On exponential convergence of generic quantum Markov semigroups in a Wasserstein-type distance
We investigate about exponential convergence for generic quantum Markov semigroups using an generalization of the Lipschitz seminorm and a noncommutative analogue of Wasserstein distance. We show turns out to be closely related with classical convergence rate of reductions to diagonal subalgebras of...
- Autores:
-
Agredo Echeverry, Julian Andres
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1397
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1397
http://dx.doi.org/10.12732/ijpam.v107i4.9
- Palabra clave:
- Semigrupos cuánticos
Matemáticas
Quantum Markov semigroups
Wasserstein distance
Exponential convergence
Distancia de Wasserstein
Semigrupos cuánticos de Markov
Convergencia exponencial
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
Summary: | We investigate about exponential convergence for generic quantum Markov semigroups using an generalization of the Lipschitz seminorm and a noncommutative analogue of Wasserstein distance. We show turns out to be closely related with classical convergence rate of reductions to diagonal subalgebras of the given generic quantum Markov semigroups.In particular we compute the convergence rates of generic quantum Markov semigroups. |
---|