Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion...
- Autores:
-
Céspedes, Nathalia
Raigoso, Denniss
Múnera, Marcela
Cifuentes, Carlos A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3252
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3252
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
COVID-19
Gait rehabilitation
Lokomat
Long-term human-robot interaction
Biofeedback
Socially assistive robotics
Rehabilitación de la marcha
Interacción humano-robot a largo plazo
Biorretroalimentación
Robótica de asistencia social
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_5aba83a384f613e149104408773980d8 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3252 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
title |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
spellingShingle |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic Robótica médica Robotics in medicine Tecnología médica Medical technology Rehabilitación médica Medical rehabilitation COVID-19 Gait rehabilitation Lokomat Long-term human-robot interaction Biofeedback Socially assistive robotics Rehabilitación de la marcha Interacción humano-robot a largo plazo Biorretroalimentación Robótica de asistencia social |
title_short |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
title_full |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
title_fullStr |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
title_full_unstemmed |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
title_sort |
Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic |
dc.creator.fl_str_mv |
Céspedes, Nathalia Raigoso, Denniss Múnera, Marcela Cifuentes, Carlos A. |
dc.contributor.author.none.fl_str_mv |
Céspedes, Nathalia Raigoso, Denniss Múnera, Marcela Cifuentes, Carlos A. |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Robótica médica Robotics in medicine Tecnología médica Medical technology Rehabilitación médica Medical rehabilitation |
topic |
Robótica médica Robotics in medicine Tecnología médica Medical technology Rehabilitación médica Medical rehabilitation COVID-19 Gait rehabilitation Lokomat Long-term human-robot interaction Biofeedback Socially assistive robotics Rehabilitación de la marcha Interacción humano-robot a largo plazo Biorretroalimentación Robótica de asistencia social |
dc.subject.proposal.eng.fl_str_mv |
COVID-19 Gait rehabilitation Lokomat Long-term human-robot interaction Biofeedback Socially assistive robotics |
dc.subject.proposal.spa.fl_str_mv |
Rehabilitación de la marcha Interacción humano-robot a largo plazo Biorretroalimentación Robótica de asistencia social |
description |
COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion rate. In this context, this paper presents a long-term evaluation of a social robotic platform for gait neurorehabilitation. The robot’s primary roles are monitoring physiological progress and promoting social interaction with human distancing during the sessions. A clinical validation with ten patients during 15 sessions were conducted in a rehabilitation center located in Colombia. Results showed that the robot’s support improves the patients’ physiological progress by reducing their unhealthy spinal posture time, with positive acceptance. 65% of patients described the platform as helpful and secure. Regarding the robot’s role within the therapy, the health care staff agreed (>95%) that this tool can promote physical distancing and it is highly useful to support neurorehabilitation throughout the pandemic. These outcomes suggest the benefits of this tool to be further implemented in the pandemic. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-02 |
dc.date.accessioned.none.fl_str_mv |
2024-09-06T20:34:05Z |
dc.date.available.none.fl_str_mv |
2024-09-06T20:34:05Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3252 |
dc.identifier.eissn.spa.fl_str_mv |
1662-5218 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
url |
https://repositorio.escuelaing.edu.co/handle/001/3252 https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
1662-5218 Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Vol. 15 February 2021 |
dc.relation.citationendpage.spa.fl_str_mv |
12 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Frontiers in Neurorobotics |
dc.relation.references.spa.fl_str_mv |
Agrigoroaie, R. M., and Tapus, A. (2016). “Developing a healthcare robot with personalized behaviors and social skills for the elderly,” in International Conference on Human Robot Interaction (Christchurch). doi: 10.1109/HRI.2016.7451870 Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5 Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining long-term human- computer relationships. ACM Trans. Comput. Hum. Interact. 2, 617–638. doi: 10.1145/1067860. 1067867 Campa, R., and Campa, R. (2016). The rise of social robots: a review of the recent literature. J. Evol. Technol. 26, 106–113. Carrillo, F. M., Butchart, J., Knight, S., Scheinberg, A., Wise, L., Sterling, L., et al. (2017). Adapting a general purpose social robot for paediatric rehabilitation through in-situ design. ACM Trans. Hum. Robot Interact. 7, 1–30. doi: 10.1145/3203304 Casas, J., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 12, 1–15. doi: 10.1007/s12369-020-00708-y Casas, J. A., Céspedes, N., Cifuentes, C. A., Gutierrez, L. F., RincónRoncancio, M., and Múnera, M. (2019). Expectation vs. reality: attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651 Cespedes, N., Munera, M., Gomez, C., and Cifuentes, C. A. (2020). Social humanrobot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 1299–1307. doi: 10.1109/TNSRE.2020.2987428 Cifuentes, C. A., Pinto, M. J., Céspedes, N., and Múnera, M. (2020). Social robots in therapy and care. Curr. Robot. Rep. 28, 1–16. doi: 10.1007/s43154-020-00009-2 Compagnant, M., Daviet, J. C., Mandigout, S., Lcroix, J., Vuillerme, N., and Salle, J. Y. (2017). Reliability of the rating of perceived exertion (Borg Scale) in post-stroke during 2 tasks of daily life. Ann. Phys. Rehabil. Med. 60, e1–e2. doi: 10.1016/j.rehab.2017.07.017 Daroff, R. (2016). Bradley’s Neurology in Clinical Practice. London: Elsevier. Duffy, B. R., Rooney, C. F. B., Hare, G. M. P. O., and Donoghue, R. P. S. O. (1999). “What is a social robot?” in 10th Irish Conference on Artificial Intelligence Cognitive Science (Ireland), 1–3 Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658 Feil-Seifer, D., and Mataric, M. J. (2011). Socially assistive robotics. ´ IEEE Robot. Automat. Mag. 18, 24–31. doi: 10.1109/MRA.2010.940150 Gittler, M., and Andrew, M. D. (2018). Guidelines for adult stroke rehabilitation and recovery. JAMA 319, 820–821. doi: 10.1001/jama.2017.22036 Heerink, M., Kröse, B., Evers, V., and Wielinga, B. (2010). Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375. doi: 10.1007/s12369-010-0068-5 Heerink, M., Vanderborght, B., Broekens, J., and Albo-Canals, J. (2016). New friends: social robots in therapy and education. Int. J. Soc. Robot. 8, 443–444. doi: 10.1007/s12369-016-0374-7 Hollander, J. E., and Carr, B. G. (2020). Virtually perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681. doi: 10.1056/NEJMp2003539 Jarvis, C. I., Van Zandvoort, K., Gimma, A., Prem, K., Auzenbergs, M., O’Reilly, K., et al. (2020). Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18:124. doi: 10.1186/s12916-020-01597-8 Kasap, Z., and Magnenat-Thalmann, N. (2012). Building long-term relationships with virtual and robotic characters: the role of remembering. Vis. Comput. 28, 87–97. doi: 10.1007/s00371-011-0630-7 Khaleghi, A., Mohammadi, M. R., Jahromi, G. P., and Zarafshan, H. (2020). New ways to manage pandemics: using technologies in the era of COVID-19, a narrative review. Iran J. Psychiatry 15, 236–242. doi: 10.18502/ijps.v15i3.3816 Kozyavkin, V., Kachmar, O., and Ablikova, I. (2014). “Humanoid social robots in the rehabilitation of children with cerebral palsy,” in Proceedings - REHAB 2014 (Tomar), 430–431. doi: 10.4108/icst.pervasivehealth.2014.255323 Leocani, L., Diserens, K., Moccia, M., and Caltagirone, C. (2020). Disability through COVID-19 pandemic: neurorehabilitation cannot wait. Eur. J. Neurol. 27, 50–51. doi: 10.1111/ene.14320 Libin, A. V., and Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc. IEEE 92, 1789–1803. doi: 10.1109/JPROC.2004.835366 Martín, A., Pulido, J. C., González, J. C., García-Olaya, Á., and Suárez, C. (2020). A framework for user adaptation and profiling for social robotics in rehabilitation. Sensors 20, 1–23. doi: 10.3390/s20174792 Mataric, M. J., Eriksson, J., Feil-Seifer, D. J., and Winstein, C. J. ( ´ 2007). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4:5. doi: 10.1186/1743-0003-4-5 Peleka, G., Kargakos, A., Skartados, E., Kostavelis, J., Giakoumis, D., Sarantopoulos, I., et al. (2018). “RAMCIP - a service robot for MCI patients at home,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Madrid), 1–9 Polak, R. F., and Levy-Tzedek, S. (2020). “A social robot for rehabilitation: expert clinicians and post-stroke patients’ evaluation following a longterm intervention,” in ACM/IEEE International Conference on Human-Robot Interaction (New York, NY: IEEE Computer Society), 151–160. Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P., and Fernández, F. (2017). Evaluating the child-robot interaction of the NAOTherapist platform in pediatric rehabilitation. Int. J. Soc. Robot. 9, 343–358. doi: 10.1007/s12369-017-0402-2 Robinson, H., MacDonald, B., Kerse, N., and Broadbent, E. (2013). The psychosocial effects of a companion robot: a randomized controlled trial. J. Am. Med. Direct. Assoc. 14, 661–667. doi: 10.1016/j.jamda.2013.02.007 Russo, L., and Trabacca, A. (2020). The ethic of care, disability and rehabilitation during the Covid-19 pandemic. Pediatr. Neurol. 111:39. doi: 10.1016/j.pediatrneurol.2020.06.006 Sabelli, A., Way, M., and Hagita, N. (2011). “A conversational robot in an elderly care center: an ethnographic study,” in HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (Lausanne), 37–44. doi: 10.1145/1957656.1957669 Sakel, M., Saunders, K., Chandi, J., Haxha, S., and Faruqui, R. (2020). Neurorehabilitation service during COVID-19 pandemic: best practices from UK. J. Pakistan Med. Assoc. 70, S136–S140. doi: 10.5455/JPMA.33 Sante, H. A. D. (2012). Accident Vasculaire Cerebral: Methodes de Reeducation de la fonction Motrice chez l’adulte. Haute Autorite de Sante, Saint-Denis La Plaine Cedex. Scassellati, B., and Vázquez, M. (2020). The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 5:eabc9014. doi: 10.1126/scirobotics.abc9014 Swinnen, E., Lefeber, N., Willaert, W., De Neef, F., Bruyndonckx, L., Spooren, A., et al. (2017). Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top. Stroke Rehabil. 24, 299–308. doi: 10.1080/10749357.2016.1266750 Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071 Weaver, L. J., and Ferg, A. L. (2020). Therapeutic measurement and testing. Clifton Park, NY: Delmar Cengage Learning WHO (2020). Coronavirus Disease 2019, Situation Report-192. doi: 10.1213/XAA.0000000000001218 Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometr. Bull. 1:80. doi: 10.2307/3001968 Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’18) (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273 Yang, L., Cheng, H., Hao, J., Ji, Y., and Kuang, Y. (2015). “A survey on media interaction in social robotics,” in Lecture Notes in Computer Science (Gwangju: Springer Verlag), 181–190. doi: 10.1007/978-3-319-24078-7_18 Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., et al. (2020). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368, 1481–1486. doi: 10.1126/science.abb8001 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Western University |
dc.publisher.place.spa.fl_str_mv |
Canadá |
dc.source.spa.fl_str_mv |
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.612034/full |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3252/4/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3252/3/Portada%20Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.JPG https://repositorio.escuelaing.edu.co/bitstream/001/3252/5/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3252/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3252/1/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf |
bitstream.checksum.fl_str_mv |
e676ea8084dfcb9b1627a4f28f58496d cc3aad33d7cb11ca5b7eab81578f9dad e16c6d8c0805d027f36fc18b1e63708c 5a7ca94c2e5326ee169f979d71d0f06e f5f3f6fe5cab5b7ad439cf0015f9aa1c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355586212429824 |
spelling |
Céspedes, Nathalia60511aded7d8a09c17c810c00f67c2d8Raigoso, Denniss1abb5649219c31ed284b49f0f2b26663Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-09-06T20:34:05Z2024-09-06T20:34:05Z2021-02https://repositorio.escuelaing.edu.co/handle/001/32521662-5218Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion rate. In this context, this paper presents a long-term evaluation of a social robotic platform for gait neurorehabilitation. The robot’s primary roles are monitoring physiological progress and promoting social interaction with human distancing during the sessions. A clinical validation with ten patients during 15 sessions were conducted in a rehabilitation center located in Colombia. Results showed that the robot’s support improves the patients’ physiological progress by reducing their unhealthy spinal posture time, with positive acceptance. 65% of patients described the platform as helpful and secure. Regarding the robot’s role within the therapy, the health care staff agreed (>95%) that this tool can promote physical distancing and it is highly useful to support neurorehabilitation throughout the pandemic. These outcomes suggest the benefits of this tool to be further implemented in the pandemic.La pandemia de COVID-19 ha afectado a la población mundial, evidenciando nuevos retos y oportunidades para varios tipos de tecnologías emergentes y existentes. La robótica social de asistencia podría ser una herramienta potencial para apoyar las áreas de atención clínica, promoviendo el distanciamiento físico y reduciendo la tasa de contagio. En este contexto, este artículo presenta una evaluación a largo plazo de una plataforma robótica social para la neurorrehabilitación de la marcha. Las funciones principales del robot son monitorear el progreso fisiológico y promover la interacción social con distanciamiento humano durante las sesiones. Se realizó una validación clínica con diez pacientes durante 15 sesiones en un centro de rehabilitación ubicado en Colombia. Los resultados mostraron que el apoyo del robot mejora el progreso fisiológico de los pacientes al reducir el tiempo de postura espinal no saludable, con una aceptación positiva. El 65% de los pacientes describieron la plataforma como útil y segura. En cuanto al papel del robot en la terapia, el personal sanitario estuvo de acuerdo (>95 %) en que esta herramienta puede promover el distanciamiento físico y es muy útil para apoyar la neurorrehabilitación durante la pandemia. Estos resultados sugieren que es beneficioso implementar esta herramienta en mayor medida durante la pandemia.12 páginasapplication/pdfengWestern UniversityCanadáhttps://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.612034/fullLong-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the PandemicArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 15 February 202112115Frontiers in NeuroroboticsAgrigoroaie, R. M., and Tapus, A. (2016). “Developing a healthcare robot with personalized behaviors and social skills for the elderly,” in International Conference on Human Robot Interaction (Christchurch). doi: 10.1109/HRI.2016.7451870Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining long-term human- computer relationships. ACM Trans. Comput. Hum. Interact. 2, 617–638. doi: 10.1145/1067860. 1067867Campa, R., and Campa, R. (2016). The rise of social robots: a review of the recent literature. J. Evol. Technol. 26, 106–113.Carrillo, F. M., Butchart, J., Knight, S., Scheinberg, A., Wise, L., Sterling, L., et al. (2017). Adapting a general purpose social robot for paediatric rehabilitation through in-situ design. ACM Trans. Hum. Robot Interact. 7, 1–30. doi: 10.1145/3203304Casas, J., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 12, 1–15. doi: 10.1007/s12369-020-00708-yCasas, J. A., Céspedes, N., Cifuentes, C. A., Gutierrez, L. F., RincónRoncancio, M., and Múnera, M. (2019). Expectation vs. reality: attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651Cespedes, N., Munera, M., Gomez, C., and Cifuentes, C. A. (2020). Social humanrobot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 1299–1307. doi: 10.1109/TNSRE.2020.2987428Cifuentes, C. A., Pinto, M. J., Céspedes, N., and Múnera, M. (2020). Social robots in therapy and care. Curr. Robot. Rep. 28, 1–16. doi: 10.1007/s43154-020-00009-2Compagnant, M., Daviet, J. C., Mandigout, S., Lcroix, J., Vuillerme, N., and Salle, J. Y. (2017). Reliability of the rating of perceived exertion (Borg Scale) in post-stroke during 2 tasks of daily life. Ann. Phys. Rehabil. Med. 60, e1–e2. doi: 10.1016/j.rehab.2017.07.017Daroff, R. (2016). Bradley’s Neurology in Clinical Practice. London: Elsevier.Duffy, B. R., Rooney, C. F. B., Hare, G. M. P. O., and Donoghue, R. P. S. O. (1999). “What is a social robot?” in 10th Irish Conference on Artificial Intelligence Cognitive Science (Ireland), 1–3Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658Feil-Seifer, D., and Mataric, M. J. (2011). Socially assistive robotics. ´ IEEE Robot. Automat. Mag. 18, 24–31. doi: 10.1109/MRA.2010.940150Gittler, M., and Andrew, M. D. (2018). Guidelines for adult stroke rehabilitation and recovery. JAMA 319, 820–821. doi: 10.1001/jama.2017.22036Heerink, M., Kröse, B., Evers, V., and Wielinga, B. (2010). Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375. doi: 10.1007/s12369-010-0068-5Heerink, M., Vanderborght, B., Broekens, J., and Albo-Canals, J. (2016). New friends: social robots in therapy and education. Int. J. Soc. Robot. 8, 443–444. doi: 10.1007/s12369-016-0374-7Hollander, J. E., and Carr, B. G. (2020). Virtually perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681. doi: 10.1056/NEJMp2003539Jarvis, C. I., Van Zandvoort, K., Gimma, A., Prem, K., Auzenbergs, M., O’Reilly, K., et al. (2020). Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18:124. doi: 10.1186/s12916-020-01597-8Kasap, Z., and Magnenat-Thalmann, N. (2012). Building long-term relationships with virtual and robotic characters: the role of remembering. Vis. Comput. 28, 87–97. doi: 10.1007/s00371-011-0630-7Khaleghi, A., Mohammadi, M. R., Jahromi, G. P., and Zarafshan, H. (2020). New ways to manage pandemics: using technologies in the era of COVID-19, a narrative review. Iran J. Psychiatry 15, 236–242. doi: 10.18502/ijps.v15i3.3816Kozyavkin, V., Kachmar, O., and Ablikova, I. (2014). “Humanoid social robots in the rehabilitation of children with cerebral palsy,” in Proceedings - REHAB 2014 (Tomar), 430–431. doi: 10.4108/icst.pervasivehealth.2014.255323Leocani, L., Diserens, K., Moccia, M., and Caltagirone, C. (2020). Disability through COVID-19 pandemic: neurorehabilitation cannot wait. Eur. J. Neurol. 27, 50–51. doi: 10.1111/ene.14320Libin, A. V., and Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc. IEEE 92, 1789–1803. doi: 10.1109/JPROC.2004.835366Martín, A., Pulido, J. C., González, J. C., García-Olaya, Á., and Suárez, C. (2020). A framework for user adaptation and profiling for social robotics in rehabilitation. Sensors 20, 1–23. doi: 10.3390/s20174792Mataric, M. J., Eriksson, J., Feil-Seifer, D. J., and Winstein, C. J. ( ´ 2007). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4:5. doi: 10.1186/1743-0003-4-5Peleka, G., Kargakos, A., Skartados, E., Kostavelis, J., Giakoumis, D., Sarantopoulos, I., et al. (2018). “RAMCIP - a service robot for MCI patients at home,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Madrid), 1–9Polak, R. F., and Levy-Tzedek, S. (2020). “A social robot for rehabilitation: expert clinicians and post-stroke patients’ evaluation following a longterm intervention,” in ACM/IEEE International Conference on Human-Robot Interaction (New York, NY: IEEE Computer Society), 151–160.Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P., and Fernández, F. (2017). Evaluating the child-robot interaction of the NAOTherapist platform in pediatric rehabilitation. Int. J. Soc. Robot. 9, 343–358. doi: 10.1007/s12369-017-0402-2Robinson, H., MacDonald, B., Kerse, N., and Broadbent, E. (2013). The psychosocial effects of a companion robot: a randomized controlled trial. J. Am. Med. Direct. Assoc. 14, 661–667. doi: 10.1016/j.jamda.2013.02.007Russo, L., and Trabacca, A. (2020). The ethic of care, disability and rehabilitation during the Covid-19 pandemic. Pediatr. Neurol. 111:39. doi: 10.1016/j.pediatrneurol.2020.06.006Sabelli, A., Way, M., and Hagita, N. (2011). “A conversational robot in an elderly care center: an ethnographic study,” in HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (Lausanne), 37–44. doi: 10.1145/1957656.1957669Sakel, M., Saunders, K., Chandi, J., Haxha, S., and Faruqui, R. (2020). Neurorehabilitation service during COVID-19 pandemic: best practices from UK. J. Pakistan Med. Assoc. 70, S136–S140. doi: 10.5455/JPMA.33Sante, H. A. D. (2012). Accident Vasculaire Cerebral: Methodes de Reeducation de la fonction Motrice chez l’adulte. Haute Autorite de Sante, Saint-Denis La Plaine Cedex.Scassellati, B., and Vázquez, M. (2020). The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 5:eabc9014. doi: 10.1126/scirobotics.abc9014Swinnen, E., Lefeber, N., Willaert, W., De Neef, F., Bruyndonckx, L., Spooren, A., et al. (2017). Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top. Stroke Rehabil. 24, 299–308. doi: 10.1080/10749357.2016.1266750Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071Weaver, L. J., and Ferg, A. L. (2020). Therapeutic measurement and testing. Clifton Park, NY: Delmar Cengage LearningWHO (2020). Coronavirus Disease 2019, Situation Report-192. doi: 10.1213/XAA.0000000000001218Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometr. Bull. 1:80. doi: 10.2307/3001968Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’18) (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273Yang, L., Cheng, H., Hao, J., Ji, Y., and Kuang, Y. (2015). “A survey on media interaction in social robotics,” in Lecture Notes in Computer Science (Gwangju: Springer Verlag), 181–190. doi: 10.1007/978-3-319-24078-7_18Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., et al. (2020). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368, 1481–1486. doi: 10.1126/science.abb8001info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineTecnología médicaMedical technologyRehabilitación médicaMedical rehabilitationCOVID-19Gait rehabilitationLokomatLong-term human-robot interactionBiofeedbackSocially assistive roboticsRehabilitación de la marchaInteracción humano-robot a largo plazoBiorretroalimentaciónRobótica de asistencia socialTEXTLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.txtLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.txtExtracted texttext/plain50116https://repositorio.escuelaing.edu.co/bitstream/001/3252/4/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.txte676ea8084dfcb9b1627a4f28f58496dMD54metadata only accessTHUMBNAILPortada Long-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.JPGPortada Long-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.JPGimage/jpeg78816https://repositorio.escuelaing.edu.co/bitstream/001/3252/3/Portada%20Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.JPGcc3aad33d7cb11ca5b7eab81578f9dadMD53open accessLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.jpgLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.jpgGenerated Thumbnailimage/jpeg15185https://repositorio.escuelaing.edu.co/bitstream/001/3252/5/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.jpge16c6d8c0805d027f36fc18b1e63708cMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3252/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdfLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdfapplication/pdf2574543https://repositorio.escuelaing.edu.co/bitstream/001/3252/1/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdff5f3f6fe5cab5b7ad439cf0015f9aa1cMD51metadata only access001/3252oai:repositorio.escuelaing.edu.co:001/32522024-09-07 03:00:37.736metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |