BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES

We obtain a generalization of Buzano’s inequality of vectors in Hilbert spaces , using the theory of algebraic probability spaces. In particular, we extend a result of Dragomir given in [7]. Applications for numerical inequalities for n- tuples of bounded linear operators and functions of operators...

Full description

Autores:
Agredo, J.
Leon, Y.
Osorio, J.
Peña, A.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1391
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1391
https://dx.doi.org/10.7153/jmi-2019-13-38
Palabra clave:
Buzano’s inequality
Algebraic probability spaces
Desigualdad de Buzano
Espacios algebraicos de probabilidad.
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_4192755c444cda9d3066e28ddeb86040
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1391
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
title BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
spellingShingle BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
Buzano’s inequality
Algebraic probability spaces
Desigualdad de Buzano
Espacios algebraicos de probabilidad.
title_short BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
title_full BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
title_fullStr BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
title_full_unstemmed BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
title_sort BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
dc.creator.fl_str_mv Agredo, J.
Leon, Y.
Osorio, J.
Peña, A.
dc.contributor.author.none.fl_str_mv Agredo, J.
Leon, Y.
Osorio, J.
Peña, A.
dc.contributor.researchgroup.spa.fl_str_mv Matemáticas
dc.subject.proposal.eng.fl_str_mv Buzano’s inequality
Algebraic probability spaces
topic Buzano’s inequality
Algebraic probability spaces
Desigualdad de Buzano
Espacios algebraicos de probabilidad.
dc.subject.proposal.spa.fl_str_mv Desigualdad de Buzano
Espacios algebraicos de probabilidad.
description We obtain a generalization of Buzano’s inequality of vectors in Hilbert spaces , using the theory of algebraic probability spaces. In particular, we extend a result of Dragomir given in [7]. Applications for numerical inequalities for n- tuples of bounded linear operators and functions of operators defined by double power series are also generalized.
publishDate 2019
dc.date.available.none.fl_str_mv 2019
2021-10-01T17:20:50Z
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-05-05T04:59:28Z
2021-10-01T17:20:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1846579X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1391
dc.identifier.doi.none.fl_str_mv 10.7153/jmi-2019-13-38
dc.identifier.url.none.fl_str_mv https://dx.doi.org/10.7153/jmi-2019-13-38
identifier_str_mv 1846579X
10.7153/jmi-2019-13-38
url https://repositorio.escuelaing.edu.co/handle/001/1391
https://dx.doi.org/10.7153/jmi-2019-13-38
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Journal of Mathematical Inequalities ISSN: 1846-579X, 2019 vol:13 fasc: 2 págs: 585 - 599
dc.relation.citationendpage.spa.fl_str_mv 599
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 585
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Mathematical Inequalities
dc.relation.references.eng.fl_str_mv J. AGREDO, F. FAGNOLA, R. REBOLLEDO, Decoherence free subspaces of a quantum Markov semigroup, J. Math. Phys., 55, 112201 (2014).
S. ATTAL, Elements of Operators Algebras and Modular Theory, Open Quantum Systems I: The Hamiltonian approach, Springer Verlag, Lectures Notes in Mathematics, 2006, 1–105.
O. BRATELLI, D. W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, SpringerVerlag 1, 1987.
M. L. BUZANO, Generalizzazione della diseguaglianza di Cauchy–Schwartz, Rend. Sem. Mat. Univ. e Politech. Torino, 31, (1974), 405–409
A. CONNES, Noncommutative Geometry, Academic Press, 1994
F. D’ANDREA, Pythagoras Theorem in Noncommutative Geometry, Proceedings of the Conference on Optimal Transport and Noncommutative Geometry, Besancon 2014, Available at arXiv:1507.08773.
S. S. DRAGOMIR, Generalizations of Buzano inequality for n -tuples of vectors in inner product spaces with applications, Tbilisi Mathematical Journal, 10, 2 (2017), 29–41.
S. S. DRAGOMIR, M. KHOSRAVI, M. S. MOSLEHIAN, Bessel type inequalities in Hilbert modules, Linear Multilinear Algebra, 58, 8 (2010), 967–975
S. S. DRAGOMIR, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39, 1 (2008), 1–7.
S. S. DRAGOMIR, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demostratio Math., 40, 2 (2007), 411–417.
S. S. DRAGOMIR, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Inequal. Pure Appl. Math.; 7, 1 (2006), Article 14.
S. S. DRAGOMIR, I. SANDOR ´ , Some inequalities in pre-Hilbertian spaces, Studia Univ. Babes-Bolyai Math., 32, 1 (1987), 71–78.
S. S. DRAGOMIR, Some refinements of Schwartz inequality, Simpozionul de Matematici si Aplicatii, Timisoaria, Romania, 1-2 Noiembrie, (1985), 13–16.
F. FAGNOLA, V. UMANIT‘A, Generic quantum Markov semigroups, cycle decomposition and deviation from equilibrium, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 3 (2012), 1–17.
F. FAGNOLA, R. REBOLLEDO, Algebraic conditions for convergence of a quantum Markov semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11, 3 (2008), 467–474.
F. FAGNOLA, R. REBOLLEDO, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys., 43, 2 (2002).
F. FAGNOLA, Quantum Markov semigroups and quantum Markov flows, Proyecciones., 18, 3 (1999), 1–144.
J. I. FUJII, M. FUJII, M. S. MOSLEHIAN, J. E. PECARIC, Y. SEO, Reverses Cauchy-Schwarz type inequalities in pre-inner product C∗ -modules, Hokkaido Math. J., 40, (2011), 1–17.
M. FUJII, Operator-valued inner product and operator inequalities, Banach J. Math. Anal., 2, 2 (2008), 59–67.
M. FUJII, F. KUBO, Buzano’s inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117, (1993), 359–361.
D. ILISEVIC, S. VAROSANEC, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C∗ -modules, Banach J. Math. Anal., 1, (2007), 78–84.
M. S. MOSLEHIAN, L. - E. PERSSON, Reverse Cauchy-Schwarz inequalities for positive C∗ -valued sesquilinear forms, Math. Inequal. Appl., 4, 12, (2009), 701–709.
A. HORA, N. OBATA, Quantum Probability and Spectral Analysis of Graphs, Series: Theoretical and Mathematical Physics, Springer, Berlin Heidelberg, 2007.
K. R. PARTHASARATHY, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics 85, 1992.
U. RICHARD, Sur des in´egalit´es du type Wirtinger et leurs application aux ´equationes diff´erentielles ordinaires, Colloquium of Analysis held in Rio de Janeiro, (1972), 233–244.
W. RUDIN, Real and complex analysis, McGraw-Hill, 1987.
S. SALIMI,Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory, Quantum Information Processing, 9, 1 (2010), 75–91.
S. SALIMI, Quantum Central Limit Theorem for Continuous-Time Quantum Walks on Odd Graphs in Quantum Probability Theory, International Journal of Theoretical Physics, 47, 12, (2008), 3298–3309.
S. SALIMI, Study of continuous-time quantum walks on quotient graphs via quantum probability theory, International Journal of Quantum Information, 6, 4, (2008), 945–957.
K. TANAHASHI, A. UCHIYAMA, M. UCHIYAMA, On Schwarz type inequalities, Proc. Amer. Math. Soc., 131, 8, (2003) 2549–2552.
M. TAKESAKI, Theory of operator algebras I, Springer-Verlag New York Heidelberg, 1979.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Croacia
dc.source.spa.fl_str_mv http://files.ele-math.com/articles/jmi-13-38.pdf
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1391/3/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1391/4/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1391/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1391/2/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf
bitstream.checksum.fl_str_mv c8dafe19e1a0613b331b060f65d6d511
e56f69bf5bd7c753c04950e9e6ab4517
5a7ca94c2e5326ee169f979d71d0f06e
6deafc1a1f6d7beb37f58088fb31be1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355593616424960
spelling Agredo, J.24ae437804d29d9ce505e3ca85b7b763600Leon, Y.f5269de41fae2680f55240defca17f68600Osorio, J.6ae52c9ca4b9f2b889994625d46af904600Peña, A.f1c028110a8eb53ecab93e384d7d1e0b600Matemáticas2021-05-05T04:59:28Z2021-10-01T17:20:50Z20192021-10-01T17:20:50Z20191846579Xhttps://repositorio.escuelaing.edu.co/handle/001/139110.7153/jmi-2019-13-38https://dx.doi.org/10.7153/jmi-2019-13-38We obtain a generalization of Buzano’s inequality of vectors in Hilbert spaces , using the theory of algebraic probability spaces. In particular, we extend a result of Dragomir given in [7]. Applications for numerical inequalities for n- tuples of bounded linear operators and functions of operators defined by double power series are also generalized.Obtenemos una generalización de la desigualdad de Buzano de vectores en espacios de Hilbert , utilizando la teoría de los espacios algebraicos de probabilidad. En particular, extendemos un resultado de Dragomir dado en [7]. Aplicaciones para desigualdades numéricas para n-tuplas de operadores lineales acotados y funciones de operadores definidos por series de potencias dobles también se generalizan. Traducción realizada con la versión gratuita del traductor www.DeepL.com/TranslatorAcknowledgement. The authors want to highlight the support from Escuela colombiana de ingenier´ıa “Julio Garavito”.J. Agredo Department of Mathematics Colombian School of Engineering “Julio Garavito” Bogot´a, Colombia e-mail: julian.agredo@escuelaing.edu.coY. Leon Department of Mathematics Colombian School of Engineering “Julio Garavito” Bogot´a, Colombia e-mail: yessica.leon@mail.escuelaing.edu.coJ. Osorio Department of Mathematics Colombian School of Engineering “Julio Garavito” Bogot´a, Colombia e-mail: juan.osorio-r@mail.escuelaing.edu.coA. Pe˜na Department of Mathematics Colombian School of Engineering “Julio Garavito” Bogot´a, Colombia e-mail: alvaro.pena-m@mail.escuelaing.edu.co15 páginasapplication/pdfenghttp://files.ele-math.com/articles/jmi-13-38.pdfBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACESArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85CroaciaJournal of Mathematical Inequalities ISSN: 1846-579X, 2019 vol:13 fasc: 2 págs: 585 - 599599258513N/AJournal of Mathematical InequalitiesJ. AGREDO, F. FAGNOLA, R. REBOLLEDO, Decoherence free subspaces of a quantum Markov semigroup, J. Math. Phys., 55, 112201 (2014).S. ATTAL, Elements of Operators Algebras and Modular Theory, Open Quantum Systems I: The Hamiltonian approach, Springer Verlag, Lectures Notes in Mathematics, 2006, 1–105.O. BRATELLI, D. W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, SpringerVerlag 1, 1987.M. L. BUZANO, Generalizzazione della diseguaglianza di Cauchy–Schwartz, Rend. Sem. Mat. Univ. e Politech. Torino, 31, (1974), 405–409A. CONNES, Noncommutative Geometry, Academic Press, 1994F. D’ANDREA, Pythagoras Theorem in Noncommutative Geometry, Proceedings of the Conference on Optimal Transport and Noncommutative Geometry, Besancon 2014, Available at arXiv:1507.08773.S. S. DRAGOMIR, Generalizations of Buzano inequality for n -tuples of vectors in inner product spaces with applications, Tbilisi Mathematical Journal, 10, 2 (2017), 29–41.S. S. DRAGOMIR, M. KHOSRAVI, M. S. MOSLEHIAN, Bessel type inequalities in Hilbert modules, Linear Multilinear Algebra, 58, 8 (2010), 967–975S. S. DRAGOMIR, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39, 1 (2008), 1–7.S. S. DRAGOMIR, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demostratio Math., 40, 2 (2007), 411–417.S. S. DRAGOMIR, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Inequal. Pure Appl. Math.; 7, 1 (2006), Article 14.S. S. DRAGOMIR, I. SANDOR ´ , Some inequalities in pre-Hilbertian spaces, Studia Univ. Babes-Bolyai Math., 32, 1 (1987), 71–78.S. S. DRAGOMIR, Some refinements of Schwartz inequality, Simpozionul de Matematici si Aplicatii, Timisoaria, Romania, 1-2 Noiembrie, (1985), 13–16.F. FAGNOLA, V. UMANIT‘A, Generic quantum Markov semigroups, cycle decomposition and deviation from equilibrium, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 3 (2012), 1–17.F. FAGNOLA, R. REBOLLEDO, Algebraic conditions for convergence of a quantum Markov semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11, 3 (2008), 467–474.F. FAGNOLA, R. REBOLLEDO, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys., 43, 2 (2002).F. FAGNOLA, Quantum Markov semigroups and quantum Markov flows, Proyecciones., 18, 3 (1999), 1–144.J. I. FUJII, M. FUJII, M. S. MOSLEHIAN, J. E. PECARIC, Y. SEO, Reverses Cauchy-Schwarz type inequalities in pre-inner product C∗ -modules, Hokkaido Math. J., 40, (2011), 1–17.M. FUJII, Operator-valued inner product and operator inequalities, Banach J. Math. Anal., 2, 2 (2008), 59–67.M. FUJII, F. KUBO, Buzano’s inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117, (1993), 359–361.D. ILISEVIC, S. VAROSANEC, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C∗ -modules, Banach J. Math. Anal., 1, (2007), 78–84.M. S. MOSLEHIAN, L. - E. PERSSON, Reverse Cauchy-Schwarz inequalities for positive C∗ -valued sesquilinear forms, Math. Inequal. Appl., 4, 12, (2009), 701–709.A. HORA, N. OBATA, Quantum Probability and Spectral Analysis of Graphs, Series: Theoretical and Mathematical Physics, Springer, Berlin Heidelberg, 2007.K. R. PARTHASARATHY, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics 85, 1992.U. RICHARD, Sur des in´egalit´es du type Wirtinger et leurs application aux ´equationes diff´erentielles ordinaires, Colloquium of Analysis held in Rio de Janeiro, (1972), 233–244.W. RUDIN, Real and complex analysis, McGraw-Hill, 1987.S. SALIMI,Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory, Quantum Information Processing, 9, 1 (2010), 75–91.S. SALIMI, Quantum Central Limit Theorem for Continuous-Time Quantum Walks on Odd Graphs in Quantum Probability Theory, International Journal of Theoretical Physics, 47, 12, (2008), 3298–3309.S. SALIMI, Study of continuous-time quantum walks on quotient graphs via quantum probability theory, International Journal of Quantum Information, 6, 4, (2008), 945–957.K. TANAHASHI, A. UCHIYAMA, M. UCHIYAMA, On Schwarz type inequalities, Proc. Amer. Math. Soc., 131, 8, (2003) 2549–2552.M. TAKESAKI, Theory of operator algebras I, Springer-Verlag New York Heidelberg, 1979.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Buzano’s inequalityAlgebraic probability spacesDesigualdad de BuzanoEspacios algebraicos de probabilidad.TEXTBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES.pdf.txtBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES.pdf.txtExtracted texttext/plain28321https://repositorio.escuelaing.edu.co/bitstream/001/1391/3/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf.txtc8dafe19e1a0613b331b060f65d6d511MD53open accessTHUMBNAILBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES.pdf.jpgBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES.pdf.jpgGenerated Thumbnailimage/jpeg11616https://repositorio.escuelaing.edu.co/bitstream/001/1391/4/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf.jpge56f69bf5bd7c753c04950e9e6ab4517MD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1391/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALBUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES.pdfapplication/pdf207102https://repositorio.escuelaing.edu.co/bitstream/001/1391/2/BUZANO%e2%80%99S%20INEQUALITY%20IN%20ALGEBRAIC%20PROBABILITY%20SPACES.pdf6deafc1a1f6d7beb37f58088fb31be1cMD52open access001/1391oai:repositorio.escuelaing.edu.co:001/13912021-10-01 16:24:59.056open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK