On exponential convergence of generic quantum Markov semigroups in a Wasserstein-type distance

We investigate about exponential convergence for generic quantum Markov semigroups using an generalization of the Lipschitz seminorm and a noncommutative analogue of Wasserstein distance. We show turns out to be closely related with classical convergence rate of reductions to diagonal subalgebras of...

Full description

Autores:
Agredo Echeverry, Julian Andres
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1397
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1397
http://dx.doi.org/10.12732/ijpam.v107i4.9
Palabra clave:
Semigrupos cuánticos
Matemáticas
Quantum Markov semigroups
Wasserstein distance
Exponential convergence
Distancia de Wasserstein
Semigrupos cuánticos de Markov
Convergencia exponencial
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
Description
Summary:We investigate about exponential convergence for generic quantum Markov semigroups using an generalization of the Lipschitz seminorm and a noncommutative analogue of Wasserstein distance. We show turns out to be closely related with classical convergence rate of reductions to diagonal subalgebras of the given generic quantum Markov semigroups.In particular we compute the convergence rates of generic quantum Markov semigroups.