An Inductive Theorem on the Correctness of General Recursive Programs
We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By cons...
- Autores:
-
Bohórquez, Jaime
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2007
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1913
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1913
- Palabra clave:
- Lenguajes de programación
Teoría de punto fijo
Ecuaciones de operadores no lineales
Programming Lenguages
Fixed point theory
Nonlinear operator equations
- Rights
- closedAccess
- License
- © The Author, 2007. Published by Oxford University Press. All rights reserved
id |
ESCUELAIG2_5f452d49678a70c38635e97d2e104e2f |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1913 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An Inductive Theorem on the Correctness of General Recursive Programs |
title |
An Inductive Theorem on the Correctness of General Recursive Programs |
spellingShingle |
An Inductive Theorem on the Correctness of General Recursive Programs Lenguajes de programación Teoría de punto fijo Ecuaciones de operadores no lineales Programming Lenguages Fixed point theory Nonlinear operator equations |
title_short |
An Inductive Theorem on the Correctness of General Recursive Programs |
title_full |
An Inductive Theorem on the Correctness of General Recursive Programs |
title_fullStr |
An Inductive Theorem on the Correctness of General Recursive Programs |
title_full_unstemmed |
An Inductive Theorem on the Correctness of General Recursive Programs |
title_sort |
An Inductive Theorem on the Correctness of General Recursive Programs |
dc.creator.fl_str_mv |
Bohórquez, Jaime |
dc.contributor.author.none.fl_str_mv |
Bohórquez, Jaime |
dc.contributor.researchgroup.spa.fl_str_mv |
Informática |
dc.subject.armarc.spa.fl_str_mv |
Lenguajes de programación Teoría de punto fijo Ecuaciones de operadores no lineales |
topic |
Lenguajes de programación Teoría de punto fijo Ecuaciones de operadores no lineales Programming Lenguages Fixed point theory Nonlinear operator equations |
dc.subject.armarc.eng.fl_str_mv |
Programming Lenguages Fixed point theory Nonlinear operator equations |
description |
We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By considering the structure of its code and specification, we propose regularity conditions on the predicate transformer associated to the fixed-point equation of a general (non deterministic) recursive program to prove it correct by induction on a well founded ordering of a covering of the domain of its corresponding input-output relation. All fixed point solutions associated to a predicate transformer satisfying these regularity conditions coincide when restricted to the domain of its least fixed point solution. We find these conditions non unduly restrictive, since continuous operators defining deterministic programs as their corresponding least fixed-point solutions must fulfill them. We couch deterministic programs (viewed as least solutions of fixed-point equations) in a restriction of Hoare and Jifeng's P programming language of (partial) finitary relations into the greatest solutions of fixed-point equations expressed in terms of “total finitary” relations of an adequate restriction of their D language |
publishDate |
2007 |
dc.date.issued.none.fl_str_mv |
2007 |
dc.date.accessioned.none.fl_str_mv |
2021-12-07T17:38:36Z |
dc.date.available.none.fl_str_mv |
2021-12-07T17:38:36Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1913 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1913 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
399 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationstartpage.spa.fl_str_mv |
373 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Logic Journal of the IGPL |
dc.rights.eng.fl_str_mv |
© The Author, 2007. Published by Oxford University Press. All rights reserved |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
rights_invalid_str_mv |
© The Author, 2007. Published by Oxford University Press. All rights reserved http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
27 páginas. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Oxford University Press |
dc.source.spa.fl_str_mv |
https://academic.oup.com/jigpal/article-abstract/15/5-6/373/747768?redirectedFrom=fulltext |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1913/1/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1913/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1913/3/IGPL.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1913/5/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1913/4/IGPL.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1913/6/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.jpg |
bitstream.checksum.fl_str_mv |
e4251bf1e20e1596b2eea349c23c6b11 5a7ca94c2e5326ee169f979d71d0f06e d784fa8b6d98d27699781bd9a7cf19f0 d784fa8b6d98d27699781bd9a7cf19f0 c9b9e1b56518704f53d743feabd9cd9c c9b9e1b56518704f53d743feabd9cd9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355622492110848 |
spelling |
Bohórquez, Jaime9808ec475ff4148b6ed5c2d2c2e80345600Informática2021-12-07T17:38:36Z2021-12-07T17:38:36Z2007https://repositorio.escuelaing.edu.co/handle/001/1913We prove a relatively simple inductive theorem (analogous to Floyd and Dijkstra's Invariance Theorem for iterative programs) to verify the correctness of an ample class of non-deterministic general recursive programs. This result is based on Hoare and Jifeng's relational semantics. By considering the structure of its code and specification, we propose regularity conditions on the predicate transformer associated to the fixed-point equation of a general (non deterministic) recursive program to prove it correct by induction on a well founded ordering of a covering of the domain of its corresponding input-output relation. All fixed point solutions associated to a predicate transformer satisfying these regularity conditions coincide when restricted to the domain of its least fixed point solution. We find these conditions non unduly restrictive, since continuous operators defining deterministic programs as their corresponding least fixed-point solutions must fulfill them. We couch deterministic programs (viewed as least solutions of fixed-point equations) in a restriction of Hoare and Jifeng's P programming language of (partial) finitary relations into the greatest solutions of fixed-point equations expressed in terms of “total finitary” relations of an adequate restriction of their D languageProbamos un teorema inductivo relativamente simple (análogo al teorema de invariancia de Floyd y Dijkstra para programas iterativos) para verificar la corrección de una amplia clase de programas recursivos generales no deterministas. Este resultado se basa en la semántica relacional de Hoare y Jifeng. Al considerar la estructura de su código y especificación, proponemos condiciones de regularidad sobre el predicado transformador asociado a la ecuación de punto fijo de un programa recursivo general (no determinista) para demostrar que es correcto por inducción sobre una ordenación bien fundamentada de una cobertura del dominio de su correspondiente relación input-output. Todas las soluciones de punto fijo asociadas a un transformador predicado que satisfacen estas condiciones de regularidad coinciden cuando se restringen al dominio de su solución de punto fijo mínimo. Encontramos estas condiciones no indebidamente restrictivas, ya que los operadores continuos que definen programas deterministas como sus correspondientes soluciones de punto fijo mínimo deben cumplirlas. Presentamos programas deterministas (considerados como soluciones mínimas de ecuaciones de punto fijo) en una restricción del lenguaje de programación P de Hoare y Jifeng de relaciones finitas (parciales) en las soluciones máximas de ecuaciones de punto fijo expresadas en términos de relaciones "totales finitarias" de una restricción adecuada de su lenguaje D27 páginas.application/pdfengOxford University Press© The Author, 2007. Published by Oxford University Press. All rights reservedinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbhttps://academic.oup.com/jigpal/article-abstract/15/5-6/373/747768?redirectedFrom=fulltextAn Inductive Theorem on the Correctness of General Recursive ProgramsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85399537315N/ALogic Journal of the IGPLLenguajes de programaciónTeoría de punto fijoEcuaciones de operadores no linealesProgramming LenguagesFixed point theoryNonlinear operator equationsORIGINALAn Inductive Theorem on the Correctness of General Recursive Programs.pdfAn Inductive Theorem on the Correctness of General Recursive Programs.pdfArtículo principal.application/pdf189444https://repositorio.escuelaing.edu.co/bitstream/001/1913/1/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdfe4251bf1e20e1596b2eea349c23c6b11MD51metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1913/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessTEXTIGPL.pdf.txtIGPL.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1913/3/IGPL.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD53open accessAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.txtAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.txtExtracted texttext/plain2https://repositorio.escuelaing.edu.co/bitstream/001/1913/5/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD55metadata only accessTHUMBNAILIGPL.pdf.jpgIGPL.pdf.jpgGenerated Thumbnailimage/jpeg5486https://repositorio.escuelaing.edu.co/bitstream/001/1913/4/IGPL.pdf.jpgc9b9e1b56518704f53d743feabd9cd9cMD54open accessAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.jpgAn Inductive Theorem on the Correctness of General Recursive Programs.pdf.jpgGenerated Thumbnailimage/jpeg5486https://repositorio.escuelaing.edu.co/bitstream/001/1913/6/An%20Inductive%20Theorem%20on%20the%20Correctness%20of%20General%20Recursive%20Programs.pdf.jpgc9b9e1b56518704f53d743feabd9cd9cMD56metadata only access001/1913oai:repositorio.escuelaing.edu.co:001/19132023-06-07 14:27:24.653metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |