Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys
Cashew Nut Shell Liquid (CNSL) has been explored in several applications within the sustainability principles and circular economy of agro-industrial product waste. To understand the anticorrosive and lubricant properties of CNSL solutions, a multi-faceted approach, incorporating electrochemical ana...
- Autores:
-
Pino Hernández, Carlos Andrés
Esguerra Arce, Johanna
Amigó, Vicente
Klyatskina, Elizaveta
Ayala Garcia, Camilo
Álvarez, Oscar
Maranon, Alejandro
PORRAS HOLGUIN, ALICIA
Bermudez-Castañeda, Angela
Hernandez, Camilo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3135
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3135
https://doi.org/10.1016/j.wear.2024.205392
https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3Dihub
- Palabra clave:
- Cashew nut shell liquid
Corrosion
Tribocorrosion
Metallic alloys
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
id |
ESCUELAIG2_5bcc0e0d202b75571be077be82f2870f |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3135 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
title |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
spellingShingle |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys Cashew nut shell liquid Corrosion Tribocorrosion Metallic alloys |
title_short |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
title_full |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
title_fullStr |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
title_full_unstemmed |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
title_sort |
Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys |
dc.creator.fl_str_mv |
Pino Hernández, Carlos Andrés Esguerra Arce, Johanna Amigó, Vicente Klyatskina, Elizaveta Ayala Garcia, Camilo Álvarez, Oscar Maranon, Alejandro PORRAS HOLGUIN, ALICIA Bermudez-Castañeda, Angela Hernandez, Camilo |
dc.contributor.author.none.fl_str_mv |
Pino Hernández, Carlos Andrés Esguerra Arce, Johanna Amigó, Vicente Klyatskina, Elizaveta Ayala Garcia, Camilo Álvarez, Oscar Maranon, Alejandro PORRAS HOLGUIN, ALICIA Bermudez-Castañeda, Angela Hernandez, Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Diseños sostenibles en ingeniería mecánica |
dc.subject.proposal.eng.fl_str_mv |
Cashew nut shell liquid Corrosion Tribocorrosion Metallic alloys |
topic |
Cashew nut shell liquid Corrosion Tribocorrosion Metallic alloys |
description |
Cashew Nut Shell Liquid (CNSL) has been explored in several applications within the sustainability principles and circular economy of agro-industrial product waste. To understand the anticorrosive and lubricant properties of CNSL solutions, a multi-faceted approach, incorporating electrochemical analyses, immersion test, tribological measurements, and tribochemical characterization was carried out for mild steel AISI 1012, stainless steel AISI 420 and Aluminium Alloy 6061. Electrochemical analyses reveal a positive impact of CNSL, inducing a shift in corrosion potential to more positive values and a decrease in corrosion current, indicating effective corrosion inhibition for stainless steel and aluminium alloy. In mild steel, CNSL exhibits a mixed-type inhibition with efficiency increasing in correlation with oil concentration. The lubricating properties of CNSL are evident according to the coefficients of friction (COF) obtained and the elastohydrodynamic lubrication regime observed during tribological tests. Tribochemical tests demonstrate a reduction in wear and an improvement in tribocorrosion behavior under sliding conditions. CNSL emerges as a promising tribocorrosion mitigator, demonstrating multifaceted benefits. The concentration-dependent effects highlight the need for optimization in specific applications, particularly for passive materials. CNSL not only inhibits corrosion through film formation but also provides effective lubrication, reducing friction, wear, and chemical-mechanical degradation. This research contributes valuable insights to corrosion science. It proposes practical applications for CNSL in diverse industrial contexts, showcasing its potential as an environmentally friendly and sustainable solution for tribocorrosion challenges. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-28T16:36:27Z |
dc.date.available.none.fl_str_mv |
2024-06-28T16:36:27Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0043-1648 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3135 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.wear.2024.205392 |
dc.identifier.eissn.spa.fl_str_mv |
1873-2577 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3Dihub |
identifier_str_mv |
0043-1648 1873-2577 |
url |
https://repositorio.escuelaing.edu.co/handle/001/3135 https://doi.org/10.1016/j.wear.2024.205392 https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3Dihub |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
17 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
548 - 549 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Wear |
dc.relation.references.spa.fl_str_mv |
H. Hassannejad, A. Nouri, Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution, J. Mol. Liq. 254 (Mar. 2018) 377–382, https://doi.org/10.1016/j.molliq.2018.01.142. A.Y. El-Etre, A.I. Ali, A novel green inhibitor for C-steel corrosion in 2.0mol⋅L− 1 hydrochloric acid solution, Chin. J. Chem. Eng. 25 (3) (Mar. 2017) 373–380, https://doi.org/10.1016/j.cjche.2016.08.017. K. Hu, J. Zhuang, J. Ding, Z. Ma, F. Wang, X. Zeng, Influence of biomacromolecule DNA corrosion inhibitor on carbon steel, Corrosion Sci. 125 (Aug. 2017) 68–76, https://doi.org/10.1016/j.corsci.2017.06.004. M. Farsak, H. Keles¸, M. Keles¸, A new corrosion inhibitor for protection of low carbon steel in HCl solution, Corrosion Sci. 98 (Sep. 2015) 223–232, https://doi. org/10.1016/j.corsci.2015.05.036. N. Kıcır, G. Tansug, ˘ M. Erbil, T. Tüken, Investigation of ammonium (2,4- dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel, Corrosion Sci. 105 (Apr. 2016) 88–99, https://doi.org/10.1016/j. corsci.2016.01.006. R. Yıldız, T. Dogan, ˘ ˙ I. Dehri, Evaluation of corrosion inhibition of mild steel in 0.1M HCl by 4-amino-3-hydroxynaphthalene-1-sulphonic acid, Corrosion Sci. 85 (Aug. 2014) 215–221, https://doi.org/10.1016/j.corsci.2014.04.017. L.L. Liao, S. Mo, H.Q. Luo, N.B. Li, Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: experimental and theoretical studies, J. Colloid Interface Sci. 520 (Jun. 2018) 41–49, https://doi.org/10.1016/j. jcis.2018.02.071. P. Parthipan, et al., Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments, J. Mol. Liq. 240 (Aug. 2017) 121–127, https://doi.org/10.1016/j.molliq.2017.05.059. I. Radojˇci´c, K. Berkovi´c, S. Kovaˇc, J. Vorkapi´c-Furaˇc, Natural honey and black radish juice as tin corrosion inhibitors, Corrosion Sci. 50 (5) (May 2008) 1498–1504, https://doi.org/10.1016/j.corsci.2008.01.013. G. Ji, S. Anjum, S. Sundaram, R. Prakash, Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution, Corrosion Sci. 90 (Jan. 2015) 107–117, https://doi.org/10.1016/j.corsci.2014.10.002. M. Humood, M.H. Ghamary, P. Lan, L.L. Iaccino, X. Bao, A.A. Polycarpou, Influence of additives on the friction and wear reduction of oil-based drilling fluid, Wear 422–423 (Mar. 2019) 151–160, https://doi.org/10.1016/j. wear.2019.01.028. A. Siddaiah, A. Kasar, R. Ramachandran, P.L. Menezes, in: Tribocorrosion, A. Siddaiah, R. Ramachandran, P.L. Menezes (Eds.), Chapter 1 - Introduction to Tribocorrosion, Academic Press, 2021, pp. 1–16, https://doi.org/10.1016/B978-0- 12-818916-0.00002-X. S. Alkan, M.S. Gok, ¨ Effect of sliding wear and electrochemical potential on tribocorrosion behaviour of AISI 316 stainless steel in seawater, Engineering Science and Technology, an International Journal 24 (2) (Apr. 2021) 524–532, https://doi.org/10.1016/j.jestch.2020.07.004. S. Mischler, A.I. Munoz, Tribocorrosion, in: K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry, Elsevier, Oxford, 2018, pp. 504–514, https://doi.org/ 10.1016/B978-0-12-409547-2.13424-9. Y. Sun, V. Rana, Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution, Mater. Chem. Phys. 129 (1) (Sep. 2011) 138–147, https://doi.org/ 10.1016/j.matchemphys.2011.03.063. C.G. Mothe, N.N. Oliveira, J.S. de Freitas, M.G. Mothe, Cashew tree gum: a scientific and technological review, 2, International Journal of Environment, Agriculture and Biotechnology 2 (2) (Mar. 2017) [Online]. Available: https://ijeab. com/detail/cashew-tree-gum-a-scientific-and-technological-review/. (Accessed 7 December 2023). Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang, Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil, J. Clean. Prod. 87 (Jan. 2015) 930–940, https://doi.org/10.1016/j. jclepro.2014.10.027. S.M. Alves, B.S. Barros, M.F. Trajano, K.S.B. Ribeiro, E. Moura, Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions, Tribol. Int. 65 (Sep. 2013) 28–36, https://doi.org/10.1016/ j.triboint.2013.03.027. S. Guo, et al., Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy, J. Clean. Prod. 140 (Jan. 2017) 1060–1076, https://doi.org/10.1016/j. jclepro.2016.10.073 D. Lomonaco, G. Mele, S.E. Mazzetto, Cashew nutshell liquid (CNSL): from an agroindustrial waste to a sustainable alternative to petrochemical resources, in: P. Anilkumar (Ed.), Cashew Nut Shell Liquid: A Goldfield for Functional Materials, Springer International Publishing, Cham, 2017, pp. 19–38, https://doi.org/ 10.1007/978-3-319-47455-7_2. J. Porcayo-Calderon, et al., Sustainable development of palm oil: synthesis and electrochemical performance of corrosion inhibitors, J. Electrochem. Sci. Technol 8 (2) (Jun. 2017) 133–145, https://doi.org/10.33961/JECST.2017.8.2.133. D. Balgude, A.S. Sabnis, CNSL: an environment friendly alternative for the modern coating industry, J. Coating Technol. Res. 11 (2) (Mar. 2014) 169–183, https://doi. org/10.1007/s11998-013-9521-3. F. Jaillet, E. Darroman, A. Ratsimihety, R. Auvergne, B. Boutevin, S. Caillol, New biobased epoxy materials from cardanol, Eur. J. Lipid Sci. Technol. 116 (1) (2014) 63–73, https://doi.org/10.1002/ejlt.201300193. A.V.S. Padmanabhan, A.R. Takalkar, K, Synthesis and characterization of cashew nut shell liquid matrix compositions for composites applications, in: Biopolymers and Biomaterials, Apple Academic Press, 2018. S.E. Mazzetto, D. Lomonaco, G. Mele, Cashew nut oil: opportunities and challenges in the context of sustainable industrial development, Quím. Nova 32 (2009) 732–741, https://doi.org/10.1590/S0100-40422009000300017. L.B. Furtado, et al., Eco-friendly corrosion inhibitors based on Cashew nut shell liquid (CNSL) for acidizing fluids, J. Mol. Liq. 284 (Jun. 2019) 393–404, https:// doi.org/10.1016/j.molliq.2019.02.083. F. Moerman, E. Partington, Materials of construction for food processing equipment and services: requirements, strengths and weaknesses, Journal of Hygienic Engineering and Desing 6 (2014) 10–37. Seguridad en los objetos metálicos en contacto con alimentos. Guía de buenas practicas de fabricación y compra.,” Actualidad Aidimme. Accessed: January. 9,2024. [Online]. Available: https://actualidad.aidimme.es/2017/11/20/aidimmeestudia-la-seguridad-los-metales-presentes-utensilios-contacto-alimentos/, https:// actualidad.aidimme.es/2017/11/20/aidimme-estudia-la-seguridad-los-metalespresentes-utensilios-contacto-alimentos/. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
17 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
ElSevier |
dc.publisher.place.spa.fl_str_mv |
Países Bajos |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3Dihub |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3135/4/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3135/3/Portada%20-%20Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.png https://repositorio.escuelaing.edu.co/bitstream/001/3135/5/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3135/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3135/1/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf |
bitstream.checksum.fl_str_mv |
d4c360bcbc2a4d2cd5b99202d7243a42 3bf486ac0fac38518113b0f3a92f57e0 c708c57495e49409a1f126eedbd4cd7d 5a7ca94c2e5326ee169f979d71d0f06e 85c3e209113213e8932a455e54117fa4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355595777540096 |
spelling |
Pino Hernández, Carlos Andrésdce46721aa22b51a4c994393ad8f2a8f600Esguerra Arce, Johanna147c0a0162a4b3689186e50e396cfbdd600Amigó, Vicentedeed756ab909476b2cab071d138e0ec4600Klyatskina, Elizaveta5c58e5f600163f7e7041563bfd79bd9a600Ayala Garcia, Camilo7d823722ba6d7c88c9d8f47bc96756ff600Álvarez, Oscareb3fc2eb35118ab80aeb1573eee9ef34Maranon, Alejandro2c99cbb293bab3ddd019fcb66437f513600PORRAS HOLGUIN, ALICIAddfe605260828c9007704a48420c149e600Bermudez-Castañeda, Angela 96d4b90596f0af0bcb7715c79d59b8cd600Hernandez, Camilo102b737cea49dba2f49906ecbbafe5dd600Grupo de Investigación en Diseños sostenibles en ingeniería mecánica2024-06-28T16:36:27Z2024-06-28T16:36:27Z20240043-1648https://repositorio.escuelaing.edu.co/handle/001/3135https://doi.org/10.1016/j.wear.2024.2053921873-2577https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3DihubCashew Nut Shell Liquid (CNSL) has been explored in several applications within the sustainability principles and circular economy of agro-industrial product waste. To understand the anticorrosive and lubricant properties of CNSL solutions, a multi-faceted approach, incorporating electrochemical analyses, immersion test, tribological measurements, and tribochemical characterization was carried out for mild steel AISI 1012, stainless steel AISI 420 and Aluminium Alloy 6061. Electrochemical analyses reveal a positive impact of CNSL, inducing a shift in corrosion potential to more positive values and a decrease in corrosion current, indicating effective corrosion inhibition for stainless steel and aluminium alloy. In mild steel, CNSL exhibits a mixed-type inhibition with efficiency increasing in correlation with oil concentration. The lubricating properties of CNSL are evident according to the coefficients of friction (COF) obtained and the elastohydrodynamic lubrication regime observed during tribological tests. Tribochemical tests demonstrate a reduction in wear and an improvement in tribocorrosion behavior under sliding conditions. CNSL emerges as a promising tribocorrosion mitigator, demonstrating multifaceted benefits. The concentration-dependent effects highlight the need for optimization in specific applications, particularly for passive materials. CNSL not only inhibits corrosion through film formation but also provides effective lubrication, reducing friction, wear, and chemical-mechanical degradation. This research contributes valuable insights to corrosion science. It proposes practical applications for CNSL in diverse industrial contexts, showcasing its potential as an environmentally friendly and sustainable solution for tribocorrosion challenges.El líquido de cáscara de anacardo (CNSL) se ha explorado en varias aplicaciones dentro de los principios de sostenibilidad y la economía circular de los residuos de productos agroindustriales. Para comprender las propiedades anticorrosivas y lubricantes de las soluciones CNSL, se llevó a cabo un enfoque multifacético que incorpora análisis electroquímicos, pruebas de inmersión, mediciones tribológicas y caracterización triboquímica para acero dulce AISI 1012, acero inoxidable AISI 420 y aleación de aluminio 6061. Análisis electroquímicos revelan un impacto positivo de CNSL, induciendo un cambio en el potencial de corrosión a valores más positivos y una disminución en la corriente de corrosión, lo que indica una inhibición efectiva de la corrosión para el acero inoxidable y la aleación de aluminio. En acero dulce, CNSL exhibe una inhibición de tipo mixto con una eficiencia que aumenta en correlación con la concentración de aceite. Las propiedades lubricantes del CNSL son evidentes según los coeficientes de fricción (COF) obtenidos y el régimen de lubricación elastohidrodinámico observado durante las pruebas tribológicas. Las pruebas triboquímicas demuestran una reducción del desgaste y una mejora del comportamiento de tribocorrosión en condiciones de deslizamiento. CNSL emerge como un mitigador de tribocorrosión prometedor, que demuestra beneficios multifacéticos. Los efectos dependientes de la concentración resaltan la necesidad de optimización en aplicaciones específicas, particularmente para materiales pasivos. CNSL no solo inhibe la corrosión mediante la formación de una película, sino que también proporciona una lubricación eficaz, reduciendo la fricción, el desgaste y la degradación químico-mecánica. Esta investigación aporta conocimientos valiosos a la ciencia de la corrosión. Propone aplicaciones prácticas para CNSL en diversos contextos industriales, mostrando su potencial como una solución sostenible y respetuosa con el medio ambiente para los desafíos de la tribocorrosión.17 páginasapplication/pdfengElSevierPaíses Bajoshttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0043164824001571?via%3DihubInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloysArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85171548 - 549N/AWearH. Hassannejad, A. Nouri, Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution, J. Mol. Liq. 254 (Mar. 2018) 377–382, https://doi.org/10.1016/j.molliq.2018.01.142.A.Y. El-Etre, A.I. Ali, A novel green inhibitor for C-steel corrosion in 2.0mol⋅L− 1 hydrochloric acid solution, Chin. J. Chem. Eng. 25 (3) (Mar. 2017) 373–380, https://doi.org/10.1016/j.cjche.2016.08.017.K. Hu, J. Zhuang, J. Ding, Z. Ma, F. Wang, X. Zeng, Influence of biomacromolecule DNA corrosion inhibitor on carbon steel, Corrosion Sci. 125 (Aug. 2017) 68–76, https://doi.org/10.1016/j.corsci.2017.06.004.M. Farsak, H. Keles¸, M. Keles¸, A new corrosion inhibitor for protection of low carbon steel in HCl solution, Corrosion Sci. 98 (Sep. 2015) 223–232, https://doi. org/10.1016/j.corsci.2015.05.036.N. Kıcır, G. Tansug, ˘ M. Erbil, T. Tüken, Investigation of ammonium (2,4- dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel, Corrosion Sci. 105 (Apr. 2016) 88–99, https://doi.org/10.1016/j. corsci.2016.01.006.R. Yıldız, T. Dogan, ˘ ˙ I. Dehri, Evaluation of corrosion inhibition of mild steel in 0.1M HCl by 4-amino-3-hydroxynaphthalene-1-sulphonic acid, Corrosion Sci. 85 (Aug. 2014) 215–221, https://doi.org/10.1016/j.corsci.2014.04.017.L.L. Liao, S. Mo, H.Q. Luo, N.B. Li, Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: experimental and theoretical studies, J. Colloid Interface Sci. 520 (Jun. 2018) 41–49, https://doi.org/10.1016/j. jcis.2018.02.071.P. Parthipan, et al., Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments, J. Mol. Liq. 240 (Aug. 2017) 121–127, https://doi.org/10.1016/j.molliq.2017.05.059.I. Radojˇci´c, K. Berkovi´c, S. Kovaˇc, J. Vorkapi´c-Furaˇc, Natural honey and black radish juice as tin corrosion inhibitors, Corrosion Sci. 50 (5) (May 2008) 1498–1504, https://doi.org/10.1016/j.corsci.2008.01.013.G. Ji, S. Anjum, S. Sundaram, R. Prakash, Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution, Corrosion Sci. 90 (Jan. 2015) 107–117, https://doi.org/10.1016/j.corsci.2014.10.002.M. Humood, M.H. Ghamary, P. Lan, L.L. Iaccino, X. Bao, A.A. Polycarpou, Influence of additives on the friction and wear reduction of oil-based drilling fluid, Wear 422–423 (Mar. 2019) 151–160, https://doi.org/10.1016/j. wear.2019.01.028.A. Siddaiah, A. Kasar, R. Ramachandran, P.L. Menezes, in: Tribocorrosion, A. Siddaiah, R. Ramachandran, P.L. Menezes (Eds.), Chapter 1 - Introduction to Tribocorrosion, Academic Press, 2021, pp. 1–16, https://doi.org/10.1016/B978-0- 12-818916-0.00002-X.S. Alkan, M.S. Gok, ¨ Effect of sliding wear and electrochemical potential on tribocorrosion behaviour of AISI 316 stainless steel in seawater, Engineering Science and Technology, an International Journal 24 (2) (Apr. 2021) 524–532, https://doi.org/10.1016/j.jestch.2020.07.004.S. Mischler, A.I. Munoz, Tribocorrosion, in: K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry, Elsevier, Oxford, 2018, pp. 504–514, https://doi.org/ 10.1016/B978-0-12-409547-2.13424-9.Y. Sun, V. Rana, Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution, Mater. Chem. Phys. 129 (1) (Sep. 2011) 138–147, https://doi.org/ 10.1016/j.matchemphys.2011.03.063.C.G. Mothe, N.N. Oliveira, J.S. de Freitas, M.G. Mothe, Cashew tree gum: a scientific and technological review, 2, International Journal of Environment, Agriculture and Biotechnology 2 (2) (Mar. 2017) [Online]. Available: https://ijeab. com/detail/cashew-tree-gum-a-scientific-and-technological-review/. (Accessed 7 December 2023).Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang, Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil, J. Clean. Prod. 87 (Jan. 2015) 930–940, https://doi.org/10.1016/j. jclepro.2014.10.027.S.M. Alves, B.S. Barros, M.F. Trajano, K.S.B. Ribeiro, E. Moura, Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions, Tribol. Int. 65 (Sep. 2013) 28–36, https://doi.org/10.1016/ j.triboint.2013.03.027.S. Guo, et al., Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy, J. Clean. Prod. 140 (Jan. 2017) 1060–1076, https://doi.org/10.1016/j. jclepro.2016.10.073D. Lomonaco, G. Mele, S.E. Mazzetto, Cashew nutshell liquid (CNSL): from an agroindustrial waste to a sustainable alternative to petrochemical resources, in: P. Anilkumar (Ed.), Cashew Nut Shell Liquid: A Goldfield for Functional Materials, Springer International Publishing, Cham, 2017, pp. 19–38, https://doi.org/ 10.1007/978-3-319-47455-7_2.J. Porcayo-Calderon, et al., Sustainable development of palm oil: synthesis and electrochemical performance of corrosion inhibitors, J. Electrochem. Sci. Technol 8 (2) (Jun. 2017) 133–145, https://doi.org/10.33961/JECST.2017.8.2.133.D. Balgude, A.S. Sabnis, CNSL: an environment friendly alternative for the modern coating industry, J. Coating Technol. Res. 11 (2) (Mar. 2014) 169–183, https://doi. org/10.1007/s11998-013-9521-3.F. Jaillet, E. Darroman, A. Ratsimihety, R. Auvergne, B. Boutevin, S. Caillol, New biobased epoxy materials from cardanol, Eur. J. Lipid Sci. Technol. 116 (1) (2014) 63–73, https://doi.org/10.1002/ejlt.201300193.A.V.S. Padmanabhan, A.R. Takalkar, K, Synthesis and characterization of cashew nut shell liquid matrix compositions for composites applications, in: Biopolymers and Biomaterials, Apple Academic Press, 2018.S.E. Mazzetto, D. Lomonaco, G. Mele, Cashew nut oil: opportunities and challenges in the context of sustainable industrial development, Quím. Nova 32 (2009) 732–741, https://doi.org/10.1590/S0100-40422009000300017.L.B. Furtado, et al., Eco-friendly corrosion inhibitors based on Cashew nut shell liquid (CNSL) for acidizing fluids, J. Mol. Liq. 284 (Jun. 2019) 393–404, https:// doi.org/10.1016/j.molliq.2019.02.083.F. Moerman, E. Partington, Materials of construction for food processing equipment and services: requirements, strengths and weaknesses, Journal of Hygienic Engineering and Desing 6 (2014) 10–37.Seguridad en los objetos metálicos en contacto con alimentos. Guía de buenas practicas de fabricación y compra.,” Actualidad Aidimme. Accessed: January. 9,2024. [Online]. Available: https://actualidad.aidimme.es/2017/11/20/aidimmeestudia-la-seguridad-los-metales-presentes-utensilios-contacto-alimentos/, https:// actualidad.aidimme.es/2017/11/20/aidimme-estudia-la-seguridad-los-metalespresentes-utensilios-contacto-alimentos/.Cashew nut shell liquidCorrosionTribocorrosionMetallic alloysTEXTInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdf.txtInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdf.txtExtracted texttext/plain77460https://repositorio.escuelaing.edu.co/bitstream/001/3135/4/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf.txtd4c360bcbc2a4d2cd5b99202d7243a42MD54open accessTHUMBNAILPortada - Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pngPortada - Influence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pngimage/png153516https://repositorio.escuelaing.edu.co/bitstream/001/3135/3/Portada%20-%20Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.png3bf486ac0fac38518113b0f3a92f57e0MD53open accessInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdf.jpgInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdf.jpgGenerated Thumbnailimage/jpeg13968https://repositorio.escuelaing.edu.co/bitstream/001/3135/5/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf.jpgc708c57495e49409a1f126eedbd4cd7dMD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3135/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdfInfluence of cashew nut shell liquid on corrosion and tribocorrosion behavior of metallic alloys.pdfArtículo de revistaapplication/pdf18742217https://repositorio.escuelaing.edu.co/bitstream/001/3135/1/Influence%20of%20cashew%20nut%20shell%20liquid%20on%20corrosion%20and%20tribocorrosion%20behavior%20of%20metallic%20alloys.pdf85c3e209113213e8932a455e54117fa4MD51open access001/3135oai:repositorio.escuelaing.edu.co:001/31352024-06-29 03:02:10.917open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |