare and Jifeng's P programming language of (partial) finitary relations into the greatest solutions of fixed-point equations expressed in terms of “total finitary” relations of an adequate restriction of their D languageProbamos un teorema inductivo relativamente simple (análogo al teorema de invariancia de Floyd y Dijkstra para programas iterativos) para verificar la corrección de una amplia clase de programas recursivos generales no deterministas. Este resultado se basa en la semántica relacional de Hoare y Jifeng. Al considerar la estructura de su código y especificación, proponemos condiciones de regularidad sobre el predicado transformador asociado a la ecuación de punto fijo de un programa recursivo general (no determinista) para demostrar que es correcto por inducción sobre una ordenación bien fundamentada de una cobertura del dominio de su correspondiente relación input-output. Todas las soluciones de punto fijo asociadas a un transformador predicado que satisfacen estas condiciones de regularidad coinciden cuando se restringen al dominio de su solución de punto fijo mínimo. Encontramos estas condiciones no indebidamente restrictivas, ya que los operadores continuos que definen programas deterministas como sus correspondientes soluciones de punto fijo mínimo deben cumplirlas. Presentamos programas deterministas (considerados como soluciones mínimas de ecuaciones de punto fijo) en una restricción del lenguaje de programación P de Hoare y Jifeng de relaciones finitas (parciales) en las soluciones máximas de ecuaciones de punto fijo expresadas en términos de relaciones "totales finitarias" de una restricción adecuada de su lenguaje D27 páginas.application/pdfengOxford University Press© The Author, 2007. Published by Oxford University Press. All rights reservedinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbhttps://academic.oup.com/jigpal/article-abstract/15/5-6/373/747768?redirectedFrom=fulltextAn Inductive Theorem on the Correctness of General Recursive ProgramsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85399537315N/ALogic Journal of the IGPLLenguajes de programaciónTeoría de punto fijoEcuaciones de operadores no linealesProgramming LenguagesFixed point theoryNonlinear operator equationsORIGINALAn Inductive Theorem on the Correctness of General Recursive Programs.pdfAn Inductive Theorem on the Correctness of General Recursive Programs.pdfArtículo principal.application/pdf189444https://repositorio.escuelaing.edu.co/bitstream/001/1913/1/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdfe4251bf1e20e1596b2eea349c23c6b11MD51metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1913/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessTEXTIGPL.pdf.txtIGPL.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1913/3/IGPL.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD53open accessAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.txtAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1913/5/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD55metadata only accessTHUMBNAILIGPL.pdf.jpgIGPL.pdf.jpgGenerated Thumbnailimage/jpeg5486https://repositorio.escuelaing.edu.co/bitstream/001/1913/4/IGPL.pdf.jpgc9b9e1b56518704f53d743feabd9cd9cMD54open accessAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.jpgAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.jpgGenerated Thumbnailimage/jpeg5486https://repositorio.escuelaing.edu.co/bitstream/001/1913/6/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.jpgc9b9e1b56518704f53d743feabd9cd9cMD56metadata only access001/1913oai:repositorio.escuelaing.edu.co:001/19132023-06-07 14:27:24.653metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK