Between closed and Ig-closed sets

The concept of closed sets is a central object in general topology. In order to extend many of important properties of closed sets to a larger families, Norman Levine initiated the study of generalized closed sets. In this paper we introduce, via ideals, new generalizations of closed subsets, which...

Full description

Autores:
Pachon Rubiano, Néstor Raúl
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1393
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1393
Palabra clave:
Mateméticas
Acciones de grupos (Matemáticas)
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_5c2d9e1fcb4fb1270228e590051fc023
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1393
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Between closed and Ig-closed sets
title Between closed and Ig-closed sets
spellingShingle Between closed and Ig-closed sets
Mateméticas
Acciones de grupos (Matemáticas)
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
title_short Between closed and Ig-closed sets
title_full Between closed and Ig-closed sets
title_fullStr Between closed and Ig-closed sets
title_full_unstemmed Between closed and Ig-closed sets
title_sort Between closed and Ig-closed sets
dc.creator.fl_str_mv Pachon Rubiano, Néstor Raúl
dc.contributor.author.none.fl_str_mv Pachon Rubiano, Néstor Raúl
dc.contributor.researchgroup.spa.fl_str_mv Matemáticas
dc.subject.armarc.none.fl_str_mv Mateméticas
Acciones de grupos (Matemáticas)
topic Mateméticas
Acciones de grupos (Matemáticas)
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
dc.subject.proposal.spa.fl_str_mv g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
g-closed
Ig-closed
I-compact
I-normal
I-QHC
ρC(I)-compact.
description The concept of closed sets is a central object in general topology. In order to extend many of important properties of closed sets to a larger families, Norman Levine initiated the study of generalized closed sets. In this paper we introduce, via ideals, new generalizations of closed subsets, which are strong forms of the Ig-closed sets, called ρIg-closed sets and closed-I sets. We present some properties and applications of these new sets and compare the ρIg-closed sets and the closed-I sets with the g-closed sets introduced by Levine. We show that I-closed and closed-I are independent concepts, as well as I * -closed sets and closed-I concepts.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-05-05T18:11:32Z
2021-10-01T17:20:51Z
dc.date.available.none.fl_str_mv 2021-05-05
2021-10-01T17:20:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1307-5543
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1393
dc.identifier.doi.none.fl_str_mv 10.29020/nybg.ejpam.v11i2.3131
dc.identifier.url.none.fl_str_mv doi.org/10.29020/nybg.ejpam.v11i2.3131
identifier_str_mv 1307-5543
10.29020/nybg.ejpam.v11i2.3131
doi.org/10.29020/nybg.ejpam.v11i2.3131
url https://repositorio.escuelaing.edu.co/handle/001/1393
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv European Journal of Pure and Applied Mathematics, Vol. 11, No. 1, 2018, 299-314
dc.relation.citationendpage.spa.fl_str_mv 314
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 299
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv European Journal of Pure and Applied Mathematics
dc.relation.references.eng.fl_str_mv V. Renuka Devi and D. Sivaraj. A generalization of normal spaces. Archivum Mathematicum, 44:265–270, 2008.
S. Jafari and N. Rajesh. Generalized closed sets with respect to an ideal. Eur. Jour. of Pure and App. Math, 4(2):147–151, 2011.
D. Jancovic and T. R. Hamlett. New topologies from old via ideals. Amer. Math. Monthly, 97:295–310, 1990.
D. Jancovic and T. R. Hamlett. Compatible extensions of ideals. Bollettino U. M. I., (7):453–465, 1992.
N. Levine. Generalized closed sets in Topology. Rend. Circ. Mat. Palermo, 19(2):89– 96, 1970.
A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep. On precontinuous and weak precontinuous mappings. Proc. Math. and Phys. Soc. of Egypt, 53:47–53, 1982
Abd El Monsef, E. F. Lashien, and A. A. Nasef. On I-open sets and I-continuous functions. Kyungpook Math. Jour., 32(1):21–30, 1992.
R. L. Newcomb. Topologies which are compact modulo an ideal. PhD engthesis, Univ. of Calif. at Santa Barbara. California, 1967.
N. R. Pachón. New forms of strong compactness in terms of ideals. Int. Jour. of Pure and App. Math., 106(2):481–493, 2016.
N. R. Pachón. ρC(I)-compact and ρI-QHC spaces. Int. Jour. of Pure and App. Math., 108(2):199–214, 2016.
] J. Porter and J. Thomas. On H-closed and minimal Hausdorff spaces. Trans. Amer. Math. Soc., 138:159–170, 1969.
] R. Vaidyanathaswamy. The localization theory in set-topology. Proc. Indian Acad. Sci., 20:51–61, 1945.
G. Viglino. C-compact spaces. Duke Mathematical Journal, 36(4):761–764, 1969.
Suppose that X = ∪ α∈Λ Wα, where Wα ∈ τ ⊕ I for each α ∈ Λ. For all α ∈ Λ, there exist Vα ∈ τ and a collection {Ij}j∈Λα of elements in I, such that Wα = Vα ∪ ∪ j∈Λα Ij . Hence X = ∪ α∈Λ Vα ∪ ∪ α∈Λ ∪ j∈Λα Ij . Then X\ ∪ α∈Λ Vα ∈ I⊛ and since (X, τ, I ⊛) is ρI ⊛-compact, there exists Λ0 ⊆ Λ, finite, with X\ ∪ α∈Λ0 Vα ∈ I⊛. This implies that X\ ∪ α∈Λ0 Wα ∈ I⊛.
Suppose that X\ ∪ α∈Λ Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ . There exists I ∈ I such that X\ ∪ α∈Λ Vα = I, and so X = I∪ ∪ α∈Λ Vα. Given that (X, τ ⊕ I) is compact there exists Λ0 ⊆ Λ, finite, with X = I∪ ∪ α∈Λ0 Vα. Hence X\ ∪ α∈Λ0 Vα ⊆ I ∈ I and X\ ∪ α∈Λ0 Vα ∈ I.
Suppose that F\ ∪ α∈Λ Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ and F is closed in (X, τ ). There exists J ∈ I with F\ ∪ α∈Λ Vα = J, and so F ⊆ J ∪ ∪ α∈Λ Vα. Given that ( X, τ ⊕ I ) is C-compact and F is closed in ( X, τ ⊕ I ) , there exists Λ0 ⊆ Λ, finite, with F ⊆ adhτ⊕I (J) ∪ ∪ α∈Λ0 adhτ⊕I (Vα) ⊆ J ∪ ∪ α∈Λ0 Vα. Hence F\ ∪ α∈Λ0 Vα ⊆ J ∈ I and F\ ∪ α∈Λ0 Vα ∈ I. Parts (2) and (5) have similar demonstrations. □
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Business Global LLC
dc.publisher.place.eng.fl_str_mv New York
dc.source.spa.fl_str_mv https://www.ejpam.com/index.php/ejpam/article/view/3131/608
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1393/4/Between%20closed%20and%20Ig-closed%20sets.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1393/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1393/3/Between%20closed%20and%20Ig-closed%20sets.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1393/5/Between%20closed%20and%20Ig-closed%20sets.pdf.jpg
bitstream.checksum.fl_str_mv 2215186f6caea92473f83dd9ed0d7095
5a7ca94c2e5326ee169f979d71d0f06e
add7fa11541d067fdb74eac8eb3e2cf3
032840236f58be697ed9507dd1ea9a72
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355630426685440
spelling Pachon Rubiano, Néstor Raúld4f3434d033e2adbaa8e0f46ee7c56db600Matemáticas2021-05-05T18:11:32Z2021-10-01T17:20:51Z2021-05-052021-10-01T17:20:51Z20181307-5543https://repositorio.escuelaing.edu.co/handle/001/139310.29020/nybg.ejpam.v11i2.3131doi.org/10.29020/nybg.ejpam.v11i2.3131The concept of closed sets is a central object in general topology. In order to extend many of important properties of closed sets to a larger families, Norman Levine initiated the study of generalized closed sets. In this paper we introduce, via ideals, new generalizations of closed subsets, which are strong forms of the Ig-closed sets, called ρIg-closed sets and closed-I sets. We present some properties and applications of these new sets and compare the ρIg-closed sets and the closed-I sets with the g-closed sets introduced by Levine. We show that I-closed and closed-I are independent concepts, as well as I * -closed sets and closed-I concepts.El concepto de conjunto cerrado es un objeto central en la topología general. Con el fin de extender muchas de las propiedades importantes de los conjuntos cerrados a familias más amplias, Norman Levine inició el estudio de los conjuntos cerrados generalizados. En este trabajo introducimos, a través de ideales, nuevas generalizaciones de subconjuntos cerrados, que son formas fuertes de conjuntos cerrados. que son formas fuertes de los conjuntos cerrados Ig, llamados conjuntos cerrados ρIg y conjuntos cerrados-I. En presentamos algunas propiedades y aplicaciones de estos nuevos conjuntos y comparamos los conjuntos ρIg-cerrados y los conjuntos cerrados-I con los conjuntos g-cerrados introducidos por Levine. Demostramos que I-cerrado y cerrado-I son conceptos independientes, al igual que los conjuntos I * -cerrados y los conceptos cerrados-I.Néstor Raúl Pachón Rubiano Departamento de Matemáticas, Escuela Colombiana de Ingeniería, Bogotá, Colombia. Departamento de Matemáticas, Universidad Nacional, Bogotá, Colombia.Email addresses: nestor.pachon@escuelaing.edu.co, nrpachonr@unal.edu.co (N.R. Pachón)16 páginasapplication/pdfengBusiness Global LLCNew Yorkhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.ejpam.com/index.php/ejpam/article/view/3131/608Between closed and Ig-closed setsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85European Journal of Pure and Applied Mathematics, Vol. 11, No. 1, 2018, 299-314314129911N/AEuropean Journal of Pure and Applied MathematicsV. Renuka Devi and D. Sivaraj. A generalization of normal spaces. Archivum Mathematicum, 44:265–270, 2008.S. Jafari and N. Rajesh. Generalized closed sets with respect to an ideal. Eur. Jour. of Pure and App. Math, 4(2):147–151, 2011.D. Jancovic and T. R. Hamlett. New topologies from old via ideals. Amer. Math. Monthly, 97:295–310, 1990.D. Jancovic and T. R. Hamlett. Compatible extensions of ideals. Bollettino U. M. I., (7):453–465, 1992.N. Levine. Generalized closed sets in Topology. Rend. Circ. Mat. Palermo, 19(2):89– 96, 1970.A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep. On precontinuous and weak precontinuous mappings. Proc. Math. and Phys. Soc. of Egypt, 53:47–53, 1982Abd El Monsef, E. F. Lashien, and A. A. Nasef. On I-open sets and I-continuous functions. Kyungpook Math. Jour., 32(1):21–30, 1992.R. L. Newcomb. Topologies which are compact modulo an ideal. PhD engthesis, Univ. of Calif. at Santa Barbara. California, 1967.N. R. Pachón. New forms of strong compactness in terms of ideals. Int. Jour. of Pure and App. Math., 106(2):481–493, 2016.N. R. Pachón. ρC(I)-compact and ρI-QHC spaces. Int. Jour. of Pure and App. Math., 108(2):199–214, 2016.] J. Porter and J. Thomas. On H-closed and minimal Hausdorff spaces. Trans. Amer. Math. Soc., 138:159–170, 1969.] R. Vaidyanathaswamy. The localization theory in set-topology. Proc. Indian Acad. Sci., 20:51–61, 1945.G. Viglino. C-compact spaces. Duke Mathematical Journal, 36(4):761–764, 1969.Suppose that X = ∪ α∈Λ Wα, where Wα ∈ τ ⊕ I for each α ∈ Λ. For all α ∈ Λ, there exist Vα ∈ τ and a collection {Ij}j∈Λα of elements in I, such that Wα = Vα ∪ ∪ j∈Λα Ij . Hence X = ∪ α∈Λ Vα ∪ ∪ α∈Λ ∪ j∈Λα Ij . Then X\ ∪ α∈Λ Vα ∈ I⊛ and since (X, τ, I ⊛) is ρI ⊛-compact, there exists Λ0 ⊆ Λ, finite, with X\ ∪ α∈Λ0 Vα ∈ I⊛. This implies that X\ ∪ α∈Λ0 Wα ∈ I⊛.Suppose that X\ ∪ α∈Λ Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ . There exists I ∈ I such that X\ ∪ α∈Λ Vα = I, and so X = I∪ ∪ α∈Λ Vα. Given that (X, τ ⊕ I) is compact there exists Λ0 ⊆ Λ, finite, with X = I∪ ∪ α∈Λ0 Vα. Hence X\ ∪ α∈Λ0 Vα ⊆ I ∈ I and X\ ∪ α∈Λ0 Vα ∈ I.Suppose that F\ ∪ α∈Λ Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ and F is closed in (X, τ ). There exists J ∈ I with F\ ∪ α∈Λ Vα = J, and so F ⊆ J ∪ ∪ α∈Λ Vα. Given that ( X, τ ⊕ I ) is C-compact and F is closed in ( X, τ ⊕ I ) , there exists Λ0 ⊆ Λ, finite, with F ⊆ adhτ⊕I (J) ∪ ∪ α∈Λ0 adhτ⊕I (Vα) ⊆ J ∪ ∪ α∈Λ0 Vα. Hence F\ ∪ α∈Λ0 Vα ⊆ J ∈ I and F\ ∪ α∈Λ0 Vα ∈ I. Parts (2) and (5) have similar demonstrations. □MateméticasAcciones de grupos (Matemáticas)g-closedIg-closedI-compactI-normalI-QHCρC(I)-compact.g-closedIg-closedI-compactI-normalI-QHCρC(I)-compact.TEXTBetween closed and Ig-closed sets.pdf.txtBetween closed and Ig-closed sets.pdf.txtExtracted texttext/plain32379https://repositorio.escuelaing.edu.co/bitstream/001/1393/4/Between%20closed%20and%20Ig-closed%20sets.pdf.txt2215186f6caea92473f83dd9ed0d7095MD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1393/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALBetween closed and Ig-closed sets.pdfapplication/pdf246166https://repositorio.escuelaing.edu.co/bitstream/001/1393/3/Between%20closed%20and%20Ig-closed%20sets.pdfadd7fa11541d067fdb74eac8eb3e2cf3MD53open accessTHUMBNAILBetween closed and Ig-closed sets.pdf.jpgBetween closed and Ig-closed sets.pdf.jpgGenerated Thumbnailimage/jpeg10764https://repositorio.escuelaing.edu.co/bitstream/001/1393/5/Between%20closed%20and%20Ig-closed%20sets.pdf.jpg032840236f58be697ed9507dd1ea9a72MD55open access001/1393oai:repositorio.escuelaing.edu.co:001/13932021-10-01 17:35:58.547open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK