Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería
Contexto: El incremento constante en el uso de vehículos eléctricos a nivel mundial ha motivado investigaciones para mejorar la autonomía de los mismos frente vehículos de combustión tradicionales. Este artıculo presenta el estudio de un sistema de carga de batería para vehículos eléctricos basado e...
- Autores:
-
Monroy, Cristian Camilo
Siachoque, Cristian Alejandro
Durán Tovar, Iván Camilo
Marulanda Guerra, Agustín Rafael
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1385
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1385
https://doi.org/10.14483/23448393.16220
- Palabra clave:
- Poder de frenado (Física nuclear)
Stopping power (Nuclear physics)
Eficiencia
Energía cinética
Estado de carga
Frenado regenerativo
Vehículo eléctrico
Efficiency
Electric vehicle
Kinetic energy
Regenerative brake
State of charge
- Rights
- openAccess
- License
- The authors; reproduction right holder Universidad Distrital Francisco José de Caldas.
id |
ESCUELAIG2_50fb6971354e41a653c2f4c51442c10c |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1385 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
dc.title.alternative.spa.fl_str_mv |
Comparative Study of a Regenerative Braking System and Regeneration with Constant Kinetic Energy in Battery-based Electric Vehicles |
title |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
spellingShingle |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería Poder de frenado (Física nuclear) Stopping power (Nuclear physics) Eficiencia Energía cinética Estado de carga Frenado regenerativo Vehículo eléctrico Efficiency Electric vehicle Kinetic energy Regenerative brake State of charge |
title_short |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
title_full |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
title_fullStr |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
title_full_unstemmed |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
title_sort |
Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería |
dc.creator.fl_str_mv |
Monroy, Cristian Camilo Siachoque, Cristian Alejandro Durán Tovar, Iván Camilo Marulanda Guerra, Agustín Rafael |
dc.contributor.author.none.fl_str_mv |
Monroy, Cristian Camilo Siachoque, Cristian Alejandro Durán Tovar, Iván Camilo Marulanda Guerra, Agustín Rafael |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Modelación Estratégica en Energía y Potencia |
dc.subject.armarc.spa.fl_str_mv |
Poder de frenado (Física nuclear) |
topic |
Poder de frenado (Física nuclear) Stopping power (Nuclear physics) Eficiencia Energía cinética Estado de carga Frenado regenerativo Vehículo eléctrico Efficiency Electric vehicle Kinetic energy Regenerative brake State of charge |
dc.subject.armarc.eng.fl_str_mv |
Stopping power (Nuclear physics) |
dc.subject.proposal.spa.fl_str_mv |
Eficiencia Energía cinética Estado de carga Frenado regenerativo Vehículo eléctrico Efficiency Electric vehicle Kinetic energy Regenerative brake State of charge |
description |
Contexto: El incremento constante en el uso de vehículos eléctricos a nivel mundial ha motivado investigaciones para mejorar la autonomía de los mismos frente vehículos de combustión tradicionales. Este artıculo presenta el estudio de un sistema de carga de batería para vehículos eléctricos basado en el movimiento constante del sistema de tracción. Método: Se realiza una evaluación sobre un sistema de regeneración de energía cinética constante para aumentar la autonomía de vehículos eléctricos. Esto se logra mediante la validación de un modelo matemático de consumo de energía de un vehículo eléctrico de batería con sistema de freno regenerativo, comparando mediante simulaciones los estados de consumo y carga entre los dos sistemas de recuperación de energía. Resultados: El vehículo con un sistema de regeneración por movimiento constante consumió 42,9 %m ́as de potencia que utilizando freno regenerativo, debido a que el nuevo sistema aumento la masa total en el vehículo. Dicho aumento de masa, hace que se deba consumir mayor potencia por parte del sistema de tracción para mover el vehículo. Conclusiones: El sistema convencional de freno regenerativo resulta m ́as favorable respecto al sistema de regeneración por energía cinética propuesto, excepto en tramos de velocidad constante y aceleración cero. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-05-04T13:55:41Z 2021-10-01T17:24:39Z |
dc.date.available.none.fl_str_mv |
2021-10-01T17:24:39Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2344-8393 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1385 |
dc.identifier.doi.none.fl_str_mv |
10.14483/23448393.16220 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.14483/23448393.16220 |
identifier_str_mv |
2344-8393 10.14483/23448393.16220 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1385 https://doi.org/10.14483/23448393.16220 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Ingeniería, Vol. 25, Num. 3, 2020. |
dc.relation.citationendpage.spa.fl_str_mv |
18 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
25 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingeniería |
dc.relation.references.spa.fl_str_mv |
International Energy Agency. “Global EV Outlook 2019”. Technical report, International Energy Agency, 2019. https://www.iea.org/reports/global-ev-outlook-2019. F. Un-Noor, S. Padmanaban, L. Mihet-Popa, and M. N. Mollah y E. Hossain. “A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development”. Energies, vol. 10, 2017. https://doi.org/10.3390/en10081217 E. Silvas¸, T. Hofman, and M. Steinbuch. “Review of Optimal Design Strategies for Hybrid Electric Vehicles”. IFAC Proceedings Volumes, vol. 45(30):57–64, 2012. https://doi.org/10.3182/20121023-3-FR-4025.00054 P. G. Anselma, A. Biswas, G. Belingardi, and A. Emadi. “Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles”. Applied Energy, vol. 275:1–11, 2020. https://doi.org/10.1016/j.apenergy.2020.115319 M. F. M. Sabri, K.A. Danapalasingam, and M.F. Rahmat. “A review on hybrid electric vehicles architecture and energy management strategies”. Renewable and Sustainable Energy Reviews, vol. 53(C):1433-1442, 2016. https://doi.org/10.1016/j.rser.2015.09.036 A. M. Andwari, A. Pesiridis, R. Srithar, R. Martinez-Botas, and V. Esfahanian. “A review of Battery Electric Vehicle technology and readiness levels”. Renewable and Sustainable Energy Reviews, vol. 78(C):414–430, 2017. https://doi.org/10.1016/j.rser.2017.03.138 A. Beltrán, J. Rumbo, H. Azcaray, K. Santiago, M. Calixto, and E. Sarmiento. “Simulación y control de la velocidad y par electromagnético de un motor de inducción trifásico: Un enfoque a vehículos eléctricos”. Revista Iberoamericana de Automática e Informática industrial, vol. 16(3):308–320, 2019. https://doi.org/10.4995/riai.2019.10452 A. Cruz-Rojas, J. Rumbo-Morales, J. de la Cruz-Soto, J. Brizuela-Mendoza, F. Sorcia-Vázquez, and M. Martínez-García. “Simulation and Control of Reactants Supply and Regulation of Air Temperature in a PEM Fuel Cells System with Capacity of 50 kW”. Revista Mexicana De Ingeniería Química, vol. 18(1): 349–360, 2019. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Martinez A. F. Pacheco, M. E. S. Martins, and H. Zhao. “New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results”. Fuel, vol. 111:733–739, 2013. https://doi.org/10.1016/j.fuel.2013.03.060 R. C. Redondo, M. Redondo, N. R. Melchor, F. R. Quintela, and J. M. García. “Carga de una batería y electricidad, dos términos de utilización confusa”. Técnica Industrial, N/A (257):34–39, 2005 M. K. Yoong, Y. H. Gan, G. D. Gan, C. K. Leong, Z. Y. Phuan, B. K. Cheah, and K. W. Chew. “Studies of regenerative braking in electric vehicle. In 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology”, pages 40–45, 2010. https://doi.org/10.1109/STUDENT.2010.5686984 W. Yu, R. Wang, and R. Zhou. “A Comparative Research on the Energy Recovery Potential of Different Vehicle Energy Regeneration Technologies”. Energy Procedia, vol. 158:2543–2548, 2019. https://doi.org/10.1016/j.egypro.2019.02.001 N. L. Hinov, D. N. Penev, and G. I. Vacheva. “Ultra Capacitors Charging by Regenerative Braking in Electric Vehicles”. Proceedings 2016 XXV International Scientific Conference Electronics (ET), pages 1–4, 2016. https://doi.org/10.1109/ET.2016.7753484 J. Hamid, R. Sheeba , and S. Sofiya. “Energy Harvesting through Regenerative Braking using Hybrid Storage System in Electric Vehicles”. Proceedings 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pages 1–6, 2019. https://doi.org/10.1109/INCOS45849.2019.8951323 A. P. Budijono, I. N. Sutantra , and A. S. Pramono. “Development of Flywheel Regenerative Capture System to Improve Electric Vehicle Energy Captured System”. Proceedings 2019 International Conference on Information and Communications Technology (ICOIACT), pages 845–850, 2019. https://doi.org/10.1109/ICOIACT46704.2019.8938552 S. Heydari, P. Fajri, R. Sabzehgar, and A. Asrari. “Optimal Blending of Regenerative and Friction Braking at Low Speeds for Maximizing Energy Extraction in Electric Vehicles”. Proceedings 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pages 6815–6819, 2019. https://doi.org/10.1109/ECCE.2019.8913117 C. Fiori, K. Ahn, and H. A. Rakha. “Power-based electric vehicle energy consumption model: Model development and validation”. Applied Energy, vol. 168:257 – 268, 2016. https://doi.org/10.1016/j.apenergy.2016.01.097 Organizacion Unece. “Worldwide harmonized Motorcycle Emissions Certification/Test procedure (WMTC) informalgroup”. Technical report, Organizacion Unece, 2011. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/wmtc.html U. N. E. Comission. “Draft global technical regulation”. Technical report, United Nations, 2003. https://www.unece.org/fileadmin/DAM/trans/doc/2003/wp29grpe/TRANS-WP29-GRPE-46-inf15e.pdf W. Saleh, R. Kumar, H. Kirby, and P. Kumar. “Real world driving cycle for motorcycles in Edinburgh”. Transportation Research Part D: Transport and Environment, vol. 14, no. 5, 326–333, 2009. https://doi.org/10.1016/j.trd.2009.03.003 U. S. E. P. Agency. “Dynamometer drive schedules”. Technical report, EPA, 2017. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules The Car Connection. “Characteristics Nissan leaf the car connection 2015”. Technical report, The Car Connection, 2015. https://www.thecarconnection.com/specifications/nissan_leaf_2015_base |
dc.rights.spa.fl_str_mv |
The authors; reproduction right holder Universidad Distrital Francisco José de Caldas. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
rights_invalid_str_mv |
The authors; reproduction right holder Universidad Distrital Francisco José de Caldas. https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Distrital Francisco José de Caldas |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia. |
dc.source.spa.fl_str_mv |
https://revistas.udistrital.edu.co/index.php/reving/article/view/16220/16101 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1385/3/10.1448323448393.16220.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1385/5/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1385/4/10.1448323448393.16220.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1385/6/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1385/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1385/2/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf |
bitstream.checksum.fl_str_mv |
94bda7189cdd7f383048ad7b4670600c 94bda7189cdd7f383048ad7b4670600c f0251b1ac54adcb946b30d86bb6d5edf f0251b1ac54adcb946b30d86bb6d5edf 5a7ca94c2e5326ee169f979d71d0f06e 1c653c9645c1415c71dd7e4f08c3d690 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355595725111296 |
spelling |
Monroy, Cristian Camiloe78b1fb0e9aa8c9ef4f754f56699bd09600Siachoque, Cristian Alejandrof213512265651f24e4ddfacb7e22b7a7600Durán Tovar, Iván Camiloe12fec0619876ce733f6b5bb68499c5d600Marulanda Guerra, Agustín Rafaelf499dac6eee4159065bf728527fc1dc5600Grupo de Modelación Estratégica en Energía y Potencia2021-05-04T13:55:41Z2021-10-01T17:24:39Z2021-10-01T17:24:39Z20202344-8393https://repositorio.escuelaing.edu.co/handle/001/138510.14483/23448393.16220https://doi.org/10.14483/23448393.16220Contexto: El incremento constante en el uso de vehículos eléctricos a nivel mundial ha motivado investigaciones para mejorar la autonomía de los mismos frente vehículos de combustión tradicionales. Este artıculo presenta el estudio de un sistema de carga de batería para vehículos eléctricos basado en el movimiento constante del sistema de tracción. Método: Se realiza una evaluación sobre un sistema de regeneración de energía cinética constante para aumentar la autonomía de vehículos eléctricos. Esto se logra mediante la validación de un modelo matemático de consumo de energía de un vehículo eléctrico de batería con sistema de freno regenerativo, comparando mediante simulaciones los estados de consumo y carga entre los dos sistemas de recuperación de energía. Resultados: El vehículo con un sistema de regeneración por movimiento constante consumió 42,9 %m ́as de potencia que utilizando freno regenerativo, debido a que el nuevo sistema aumento la masa total en el vehículo. Dicho aumento de masa, hace que se deba consumir mayor potencia por parte del sistema de tracción para mover el vehículo. Conclusiones: El sistema convencional de freno regenerativo resulta m ́as favorable respecto al sistema de regeneración por energía cinética propuesto, excepto en tramos de velocidad constante y aceleración cero.Context:The constant increase in the use of electric vehicles worldwide has motivated research to improve their autonomy compared to traditional combustion vehicles. This article presents the study of a battery charging system for electric vehicles based on the constant movement of the traction system. Method: An evaluation is carried out on a constant kinetic energy regeneration system to increase the autonomy of electric vehicles. This is achieved through the validation of a mathematical energy consumption model of a battery-based electric vehicle with a regenerative brake system, comparing the results of consumption and load states between the two energy recovery systems by means of simulations. Results: The vehicle with constant motion regeneration system consumed 42,9 % more power than the one using a regenerative brake because the new system increased the total mass in the vehicle. This increase in mass means that more power must be consumed by the traction system to move the vehicle. Conclusions: The conventional regenerative brake system is more favorable with respect to the proposed regeneration system for kinetic energy, except in constant speed and zero acceleration sections.Escuela Colombiana de Ingeniería Julio Garavito (Bogotá-Colombia),2Grupo de Modelación Estratégica en Energía y Potencia, Escuela Colombiana de Ingeniería Julio Garavito (Bogotá-Colombia) *Correspondence email: ivan.duran@escuelaing.edu.co18 páginasapplication/pdfspaUniversidad Distrital Francisco José de CaldasBogotá, Colombia.The authors; reproduction right holder Universidad Distrital Francisco José de Caldas.https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.udistrital.edu.co/index.php/reving/article/view/16220/16101Estudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de BateríaComparative Study of a Regenerative Braking System and Regeneration with Constant Kinetic Energy in Battery-based Electric VehiclesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería, Vol. 25, Num. 3, 2020.183125N/ARevista IngenieríaInternational Energy Agency. “Global EV Outlook 2019”. Technical report, International Energy Agency, 2019. https://www.iea.org/reports/global-ev-outlook-2019.F. Un-Noor, S. Padmanaban, L. Mihet-Popa, and M. N. Mollah y E. Hossain. “A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development”. Energies, vol. 10, 2017. https://doi.org/10.3390/en10081217E. Silvas¸, T. Hofman, and M. Steinbuch. “Review of Optimal Design Strategies for Hybrid Electric Vehicles”. IFAC Proceedings Volumes, vol. 45(30):57–64, 2012. https://doi.org/10.3182/20121023-3-FR-4025.00054P. G. Anselma, A. Biswas, G. Belingardi, and A. Emadi. “Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles”. Applied Energy, vol. 275:1–11, 2020. https://doi.org/10.1016/j.apenergy.2020.115319M. F. M. Sabri, K.A. Danapalasingam, and M.F. Rahmat. “A review on hybrid electric vehicles architecture and energy management strategies”. Renewable and Sustainable Energy Reviews, vol. 53(C):1433-1442, 2016. https://doi.org/10.1016/j.rser.2015.09.036A. M. Andwari, A. Pesiridis, R. Srithar, R. Martinez-Botas, and V. Esfahanian. “A review of Battery Electric Vehicle technology and readiness levels”. Renewable and Sustainable Energy Reviews, vol. 78(C):414–430, 2017. https://doi.org/10.1016/j.rser.2017.03.138A. Beltrán, J. Rumbo, H. Azcaray, K. Santiago, M. Calixto, and E. Sarmiento. “Simulación y control de la velocidad y par electromagnético de un motor de inducción trifásico: Un enfoque a vehículos eléctricos”. Revista Iberoamericana de Automática e Informática industrial, vol. 16(3):308–320, 2019. https://doi.org/10.4995/riai.2019.10452A. Cruz-Rojas, J. Rumbo-Morales, J. de la Cruz-Soto, J. Brizuela-Mendoza, F. Sorcia-Vázquez, and M. Martínez-García. “Simulation and Control of Reactants Supply and Regulation of Air Temperature in a PEM Fuel Cells System with Capacity of 50 kW”. Revista Mexicana De Ingeniería Química, vol. 18(1): 349–360, 2019. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/MartinezA. F. Pacheco, M. E. S. Martins, and H. Zhao. “New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results”. Fuel, vol. 111:733–739, 2013. https://doi.org/10.1016/j.fuel.2013.03.060R. C. Redondo, M. Redondo, N. R. Melchor, F. R. Quintela, and J. M. García. “Carga de una batería y electricidad, dos términos de utilización confusa”. Técnica Industrial, N/A (257):34–39, 2005M. K. Yoong, Y. H. Gan, G. D. Gan, C. K. Leong, Z. Y. Phuan, B. K. Cheah, and K. W. Chew. “Studies of regenerative braking in electric vehicle. In 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology”, pages 40–45, 2010. https://doi.org/10.1109/STUDENT.2010.5686984W. Yu, R. Wang, and R. Zhou. “A Comparative Research on the Energy Recovery Potential of Different Vehicle Energy Regeneration Technologies”. Energy Procedia, vol. 158:2543–2548, 2019. https://doi.org/10.1016/j.egypro.2019.02.001N. L. Hinov, D. N. Penev, and G. I. Vacheva. “Ultra Capacitors Charging by Regenerative Braking in Electric Vehicles”. Proceedings 2016 XXV International Scientific Conference Electronics (ET), pages 1–4, 2016. https://doi.org/10.1109/ET.2016.7753484J. Hamid, R. Sheeba , and S. Sofiya. “Energy Harvesting through Regenerative Braking using Hybrid Storage System in Electric Vehicles”. Proceedings 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pages 1–6, 2019. https://doi.org/10.1109/INCOS45849.2019.8951323A. P. Budijono, I. N. Sutantra , and A. S. Pramono. “Development of Flywheel Regenerative Capture System to Improve Electric Vehicle Energy Captured System”. Proceedings 2019 International Conference on Information and Communications Technology (ICOIACT), pages 845–850, 2019. https://doi.org/10.1109/ICOIACT46704.2019.8938552S. Heydari, P. Fajri, R. Sabzehgar, and A. Asrari. “Optimal Blending of Regenerative and Friction Braking at Low Speeds for Maximizing Energy Extraction in Electric Vehicles”. Proceedings 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pages 6815–6819, 2019. https://doi.org/10.1109/ECCE.2019.8913117C. Fiori, K. Ahn, and H. A. Rakha. “Power-based electric vehicle energy consumption model: Model development and validation”. Applied Energy, vol. 168:257 – 268, 2016. https://doi.org/10.1016/j.apenergy.2016.01.097Organizacion Unece. “Worldwide harmonized Motorcycle Emissions Certification/Test procedure (WMTC) informalgroup”. Technical report, Organizacion Unece, 2011. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/wmtc.htmlU. N. E. Comission. “Draft global technical regulation”. Technical report, United Nations, 2003. https://www.unece.org/fileadmin/DAM/trans/doc/2003/wp29grpe/TRANS-WP29-GRPE-46-inf15e.pdfW. Saleh, R. Kumar, H. Kirby, and P. Kumar. “Real world driving cycle for motorcycles in Edinburgh”. Transportation Research Part D: Transport and Environment, vol. 14, no. 5, 326–333, 2009. https://doi.org/10.1016/j.trd.2009.03.003U. S. E. P. Agency. “Dynamometer drive schedules”. Technical report, EPA, 2017. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedulesThe Car Connection. “Characteristics Nissan leaf the car connection 2015”. Technical report, The Car Connection, 2015. https://www.thecarconnection.com/specifications/nissan_leaf_2015_basePoder de frenado (Física nuclear)Stopping power (Nuclear physics)EficienciaEnergía cinéticaEstado de cargaFrenado regenerativoVehículo eléctricoEfficiencyElectric vehicleKinetic energyRegenerative brakeState of chargeTEXT10.1448323448393.16220.pdf.txt10.1448323448393.16220.pdf.txtExtracted texttext/plain46575https://repositorio.escuelaing.edu.co/bitstream/001/1385/3/10.1448323448393.16220.pdf.txt94bda7189cdd7f383048ad7b4670600cMD53open accessEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería.pdf.txtEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería.pdf.txtExtracted texttext/plain46575https://repositorio.escuelaing.edu.co/bitstream/001/1385/5/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf.txt94bda7189cdd7f383048ad7b4670600cMD55metadata only accessTHUMBNAIL10.1448323448393.16220.pdf.jpg10.1448323448393.16220.pdf.jpgGenerated Thumbnailimage/jpeg16835https://repositorio.escuelaing.edu.co/bitstream/001/1385/4/10.1448323448393.16220.pdf.jpgf0251b1ac54adcb946b30d86bb6d5edfMD54open accessEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería.pdf.jpgEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería.pdf.jpgGenerated Thumbnailimage/jpeg16835https://repositorio.escuelaing.edu.co/bitstream/001/1385/6/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf.jpgf0251b1ac54adcb946b30d86bb6d5edfMD56metadata only accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1385/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Batería.pdfapplication/pdf495384https://repositorio.escuelaing.edu.co/bitstream/001/1385/2/Estudio%20Comparativo%20de%20un%20Sistema%20de%20Freno%20Regenerativo%20y%20Regeneraci%c3%b3n%20con%20Energ%c3%ada%20Cin%c3%a9tica%20Constante%20en%20Veh%c3%adculos%20El%c3%a9ctricos%20de%20Bater%c3%ada.pdf1c653c9645c1415c71dd7e4f08c3d690MD52metadata only access001/1385oai:repositorio.escuelaing.edu.co:001/13852022-07-19 03:01:14.393metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |