Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic

COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion...

Full description

Autores:
Céspedes, Nathalia
Raigoso, Denniss
Múnera, Marcela
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3252
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3252
https://repositorio.escuelaing.edu.co/
Palabra clave:
Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
COVID-19
Gait rehabilitation
Lokomat
Long-term human-robot interaction
Biofeedback
Socially assistive robotics
Rehabilitación de la marcha
Interacción humano-robot a largo plazo
Biorretroalimentación
Robótica de asistencia social
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_5aba83a384f613e149104408773980d8
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3252
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
title Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
spellingShingle Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
COVID-19
Gait rehabilitation
Lokomat
Long-term human-robot interaction
Biofeedback
Socially assistive robotics
Rehabilitación de la marcha
Interacción humano-robot a largo plazo
Biorretroalimentación
Robótica de asistencia social
title_short Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
title_full Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
title_fullStr Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
title_full_unstemmed Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
title_sort Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic
dc.creator.fl_str_mv Céspedes, Nathalia
Raigoso, Denniss
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Céspedes, Nathalia
Raigoso, Denniss
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
topic Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
COVID-19
Gait rehabilitation
Lokomat
Long-term human-robot interaction
Biofeedback
Socially assistive robotics
Rehabilitación de la marcha
Interacción humano-robot a largo plazo
Biorretroalimentación
Robótica de asistencia social
dc.subject.proposal.eng.fl_str_mv COVID-19
Gait rehabilitation
Lokomat
Long-term human-robot interaction
Biofeedback
Socially assistive robotics
dc.subject.proposal.spa.fl_str_mv Rehabilitación de la marcha
Interacción humano-robot a largo plazo
Biorretroalimentación
Robótica de asistencia social
description COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion rate. In this context, this paper presents a long-term evaluation of a social robotic platform for gait neurorehabilitation. The robot’s primary roles are monitoring physiological progress and promoting social interaction with human distancing during the sessions. A clinical validation with ten patients during 15 sessions were conducted in a rehabilitation center located in Colombia. Results showed that the robot’s support improves the patients’ physiological progress by reducing their unhealthy spinal posture time, with positive acceptance. 65% of patients described the platform as helpful and secure. Regarding the robot’s role within the therapy, the health care staff agreed (>95%) that this tool can promote physical distancing and it is highly useful to support neurorehabilitation throughout the pandemic. These outcomes suggest the benefits of this tool to be further implemented in the pandemic.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-02
dc.date.accessioned.none.fl_str_mv 2024-09-06T20:34:05Z
dc.date.available.none.fl_str_mv 2024-09-06T20:34:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3252
dc.identifier.eissn.spa.fl_str_mv 1662-5218
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
url https://repositorio.escuelaing.edu.co/handle/001/3252
https://repositorio.escuelaing.edu.co/
identifier_str_mv 1662-5218
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 15 February 2021
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.eng.fl_str_mv Frontiers in Neurorobotics
dc.relation.references.spa.fl_str_mv Agrigoroaie, R. M., and Tapus, A. (2016). “Developing a healthcare robot with personalized behaviors and social skills for the elderly,” in International Conference on Human Robot Interaction (Christchurch). doi: 10.1109/HRI.2016.7451870
Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5
Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining long-term human- computer relationships. ACM Trans. Comput. Hum. Interact. 2, 617–638. doi: 10.1145/1067860. 1067867
Campa, R., and Campa, R. (2016). The rise of social robots: a review of the recent literature. J. Evol. Technol. 26, 106–113.
Carrillo, F. M., Butchart, J., Knight, S., Scheinberg, A., Wise, L., Sterling, L., et al. (2017). Adapting a general purpose social robot for paediatric rehabilitation through in-situ design. ACM Trans. Hum. Robot Interact. 7, 1–30. doi: 10.1145/3203304
Casas, J., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 12, 1–15. doi: 10.1007/s12369-020-00708-y
Casas, J. A., Céspedes, N., Cifuentes, C. A., Gutierrez, L. F., RincónRoncancio, M., and Múnera, M. (2019). Expectation vs. reality: attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651
Cespedes, N., Munera, M., Gomez, C., and Cifuentes, C. A. (2020). Social humanrobot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 1299–1307. doi: 10.1109/TNSRE.2020.2987428
Cifuentes, C. A., Pinto, M. J., Céspedes, N., and Múnera, M. (2020). Social robots in therapy and care. Curr. Robot. Rep. 28, 1–16. doi: 10.1007/s43154-020-00009-2
Compagnant, M., Daviet, J. C., Mandigout, S., Lcroix, J., Vuillerme, N., and Salle, J. Y. (2017). Reliability of the rating of perceived exertion (Borg Scale) in post-stroke during 2 tasks of daily life. Ann. Phys. Rehabil. Med. 60, e1–e2. doi: 10.1016/j.rehab.2017.07.017
Daroff, R. (2016). Bradley’s Neurology in Clinical Practice. London: Elsevier.
Duffy, B. R., Rooney, C. F. B., Hare, G. M. P. O., and Donoghue, R. P. S. O. (1999). “What is a social robot?” in 10th Irish Conference on Artificial Intelligence Cognitive Science (Ireland), 1–3
Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658
Feil-Seifer, D., and Mataric, M. J. (2011). Socially assistive robotics. ´ IEEE Robot. Automat. Mag. 18, 24–31. doi: 10.1109/MRA.2010.940150
Gittler, M., and Andrew, M. D. (2018). Guidelines for adult stroke rehabilitation and recovery. JAMA 319, 820–821. doi: 10.1001/jama.2017.22036
Heerink, M., Kröse, B., Evers, V., and Wielinga, B. (2010). Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375. doi: 10.1007/s12369-010-0068-5
Heerink, M., Vanderborght, B., Broekens, J., and Albo-Canals, J. (2016). New friends: social robots in therapy and education. Int. J. Soc. Robot. 8, 443–444. doi: 10.1007/s12369-016-0374-7
Hollander, J. E., and Carr, B. G. (2020). Virtually perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681. doi: 10.1056/NEJMp2003539
Jarvis, C. I., Van Zandvoort, K., Gimma, A., Prem, K., Auzenbergs, M., O’Reilly, K., et al. (2020). Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18:124. doi: 10.1186/s12916-020-01597-8
Kasap, Z., and Magnenat-Thalmann, N. (2012). Building long-term relationships with virtual and robotic characters: the role of remembering. Vis. Comput. 28, 87–97. doi: 10.1007/s00371-011-0630-7
Khaleghi, A., Mohammadi, M. R., Jahromi, G. P., and Zarafshan, H. (2020). New ways to manage pandemics: using technologies in the era of COVID-19, a narrative review. Iran J. Psychiatry 15, 236–242. doi: 10.18502/ijps.v15i3.3816
Kozyavkin, V., Kachmar, O., and Ablikova, I. (2014). “Humanoid social robots in the rehabilitation of children with cerebral palsy,” in Proceedings - REHAB 2014 (Tomar), 430–431. doi: 10.4108/icst.pervasivehealth.2014.255323
Leocani, L., Diserens, K., Moccia, M., and Caltagirone, C. (2020). Disability through COVID-19 pandemic: neurorehabilitation cannot wait. Eur. J. Neurol. 27, 50–51. doi: 10.1111/ene.14320
Libin, A. V., and Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc. IEEE 92, 1789–1803. doi: 10.1109/JPROC.2004.835366
Martín, A., Pulido, J. C., González, J. C., García-Olaya, Á., and Suárez, C. (2020). A framework for user adaptation and profiling for social robotics in rehabilitation. Sensors 20, 1–23. doi: 10.3390/s20174792
Mataric, M. J., Eriksson, J., Feil-Seifer, D. J., and Winstein, C. J. ( ´ 2007). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4:5. doi: 10.1186/1743-0003-4-5
Peleka, G., Kargakos, A., Skartados, E., Kostavelis, J., Giakoumis, D., Sarantopoulos, I., et al. (2018). “RAMCIP - a service robot for MCI patients at home,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Madrid), 1–9
Polak, R. F., and Levy-Tzedek, S. (2020). “A social robot for rehabilitation: expert clinicians and post-stroke patients’ evaluation following a longterm intervention,” in ACM/IEEE International Conference on Human-Robot Interaction (New York, NY: IEEE Computer Society), 151–160.
Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P., and Fernández, F. (2017). Evaluating the child-robot interaction of the NAOTherapist platform in pediatric rehabilitation. Int. J. Soc. Robot. 9, 343–358. doi: 10.1007/s12369-017-0402-2
Robinson, H., MacDonald, B., Kerse, N., and Broadbent, E. (2013). The psychosocial effects of a companion robot: a randomized controlled trial. J. Am. Med. Direct. Assoc. 14, 661–667. doi: 10.1016/j.jamda.2013.02.007
Russo, L., and Trabacca, A. (2020). The ethic of care, disability and rehabilitation during the Covid-19 pandemic. Pediatr. Neurol. 111:39. doi: 10.1016/j.pediatrneurol.2020.06.006
Sabelli, A., Way, M., and Hagita, N. (2011). “A conversational robot in an elderly care center: an ethnographic study,” in HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (Lausanne), 37–44. doi: 10.1145/1957656.1957669
Sakel, M., Saunders, K., Chandi, J., Haxha, S., and Faruqui, R. (2020). Neurorehabilitation service during COVID-19 pandemic: best practices from UK. J. Pakistan Med. Assoc. 70, S136–S140. doi: 10.5455/JPMA.33
Sante, H. A. D. (2012). Accident Vasculaire Cerebral: Methodes de Reeducation de la fonction Motrice chez l’adulte. Haute Autorite de Sante, Saint-Denis La Plaine Cedex.
Scassellati, B., and Vázquez, M. (2020). The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 5:eabc9014. doi: 10.1126/scirobotics.abc9014
Swinnen, E., Lefeber, N., Willaert, W., De Neef, F., Bruyndonckx, L., Spooren, A., et al. (2017). Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top. Stroke Rehabil. 24, 299–308. doi: 10.1080/10749357.2016.1266750
Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071
Weaver, L. J., and Ferg, A. L. (2020). Therapeutic measurement and testing. Clifton Park, NY: Delmar Cengage Learning
WHO (2020). Coronavirus Disease 2019, Situation Report-192. doi: 10.1213/XAA.0000000000001218
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometr. Bull. 1:80. doi: 10.2307/3001968
Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’18) (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273
Yang, L., Cheng, H., Hao, J., Ji, Y., and Kuang, Y. (2015). “A survey on media interaction in social robotics,” in Lecture Notes in Computer Science (Gwangju: Springer Verlag), 181–190. doi: 10.1007/978-3-319-24078-7_18
Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., et al. (2020). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368, 1481–1486. doi: 10.1126/science.abb8001
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Western University
dc.publisher.place.spa.fl_str_mv Canadá
dc.source.spa.fl_str_mv https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.612034/full
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3252/4/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3252/3/Portada%20Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.JPG
https://repositorio.escuelaing.edu.co/bitstream/001/3252/5/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3252/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3252/1/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf
bitstream.checksum.fl_str_mv e676ea8084dfcb9b1627a4f28f58496d
cc3aad33d7cb11ca5b7eab81578f9dad
e16c6d8c0805d027f36fc18b1e63708c
5a7ca94c2e5326ee169f979d71d0f06e
f5f3f6fe5cab5b7ad439cf0015f9aa1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355586212429824
spelling Céspedes, Nathalia60511aded7d8a09c17c810c00f67c2d8Raigoso, Denniss1abb5649219c31ed284b49f0f2b26663Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-09-06T20:34:05Z2024-09-06T20:34:05Z2021-02https://repositorio.escuelaing.edu.co/handle/001/32521662-5218Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/COVID-19 pandemic has affected the population worldwide, evidencing new challenges and opportunities for several kinds of emergent and existing technologies. Social Assistive Robotics could be a potential tool to support clinical care areas, promoting physical distancing, and reducing the contagion rate. In this context, this paper presents a long-term evaluation of a social robotic platform for gait neurorehabilitation. The robot’s primary roles are monitoring physiological progress and promoting social interaction with human distancing during the sessions. A clinical validation with ten patients during 15 sessions were conducted in a rehabilitation center located in Colombia. Results showed that the robot’s support improves the patients’ physiological progress by reducing their unhealthy spinal posture time, with positive acceptance. 65% of patients described the platform as helpful and secure. Regarding the robot’s role within the therapy, the health care staff agreed (>95%) that this tool can promote physical distancing and it is highly useful to support neurorehabilitation throughout the pandemic. These outcomes suggest the benefits of this tool to be further implemented in the pandemic.La pandemia de COVID-19 ha afectado a la población mundial, evidenciando nuevos retos y oportunidades para varios tipos de tecnologías emergentes y existentes. La robótica social de asistencia podría ser una herramienta potencial para apoyar las áreas de atención clínica, promoviendo el distanciamiento físico y reduciendo la tasa de contagio. En este contexto, este artículo presenta una evaluación a largo plazo de una plataforma robótica social para la neurorrehabilitación de la marcha. Las funciones principales del robot son monitorear el progreso fisiológico y promover la interacción social con distanciamiento humano durante las sesiones. Se realizó una validación clínica con diez pacientes durante 15 sesiones en un centro de rehabilitación ubicado en Colombia. Los resultados mostraron que el apoyo del robot mejora el progreso fisiológico de los pacientes al reducir el tiempo de postura espinal no saludable, con una aceptación positiva. El 65% de los pacientes describieron la plataforma como útil y segura. En cuanto al papel del robot en la terapia, el personal sanitario estuvo de acuerdo (>95 %) en que esta herramienta puede promover el distanciamiento físico y es muy útil para apoyar la neurorrehabilitación durante la pandemia. Estos resultados sugieren que es beneficioso implementar esta herramienta en mayor medida durante la pandemia.12 páginasapplication/pdfengWestern UniversityCanadáhttps://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.612034/fullLong-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the PandemicArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 15 February 202112115Frontiers in NeuroroboticsAgrigoroaie, R. M., and Tapus, A. (2016). “Developing a healthcare robot with personalized behaviors and social skills for the elderly,” in International Conference on Human Robot Interaction (Christchurch). doi: 10.1109/HRI.2016.7451870Aymerich-Franch, L. (2020). Why it is time to stop ostracizing social robots. Nat. Mach. Intell. 2:364. doi: 10.1038/s42256-020-0202-5Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining long-term human- computer relationships. ACM Trans. Comput. Hum. Interact. 2, 617–638. doi: 10.1145/1067860. 1067867Campa, R., and Campa, R. (2016). The rise of social robots: a review of the recent literature. J. Evol. Technol. 26, 106–113.Carrillo, F. M., Butchart, J., Knight, S., Scheinberg, A., Wise, L., Sterling, L., et al. (2017). Adapting a general purpose social robot for paediatric rehabilitation through in-situ design. ACM Trans. Hum. Robot Interact. 7, 1–30. doi: 10.1145/3203304Casas, J., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 12, 1–15. doi: 10.1007/s12369-020-00708-yCasas, J. A., Céspedes, N., Cifuentes, C. A., Gutierrez, L. F., RincónRoncancio, M., and Múnera, M. (2019). Expectation vs. reality: attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651Cespedes, N., Munera, M., Gomez, C., and Cifuentes, C. A. (2020). Social humanrobot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 1299–1307. doi: 10.1109/TNSRE.2020.2987428Cifuentes, C. A., Pinto, M. J., Céspedes, N., and Múnera, M. (2020). Social robots in therapy and care. Curr. Robot. Rep. 28, 1–16. doi: 10.1007/s43154-020-00009-2Compagnant, M., Daviet, J. C., Mandigout, S., Lcroix, J., Vuillerme, N., and Salle, J. Y. (2017). Reliability of the rating of perceived exertion (Borg Scale) in post-stroke during 2 tasks of daily life. Ann. Phys. Rehabil. Med. 60, e1–e2. doi: 10.1016/j.rehab.2017.07.017Daroff, R. (2016). Bradley’s Neurology in Clinical Practice. London: Elsevier.Duffy, B. R., Rooney, C. F. B., Hare, G. M. P. O., and Donoghue, R. P. S. O. (1999). “What is a social robot?” in 10th Irish Conference on Artificial Intelligence Cognitive Science (Ireland), 1–3Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658Feil-Seifer, D., and Mataric, M. J. (2011). Socially assistive robotics. ´ IEEE Robot. Automat. Mag. 18, 24–31. doi: 10.1109/MRA.2010.940150Gittler, M., and Andrew, M. D. (2018). Guidelines for adult stroke rehabilitation and recovery. JAMA 319, 820–821. doi: 10.1001/jama.2017.22036Heerink, M., Kröse, B., Evers, V., and Wielinga, B. (2010). Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375. doi: 10.1007/s12369-010-0068-5Heerink, M., Vanderborght, B., Broekens, J., and Albo-Canals, J. (2016). New friends: social robots in therapy and education. Int. J. Soc. Robot. 8, 443–444. doi: 10.1007/s12369-016-0374-7Hollander, J. E., and Carr, B. G. (2020). Virtually perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681. doi: 10.1056/NEJMp2003539Jarvis, C. I., Van Zandvoort, K., Gimma, A., Prem, K., Auzenbergs, M., O’Reilly, K., et al. (2020). Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18:124. doi: 10.1186/s12916-020-01597-8Kasap, Z., and Magnenat-Thalmann, N. (2012). Building long-term relationships with virtual and robotic characters: the role of remembering. Vis. Comput. 28, 87–97. doi: 10.1007/s00371-011-0630-7Khaleghi, A., Mohammadi, M. R., Jahromi, G. P., and Zarafshan, H. (2020). New ways to manage pandemics: using technologies in the era of COVID-19, a narrative review. Iran J. Psychiatry 15, 236–242. doi: 10.18502/ijps.v15i3.3816Kozyavkin, V., Kachmar, O., and Ablikova, I. (2014). “Humanoid social robots in the rehabilitation of children with cerebral palsy,” in Proceedings - REHAB 2014 (Tomar), 430–431. doi: 10.4108/icst.pervasivehealth.2014.255323Leocani, L., Diserens, K., Moccia, M., and Caltagirone, C. (2020). Disability through COVID-19 pandemic: neurorehabilitation cannot wait. Eur. J. Neurol. 27, 50–51. doi: 10.1111/ene.14320Libin, A. V., and Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc. IEEE 92, 1789–1803. doi: 10.1109/JPROC.2004.835366Martín, A., Pulido, J. C., González, J. C., García-Olaya, Á., and Suárez, C. (2020). A framework for user adaptation and profiling for social robotics in rehabilitation. Sensors 20, 1–23. doi: 10.3390/s20174792Mataric, M. J., Eriksson, J., Feil-Seifer, D. J., and Winstein, C. J. ( ´ 2007). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4:5. doi: 10.1186/1743-0003-4-5Peleka, G., Kargakos, A., Skartados, E., Kostavelis, J., Giakoumis, D., Sarantopoulos, I., et al. (2018). “RAMCIP - a service robot for MCI patients at home,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Madrid), 1–9Polak, R. F., and Levy-Tzedek, S. (2020). “A social robot for rehabilitation: expert clinicians and post-stroke patients’ evaluation following a longterm intervention,” in ACM/IEEE International Conference on Human-Robot Interaction (New York, NY: IEEE Computer Society), 151–160.Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P., and Fernández, F. (2017). Evaluating the child-robot interaction of the NAOTherapist platform in pediatric rehabilitation. Int. J. Soc. Robot. 9, 343–358. doi: 10.1007/s12369-017-0402-2Robinson, H., MacDonald, B., Kerse, N., and Broadbent, E. (2013). The psychosocial effects of a companion robot: a randomized controlled trial. J. Am. Med. Direct. Assoc. 14, 661–667. doi: 10.1016/j.jamda.2013.02.007Russo, L., and Trabacca, A. (2020). The ethic of care, disability and rehabilitation during the Covid-19 pandemic. Pediatr. Neurol. 111:39. doi: 10.1016/j.pediatrneurol.2020.06.006Sabelli, A., Way, M., and Hagita, N. (2011). “A conversational robot in an elderly care center: an ethnographic study,” in HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (Lausanne), 37–44. doi: 10.1145/1957656.1957669Sakel, M., Saunders, K., Chandi, J., Haxha, S., and Faruqui, R. (2020). Neurorehabilitation service during COVID-19 pandemic: best practices from UK. J. Pakistan Med. Assoc. 70, S136–S140. doi: 10.5455/JPMA.33Sante, H. A. D. (2012). Accident Vasculaire Cerebral: Methodes de Reeducation de la fonction Motrice chez l’adulte. Haute Autorite de Sante, Saint-Denis La Plaine Cedex.Scassellati, B., and Vázquez, M. (2020). The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 5:eabc9014. doi: 10.1126/scirobotics.abc9014Swinnen, E., Lefeber, N., Willaert, W., De Neef, F., Bruyndonckx, L., Spooren, A., et al. (2017). Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top. Stroke Rehabil. 24, 299–308. doi: 10.1080/10749357.2016.1266750Tavakoli, M., Carriere, J., and Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2:2000071. doi: 10.1002/aisy.202000071Weaver, L. J., and Ferg, A. L. (2020). Therapeutic measurement and testing. Clifton Park, NY: Delmar Cengage LearningWHO (2020). Coronavirus Disease 2019, Situation Report-192. doi: 10.1213/XAA.0000000000001218Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometr. Bull. 1:80. doi: 10.2307/3001968Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’18) (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273Yang, L., Cheng, H., Hao, J., Ji, Y., and Kuang, Y. (2015). “A survey on media interaction in social robotics,” in Lecture Notes in Computer Science (Gwangju: Springer Verlag), 181–190. doi: 10.1007/978-3-319-24078-7_18Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., et al. (2020). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368, 1481–1486. doi: 10.1126/science.abb8001info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineTecnología médicaMedical technologyRehabilitación médicaMedical rehabilitationCOVID-19Gait rehabilitationLokomatLong-term human-robot interactionBiofeedbackSocially assistive roboticsRehabilitación de la marchaInteracción humano-robot a largo plazoBiorretroalimentaciónRobótica de asistencia socialTEXTLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.txtLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.txtExtracted texttext/plain50116https://repositorio.escuelaing.edu.co/bitstream/001/3252/4/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.txte676ea8084dfcb9b1627a4f28f58496dMD54metadata only accessTHUMBNAILPortada Long-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.JPGPortada Long-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.JPGimage/jpeg78816https://repositorio.escuelaing.edu.co/bitstream/001/3252/3/Portada%20Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.JPGcc3aad33d7cb11ca5b7eab81578f9dadMD53open accessLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.jpgLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdf.jpgGenerated Thumbnailimage/jpeg15185https://repositorio.escuelaing.edu.co/bitstream/001/3252/5/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdf.jpge16c6d8c0805d027f36fc18b1e63708cMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3252/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdfLong-Term Social Human-Robot Interaction for Neurorehabilitation Robots as a Tool to Support Gait Therapy in the Pandemic.pdfapplication/pdf2574543https://repositorio.escuelaing.edu.co/bitstream/001/3252/1/Long-Term%20Social%20Human-Robot%20Interaction%20for%20Neurorehabilitation%20Robots%20as%20a%20Tool%20to%20Support%20Gait%20Therapy%20in%20the%20Pandemic.pdff5f3f6fe5cab5b7ad439cf0015f9aa1cMD51metadata only access001/3252oai:repositorio.escuelaing.edu.co:001/32522024-09-07 03:00:37.736metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK