Design of Self-regulating Planning Model
Purpose: This research aims to develop a dynamic and self-regulated application that considers demand forecasts, based on linear regression as a basic algorithm for machine learning. Methodology: This research uses aggregate planning and machine learning along with inventory policies through the sol...
- Autores:
-
Espitia Rincon, Maria Paula
Sanabria Martínez, David Alejandro
Abril Juzga, Kevin Alberto
Santos Hernández, Andrés Felipe
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2019
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1855
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1855
- Palabra clave:
- Aprendizaje automático (Inteligencia artificial) - Modelos matemáticos
Regresión lineal
Análisis de regresión
Programación lineal
Machine learning - Mathematical models
Linear Programming
Linear Regression,
Aggregate Planning
Cost Minimization
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_4cbf699a78d9690f394b4b0863630fcd |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1855 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Design of Self-regulating Planning Model |
title |
Design of Self-regulating Planning Model |
spellingShingle |
Design of Self-regulating Planning Model Aprendizaje automático (Inteligencia artificial) - Modelos matemáticos Regresión lineal Análisis de regresión Programación lineal Machine learning - Mathematical models Linear Programming Linear Regression, Aggregate Planning Cost Minimization |
title_short |
Design of Self-regulating Planning Model |
title_full |
Design of Self-regulating Planning Model |
title_fullStr |
Design of Self-regulating Planning Model |
title_full_unstemmed |
Design of Self-regulating Planning Model |
title_sort |
Design of Self-regulating Planning Model |
dc.creator.fl_str_mv |
Espitia Rincon, Maria Paula Sanabria Martínez, David Alejandro Abril Juzga, Kevin Alberto Santos Hernández, Andrés Felipe |
dc.contributor.author.none.fl_str_mv |
Espitia Rincon, Maria Paula Sanabria Martínez, David Alejandro Abril Juzga, Kevin Alberto Santos Hernández, Andrés Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Manufactura y Servicios |
dc.subject.armarc.spa.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) - Modelos matemáticos Regresión lineal Análisis de regresión Programación lineal |
topic |
Aprendizaje automático (Inteligencia artificial) - Modelos matemáticos Regresión lineal Análisis de regresión Programación lineal Machine learning - Mathematical models Linear Programming Linear Regression, Aggregate Planning Cost Minimization |
dc.subject.armarc.eng.fl_str_mv |
Machine learning - Mathematical models |
dc.subject.proposal.eng.fl_str_mv |
Linear Programming Linear Regression, Aggregate Planning Cost Minimization |
description |
Purpose: This research aims to develop a dynamic and self-regulated application that considers demand forecasts, based on linear regression as a basic algorithm for machine learning. Methodology: This research uses aggregate planning and machine learning along with inventory policies through the solver excel tool to make optimal decisions at the distribution center to reduce costs and guarantee the level of service. Findings: The findings after this study pertain to planning supply tactics in real-time, self-regulation of information in real-time and optimization of the frequency of the supply. Originality: An application capable of being updated in real-time by updating data by the planning director, which will show the optimal aggregate planning and the indicators of the costs associated with the picking operation of a company with 12000 SKU's (Stock Keeping Unit), in which a retail trade of 65 stores is carried out. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-11-24T17:51:20Z |
dc.date.available.none.fl_str_mv |
2021-11-24T17:51:20Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9789585233300 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1855 |
identifier_str_mv |
9789585233300 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1855 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofbook.eng.fl_str_mv |
Artificial Intelligence and Digital Transformation in Supply Chain Management |
dc.relation.references.spa.fl_str_mv |
Alonso, Martínez, Dorado,Páez, Lota, 2018. National logistics survey 2018, Bogotá: www.puntoaparte.com.co. Aldana, P., 2014. The cross docking as an important tool in the chain, Bogotá: University of Nueva Granada. Aldana, P., 2014. The cross docking as an important tool in the chain, Bogotá: University of Nueva Granada. Anon., 2017. ingenieriaindustrialonline. [Online] Available at: https://www.ingenieriaindustrialonline.com/herramientas-para-el-ingeniero-industrial/producci%C3%B3n/planeacion-agregada-mediante-programacion-lineal/ [Accessed 01 May 2019]. Borissova, D., 2008. Bibliography. Cybernetics and information technologies, 8(2), pp. 102-103. Chopra, M., 2008. Bibliography. En: L. M. C. Castillo, ed. Supply Chain management. Naucalpan de luárez (Mexico state): Pearson Education, pp. 56-57. Chopra, M., 2008. Bibliography. En: L. M. C. Castillo, ed. Supply Chain management. Naucalpan de luárez (Mexico state): Pearson Education, pp. 56-57. Columbus, 2018. 10 Ways Machine Learning Is Revolutionizing Supply Chain Management, New York: Forbes. Dinero, 2015. Competencia ragulacion farmacias. [Online] Available at: https://www.dinero.com/edicion-impresa/negocios/articulo/competencia-regulacion-farmacias/215331 [Accessed 01 May 2019]. Dinero, 2019.Accelerated expansion plan in Farmatodo, Bogotá: s.n. Espectador, E., 2016. El Espectador. [Online] Available at: https://www.elespectador.com/noticias/economia/colombia-hay-menos-3000-droguerias-de-barrioarticulo-654947 [Accessed 01 May 2019]. Fernández, I. A., 2011. Production and consumption: 49(1), pp. 179-191. Gandhi, R., 2018. towards data science. [Online] Available at: https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression14c4e325882a [Accessed 25 April 2019]. Gholamian, M.-M., 2015. Comprehensive fuzzy multi-objective multi-product multisite. 134(42), pp. 585-607. Granja, A.-L., 2014. An optimization-based on a simulation approach to patient admission. Journal of Biomedical Informatics, Issue 52, pp. 427-437. Julian, D., 2016. Designing Machine Learning Systems with Python. 1 ed. Birmingham B3 2PB: Packt Publishing Ltd. Pereira, J., 2018. BigData mazine. [Online] Available at: https://bigdatamagazine.es/utilizacion-de-big-data-y-machine-learning-en-la-industria-4-0 [Accessed 01 May 2019]. Rüssmann, L., 2015. Bibliography. En: I. 2. A. r. r. The Boston Consulting Group, ed. The Future of Productivity and Growth in Manufacturing Industries. Boston: The Boston Consulting Group, p. 5. Souza, C., 2018. Direct stockpile scheduling: Mathematical formulation •. 85(204), pp. 296-301. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
33 páginas. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL) |
dc.publisher.place.spa.fl_str_mv |
Berlín |
dc.source.spa.fl_str_mv |
https://www.econstor.eu/handle/10419/209383?locale=en |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1855/1/Design%20of%20Self-regulating%20Planning%20Model.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1855/2/Design%20of%20Self-regulating%20Planning%20Model.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1855/3/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1855/4/Design%20of%20Self-regulating%20Planning%20Model.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1855/5/Design%20of%20Self-regulating%20Planning%20Model.pdf.jpg |
bitstream.checksum.fl_str_mv |
a5fac5609280fb2c3e548dcd473c11b9 a5fac5609280fb2c3e548dcd473c11b9 5a7ca94c2e5326ee169f979d71d0f06e bc6d4d5f9c8239c9f54812ba4bfe198f ba039559011691d70d65d8d5aba72eca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355628515131392 |
spelling |
Espitia Rincon, Maria Paulaf989e555322c3c97f467203e08dfd514600Sanabria Martínez, David Alejandrodf9773ad3720a378b8280e3407b39ec3600Abril Juzga, Kevin Alberto6a68bfe0a477592f3478475909eb6839600Santos Hernández, Andrés Felipe76f7bdc11663a0365bc102ce36f71500600Manufactura y Servicios2021-11-24T17:51:20Z2021-11-24T17:51:20Z20199789585233300https://repositorio.escuelaing.edu.co/handle/001/1855Purpose: This research aims to develop a dynamic and self-regulated application that considers demand forecasts, based on linear regression as a basic algorithm for machine learning. Methodology: This research uses aggregate planning and machine learning along with inventory policies through the solver excel tool to make optimal decisions at the distribution center to reduce costs and guarantee the level of service. Findings: The findings after this study pertain to planning supply tactics in real-time, self-regulation of information in real-time and optimization of the frequency of the supply. Originality: An application capable of being updated in real-time by updating data by the planning director, which will show the optimal aggregate planning and the indicators of the costs associated with the picking operation of a company with 12000 SKU's (Stock Keeping Unit), in which a retail trade of 65 stores is carried out.Propósito: Esta investigación tiene como objetivo desarrollar una aplicación dinámica y autorregulada que considere los pronósticos de demanda, basados en la regresión lineal como algoritmo básico para el aprendizaje automático. Metodología: Esta investigación utiliza la planificación agregada y el aprendizaje automático junto con las políticas de inventario a través de la herramienta solver excel para tomar decisiones óptimas en el centro de distribución para reducir costos y garantizar el nivel de servicio. Hallazgos: Los hallazgos de este estudio se refieren a la planificación de tácticas de suministro en tiempo real, la autorregulación de la información en tiempo real y la optimización de la frecuencia del suministro. Originalidad: Una aplicación susceptible de ser actualizada en tiempo real mediante la actualización de datos por parte del director de planificación, que mostrará la planificación agregada óptima y los indicadores de los costos asociados a la operación de picking de una empresa con 12000 SKU's (Stock Keeping Unit), en el que se realiza un comercio minorista de 65 tiendas.33 páginas.application/pdfspaArtificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL)Berlínhttps://www.econstor.eu/handle/10419/209383?locale=enDesign of Self-regulating Planning ModelCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85N/AArtificial Intelligence and Digital Transformation in Supply Chain ManagementAlonso, Martínez, Dorado,Páez, Lota, 2018. National logistics survey 2018, Bogotá: www.puntoaparte.com.co.Aldana, P., 2014. The cross docking as an important tool in the chain, Bogotá: University of Nueva Granada.Aldana, P., 2014. The cross docking as an important tool in the chain, Bogotá: University of Nueva Granada.Anon., 2017. ingenieriaindustrialonline. [Online] Available at: https://www.ingenieriaindustrialonline.com/herramientas-para-el-ingeniero-industrial/producci%C3%B3n/planeacion-agregada-mediante-programacion-lineal/ [Accessed 01 May 2019].Borissova, D., 2008. Bibliography. Cybernetics and information technologies, 8(2), pp. 102-103.Chopra, M., 2008. Bibliography. En: L. M. C. Castillo, ed. Supply Chain management. Naucalpan de luárez (Mexico state): Pearson Education, pp. 56-57.Chopra, M., 2008. Bibliography. En: L. M. C. Castillo, ed. Supply Chain management. Naucalpan de luárez (Mexico state): Pearson Education, pp. 56-57.Columbus, 2018. 10 Ways Machine Learning Is Revolutionizing Supply Chain Management, New York: Forbes.Dinero, 2015. Competencia ragulacion farmacias. [Online] Available at: https://www.dinero.com/edicion-impresa/negocios/articulo/competencia-regulacion-farmacias/215331 [Accessed 01 May 2019].Dinero, 2019.Accelerated expansion plan in Farmatodo, Bogotá: s.n.Espectador, E., 2016. El Espectador. [Online] Available at: https://www.elespectador.com/noticias/economia/colombia-hay-menos-3000-droguerias-de-barrioarticulo-654947 [Accessed 01 May 2019].Fernández, I. A., 2011. Production and consumption: 49(1), pp. 179-191.Gandhi, R., 2018. towards data science. [Online] Available at: https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression14c4e325882a [Accessed 25 April 2019].Gholamian, M.-M., 2015. Comprehensive fuzzy multi-objective multi-product multisite. 134(42), pp. 585-607.Granja, A.-L., 2014. An optimization-based on a simulation approach to patient admission. Journal of Biomedical Informatics, Issue 52, pp. 427-437.Julian, D., 2016. Designing Machine Learning Systems with Python. 1 ed. Birmingham B3 2PB: Packt Publishing Ltd.Pereira, J., 2018. BigData mazine. [Online] Available at: https://bigdatamagazine.es/utilizacion-de-big-data-y-machine-learning-en-la-industria-4-0 [Accessed 01 May 2019].Rüssmann, L., 2015. Bibliography. En: I. 2. A. r. r. The Boston Consulting Group, ed. The Future of Productivity and Growth in Manufacturing Industries. Boston: The Boston Consulting Group, p. 5.Souza, C., 2018. Direct stockpile scheduling: Mathematical formulation •. 85(204), pp. 296-301.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aprendizaje automático (Inteligencia artificial) - Modelos matemáticosRegresión linealAnálisis de regresiónProgramación linealMachine learning - Mathematical modelsLinear ProgrammingLinear Regression,Aggregate PlanningCost MinimizationORIGINALDesign of Self-regulating Planning Model.pdfDesign of Self-regulating Planning Model.pdfArtículo principal.application/pdf1976440https://repositorio.escuelaing.edu.co/bitstream/001/1855/1/Design%20of%20Self-regulating%20Planning%20Model.pdfa5fac5609280fb2c3e548dcd473c11b9MD51open accessDesign of Self-regulating Planning Model.pdfDesign of Self-regulating Planning Model.pdfapplication/pdf1976440https://repositorio.escuelaing.edu.co/bitstream/001/1855/2/Design%20of%20Self-regulating%20Planning%20Model.pdfa5fac5609280fb2c3e548dcd473c11b9MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/1855/3/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD53open accessTEXTDesign of Self-regulating Planning Model.pdf.txtDesign of Self-regulating Planning Model.pdf.txtExtracted texttext/plain45134https://repositorio.escuelaing.edu.co/bitstream/001/1855/4/Design%20of%20Self-regulating%20Planning%20Model.pdf.txtbc6d4d5f9c8239c9f54812ba4bfe198fMD54open accessTHUMBNAILDesign of Self-regulating Planning Model.pdf.jpgDesign of Self-regulating Planning Model.pdf.jpgGenerated Thumbnailimage/jpeg11578https://repositorio.escuelaing.edu.co/bitstream/001/1855/5/Design%20of%20Self-regulating%20Planning%20Model.pdf.jpgba039559011691d70d65d8d5aba72ecaMD55open access001/1855oai:repositorio.escuelaing.edu.co:001/18552022-08-24 13:08:29.116open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |