Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening
Despite the increment of researches related to Social Assistive Robotics (SAR), achieving a plausible Robot-Assisted Diagnosis (RAD) for Children with Autism Spectrum Disorders (CwASD) remains a considerable challenge to the clinical and robotics community. The work of specialists regarding ASD diag...
- Autores:
-
Ramírez Duque, Andrés A.
Bastos, Teodiano
Múnera, Marcela
Cifuentes, Carlos A.
Frizera Neto, Anselmo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3311
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3311
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Autismo en niños
Autism in children
Autismo - Investigaciones
Autism - Research
Trastorno del espectro autista
Detección de autismo
Robótica de asistencia social
Interacción niño-robot
Autism Spectrum Disorder
Autism screening
Social assistive robotics
Child–Robot Interaction
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_3f648a1f80b63df6942cd51f17faea73 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3311 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
title |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
spellingShingle |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening Robótica médica Robotics in medicine Tecnología médica Medical technology Autismo en niños Autism in children Autismo - Investigaciones Autism - Research Trastorno del espectro autista Detección de autismo Robótica de asistencia social Interacción niño-robot Autism Spectrum Disorder Autism screening Social assistive robotics Child–Robot Interaction |
title_short |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
title_full |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
title_fullStr |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
title_full_unstemmed |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
title_sort |
Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening |
dc.creator.fl_str_mv |
Ramírez Duque, Andrés A. Bastos, Teodiano Múnera, Marcela Cifuentes, Carlos A. Frizera Neto, Anselmo |
dc.contributor.author.none.fl_str_mv |
Ramírez Duque, Andrés A. Bastos, Teodiano Múnera, Marcela Cifuentes, Carlos A. Frizera Neto, Anselmo |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Robótica médica Robotics in medicine Tecnología médica Medical technology Autismo en niños Autism in children Autismo - Investigaciones Autism - Research |
topic |
Robótica médica Robotics in medicine Tecnología médica Medical technology Autismo en niños Autism in children Autismo - Investigaciones Autism - Research Trastorno del espectro autista Detección de autismo Robótica de asistencia social Interacción niño-robot Autism Spectrum Disorder Autism screening Social assistive robotics Child–Robot Interaction |
dc.subject.proposal.spa.fl_str_mv |
Trastorno del espectro autista Detección de autismo Robótica de asistencia social Interacción niño-robot |
dc.subject.proposal.eng.fl_str_mv |
Autism Spectrum Disorder Autism screening Social assistive robotics Child–Robot Interaction |
description |
Despite the increment of researches related to Social Assistive Robotics (SAR), achieving a plausible Robot-Assisted Diagnosis (RAD) for Children with Autism Spectrum Disorders (CwASD) remains a considerable challenge to the clinical and robotics community. The work of specialists regarding ASD diagnosis is hard and labor-intensive due to the condition’s manifestations are inherently heterogeneous and makes the process more difficult. Besides, the aforementioned complexity may be the main reason for the slow progress in the development of SAR with diagnostic purposes. Thus, this work provides a comprehensive Robot-Assisted Intervention for CwASD showing the conditions in which a Robot-based approach can be useful to assess autism risk factors for an autism diagnosis purpose. The intervention scheme consists of an improved version of a multimodal environment for Robot-based intervention proposed in our previous work. More specifically, we compared the behavior of CwASD with that of children in a control group during a human/robot-mediated intervention while Joint Attention (JA) behaviors are elicited and analyzed. Through statistical data analysis, it was possible to identify that 17 out of 23 children of the CwASD group showed a different behavior pattern related to three characteristics of autism, which suggests that this pattern can be used to identify autism risk factors through Robot-based interventions. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-10-11T17:27:15Z |
dc.date.available.none.fl_str_mv |
2024-10-11T17:27:15Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0921-8890 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3311 |
dc.identifier.eissn.spa.fl_str_mv |
0921-8890 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
0921-8890 Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
url |
https://repositorio.escuelaing.edu.co/handle/001/3311 https://repositorio.escuelaing.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Vol. 127 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
14 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
127 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Robotics and Autonomous Systems |
dc.relation.references.spa.fl_str_mv |
] B. Scassellati, L. Boccanfuso, C.-M. Huang, M. Mademtzi, M. Qin, N. Salomons, P. Ventola, F. Shic, Improving social skills in children with ASD using a long-term, in-home social robot, Sci. Robot. 3 (21) (2018) eaat7544. B. Scassellati, How social robots will help us to Diagnose, Treat, and Understand Autism, Robot. Res. (2007) 552–563, http://dx.doi.org/10.1007/ 978-3-540-48113-3{_}47. P. Gomez Esteban, P.E. Baxter, T. Belpaeme, E. Billing, H. Cai, H.-L. Cao, M. Coeckelbergh, C. Costescu, D. David, A. De Beir, Y. Fang, Z. Ju, J. Kennedy, H. Liu, A. Mazel, A. Pandey, K. Richardson, E. Senft, S. Thill, G. Van De Perre, B. Vanderborght, D. Vernon, Y. Hui, T. Ziemke, How to build a supervised autonomous system for robot-enhanced therapy for children with Autism Spectrum Disorder, Paladyn. J. Behav. Robot. 8 (1) (2017) 18–38, http://dx.doi.org/10.1515/pjbr-2017-0002. P. Pennisi, A. Tonacci, G. Tartarisco, L. Billeci, L. Ruta, S. Gangemi, G. Pioggia, Autism and social robotics: A systematic review, 2016, http://dx.doi.org/ 10.1002/aur.1527 M. Begum, R.W. Serna, H.A. Yanco, Are robots ready to deliver Autism Interventions? A comprehensive review, Int. J. Soc. Robot. 8 (2) (2016) 157–181, http://dx.doi.org/10.1007/s12369-016-0346-y. B. Scassellati, Henny Admoni, M.J. Matarić, Robots for use in Autism research, Annu. Rev. Biomed. Eng. 14 (1) (2012) 275–294, http://dx.doi. org/10.1146/annurev-bioeng-071811-150036. A.M. Steiner, T.R. Goldsmith, A.V. Snow, K. Chawarska, Practitioner’s guide to assessment of Autism spectrum disorders in Infants and Toddlers, J. Autism Dev. Disord. 42 (6) (2012) 1183–1196, http://dx.doi.org/10.1007/ s10803-011-1376-9 L.D. Wiggins, A. Reynolds, C.E. Rice, E.J. Moody, P. Bernal, L. Blaskey, S.A. Rosenberg, L.-C. Lee, S.E. Levy, Using standardized Diagnostic instruments to classify children with Autism in the study to explore early development, J. Autism Dev. Disord. 45 (5) (2015) 1271–1280, http://dx.doi.org/10.1007/ s10803-014-2287-3. S. Baron-Cohen, J. Allen, C. Gillberg, Can autism be detected at 18 Months?: The Needle, the Haystack, and the CHAT, Br. J. Psychiatry 161 (6) (1992) 839–843, http://dx.doi.org/10.1192/bjp.161.6.839. L. Lecavalier, An evaluation of the Gilliam Autism rating scale, J. Autism Dev. Disord. 35 (6) (2005) 795–805, http://dx.doi.org/10.1007/s10803-005- 0025-6 M. Huerta, C. Lord, Diagnostic evaluation of autism spectrum disorders, Pediatr. Clin. N. Am. 59 (1) (2012) 103–111, http://dx.doi.org/10.1016/j. pcl.2011.10.018. R. Simut, J. Vanderfaeillie, A. Peca, G. Van de Perre, B. Vanderborght, Children with Autism spectrum Disorders make a fruit salad with Probo, the social robot: An interaction study, J. Autism Dev. Disord. 46 (1) (2016) 113–126, http://dx.doi.org/10.1007/s10803-015-2556-9. J.J. Cabibihan, H. Javed, M. Ang, S.M. Aljunied, Why robots? A survey on the roles and benefits of social robots in the Therapy of children with Autism, Int. J. Soc. Robot. 5 (4) (2013) 593–618, http://dx.doi.org/10.1007/s12369- 013-0202-2 C.A.G.J. Huijnen, M.A.S. Lexis, R. Jansens, L.P. de Witte, Mapping robots to Therapy and educational objectives for Children with Autism Spectrum disorder, J. Autism Dev. Disord. 46 (6) (2016) 2100–2114, http://dx.doi.org/ 10.1007/s10803-016-2740-6. C.A.G.J. Huijnen, M.A.S. Lexis, L.P. de Witte, Matching robot KASPAR to Autism spectrum disorder (ASD) Therapy and educational goals, Int. J. Soc. Robot. 8 (4) (2016) 445–455, http://dx.doi.org/10.1007/s12369-016-0369- 4 A.A. Ramírez-Duque, A. Frizera-Neto, T.F. Bastos, Robot-assisted Autism Spectrum disorder diagnostic based on artificial reasoning, J. Intell. Robot. Syst. (2019) http://dx.doi.org/10.1007/s10846-018-00975-y A. Tapus, M. Mataric, B. Scassellati, Socially assistive robotics [Grand Challenges of Robotics], IEEE Robot. Autom. Mag. 14 (1) (2007) 35–42, http://dx.doi.org/10.1109/MRA.2007.339605. E. Kim, R. Paul, F. Shic, B. Scassellati, Bridging the research gap: Making HRI useful to individuals with autism, J. Hum.-Robot. Interact. 1 (1) (2012) 26–54, http://dx.doi.org/10.5898/JHRI.1.1.Kim. P.S. Dehkordi, H. Moradi, M. Mahmoudi, H.R. Pouretemad, The design, development, and deployment of RoboParrot for screening Autistic children, Int. J. Soc. Robot. 7 (4) (2015) 513–522, http://dx.doi.org/10.1007/s12369- 015-0309-8 M. Moghadas, H. Moradi, Analyzing human-robot interaction using machine vision for autism screening, in: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), IcRoM, IEEE, 2018, pp. 572–576, http://dx.doi.org/10.1109/ICRoM.2018.8657569. A. Duquette, F. Michaud, H. Mercier, Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism, Auton. Robots 24 (2) (2008) 147–157, http://dx.doi.org/10.1007/s10514- 007-9056-5. O. Damm, K. Malchus, P. Jaecks, S. Krach, F. Paulus, M. Naber, A. Jansen, I. Kamp-Becker, W. Einhaeuser-Treyer, P. Stenneken, B. Wrede, Different gaze behavior in human-robot interaction in Asperger’s syndrome: An eye-tracking study, in: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 2013, pp. 368–369, http: //dx.doi.org/10.1109/ROMAN.2013.6628501. S.M. Anzalone, E. Tilmont, S. Boucenna, J. Xavier, A.L. Jouen, N. Bodeau, K. Maharatna, M. Chetouani, D. Cohen, How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D + time) environment during a joint attention induction task with a robot, Res. Autism Spectr. Disord. 8 (7) (2014) 814–826, http://dx.doi.org/10.1016/j.rasd.2014. 03.002. E. Bekele, U. Lahiri, A.R. Swanson, J.A. Crittendon, Z.E. Warren, N. Sarkar, A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism, IEEE Trans. Neural Syst. Rehabil. Eng. 21 (2) (2013) 289–299, http://dx.doi.org/10.1109/TNSRE.2012.2230188. Z. Zheng, L. Zhang, E. Bekele, A. Swanson, J.A. Crittendon, Z.E. Warren, N. Sarkar, Impact of robot-mediated interaction system on joint attention skills for children with autism, in: IEEE International Conference on Rehabilitation Robotics, 2013, http://dx.doi.org/10.1109/ICORR.2013. 6650408. Z.E. Warren, Z. Zheng, A.R. Swanson, E. Bekele, L. Zhang, J.A. Crittendon, A.F. Weitlauf, N. Sarkar, Can robotic interaction improve joint attention Skills?, J. Autism Dev. Disord. 45 (11) (2015) 3726–3734, http://dx.doi.org/ 10.1007/s10803-013-1918-4. S.-S. Yun, J. Choi, S.-K. Park, G.-Y. Bong, H. Yoo, Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system, Autism Res. 10 (7) (2017) 1306–1323, http://dx.doi. org/10.1002/aur.1778 H. Kumazaki, Y. Yoshikawa, Y. Yoshimura, T. Ikeda, C. Hasegawa, D.N. Saito, S. Tomiyama, K.-m. An, J. Shimaya, H. Ishiguro, Y. Matsumoto, Y. Minabe, M. Kikuchi, The impact of robotic intervention on joint attention in children with autism spectrum disorders, Mol. Autism 9 (1) (2018) 46, http://dx.doi.org/10.1186/s13229-018-0230-8. H. Cai, Y. Fang, Z. Ju, C. Costescu, D. David, E. Billing, T. Ziemke, S. Thill, T. Belpaeme, B. Vanderborght, D. Vernon, K. Richardson, H. Liu, Sensing-enhanced Therapy System for assessing children with Autism Spectrum disorders: A feasibility study, IEEE Sens. J. 1748 (c) (2018) 1, http://dx.doi.org/10.1109/JSEN.2018.2877662 S.M. Anzalone, J. Xavier, S. Boucenna, L. Billeci, A. Narzisi, F. Muratori, D. Cohen, M. Chetouani, Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment, Pattern Recognit. Lett. 0 (2018) 1–9, http://dx.doi.org/10.1016/ j.patrec.2018.03.007. Z. Zheng, H. Zhao, A.R. Swanson, A.S. Weitlauf, Z.E. Warren, N. Sarkar, Design, development, and evaluation of a noninvasive autonomous robotmediated joint attention intervention system for Young Children with ASD, IEEE Trans. Hum.-Mach. Syst. 48 (2) (2018) 125–135, http://dx.doi.org/10. 1109/THMS.2017.2776865. D.O. David, C.A. Costescu, S. Matu, A. Szentagotai, A. Dobrean, Developing joint attention for Children with Autism in robot-enhanced therapy, Int. J. Soc. Robot. (2018) http://dx.doi.org/10.1007/s12369-017-0457-0. S. Lemaignan, M. Warnier, E.A. Sisbot, A. Clodic, R. Alami, Artificial cognition for social human–robot interaction: An implementation, Artificial Intelligence 247 (2017) 45–69, http://dx.doi.org/10.1016/j.artint.2016.07. 002. T. Baltrušaitis, P. Robinson, L.-P. Morency, OpenFace: an open source facial behavior analysis toolkit, in: IEEE Winter Conference on Applications of Computer Vision, 2016, http://dx.doi.org/10.1109/WACV.2016.7477553, URL https://www.cl.cam.ac.uk/~tb346/res/openface.html. D.E. King, Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res. 10 (2009) 1755–1758, http://dx.doi.org/10.1145/1577069.1755843, URL http: //jmlr.csail.mit.edu/papers/v10/king09a.html. M. Danelljan, G. Häger, F. Shahbaz Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: Proceedings of the British Machine Vision Conference 2014, British Machine Vision Association, 2014, pp. 1–65, http://dx.doi.org/10.5244/C.28.65 T. Baltrušaitis, P. Robinson, L.P. Morency, Constrained local neural fields for robust facial landmark detection in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 354–361, http://dx.doi.org/10.1109/ICCVW.2013.54. A. Zadeh, Y.C. Lim, T. Baltrusaitis, L.-P. Morency, Convolutional experts constrained local model for 3D facial landmark detection, in: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), volume 2018-Janua, IEEE, 2017, pp. 2519–2528, http://dx.doi.org/10.1109/ICCVW. 2017.296. T. Baltrusaitis, A. Zadeh, Y.C. Lim, L.P. Morency, Openface 2.0: Facial behavior analysis toolkit, in: Proceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, 2018, pp. 59–66, http://dx.doi.org/10.1109/FG.2018.00019. ] S. Sheikhi, J.-M. Odobez, Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions, Pattern Recognit. Lett. 66 (2015) 81–90, http://dx.doi.org/10. 1016/j.patrec.2014.10.002. ] S.O. Ba, J.-M. Odobez, Multi-person visual focus of attention from head pose and meeting Contextual cues, IEEE Trans. Pattern Anal. Mach. Intell. 33 (August) (2008) 1–16 ] C. Vandevelde, J. Saldien, C. Ciocci, B. Vanderborght, The use of social robot ono in robot assisted therapy, in: International Conference on Social Robotics, Proceedings m, 2013. T. Smith, Discrete trial training in the treatment of autism, in: Focus on Autism and Other Developmental Disabilities, Vol. 16, 2001, pp. 86–92, http://dx.doi.org/10.1177/108835760101600204. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
S.L. |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0921889019304452?via%3Dihub |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3311/4/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3311/3/Portada%20Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A..JPG https://repositorio.escuelaing.edu.co/bitstream/001/3311/5/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3311/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3311/1/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf |
bitstream.checksum.fl_str_mv |
3d0f2458b9f1876849f3e9460addae6c e0a5feffa738114d992693cb3061b4c0 69fee25a8b4373f4fc6378e86601d394 5a7ca94c2e5326ee169f979d71d0f06e 31cd375eb4a21ff0470602bc02766990 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355594002300928 |
spelling |
Ramírez Duque, Andrés A.9b0aa73d8b329f564774bc91fe7fd384Bastos, Teodianob8a99f410f7669fd8ce6817f549dcc49Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4Frizera Neto, Anselmob4f92b73ce43fbc600e56a7251934589GiBiome2024-10-11T17:27:15Z2024-10-11T17:27:15Z20200921-8890https://repositorio.escuelaing.edu.co/handle/001/33110921-8890Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Despite the increment of researches related to Social Assistive Robotics (SAR), achieving a plausible Robot-Assisted Diagnosis (RAD) for Children with Autism Spectrum Disorders (CwASD) remains a considerable challenge to the clinical and robotics community. The work of specialists regarding ASD diagnosis is hard and labor-intensive due to the condition’s manifestations are inherently heterogeneous and makes the process more difficult. Besides, the aforementioned complexity may be the main reason for the slow progress in the development of SAR with diagnostic purposes. Thus, this work provides a comprehensive Robot-Assisted Intervention for CwASD showing the conditions in which a Robot-based approach can be useful to assess autism risk factors for an autism diagnosis purpose. The intervention scheme consists of an improved version of a multimodal environment for Robot-based intervention proposed in our previous work. More specifically, we compared the behavior of CwASD with that of children in a control group during a human/robot-mediated intervention while Joint Attention (JA) behaviors are elicited and analyzed. Through statistical data analysis, it was possible to identify that 17 out of 23 children of the CwASD group showed a different behavior pattern related to three characteristics of autism, which suggests that this pattern can be used to identify autism risk factors through Robot-based interventions.A pesar del incremento de investigaciones relacionadas con la Robótica de Asistencia Social (SAR), lograr una solución plausible El diagnóstico asistido por robot (RAD) para niños con trastornos del espectro autista (CwASD) sigue siendo una Un desafío considerable para la comunidad clínica y robótica. El trabajo de los especialistas en El diagnóstico de TEA es difícil y requiere mucha mano de obra debido a que las manifestaciones de la afección son inherentemente heterogéneo y dificulta el proceso. Además, la complejidad antes mencionada puede ser la razón principal del lento avance en el desarrollo de SAR con fines de diagnóstico. De este modo, este trabajo proporciona una intervención integral asistida por robot para CwASD que muestra las condiciones en el que un enfoque basado en robots puede ser útil para evaluar los factores de riesgo de autismo para un diagnóstico de autismo objetivo. El esquema de intervención consiste en una versión mejorada de un entorno multimodal para Intervención basada en robots propuesta en nuestro trabajo anterior. Más específicamente, comparamos el comportamiento de CwASD con el de niños en un grupo de control durante una intervención mediada por humanos/robot mientras Se provocan y analizan conductas de Atención Conjunta (JA). A través del análisis de datos estadísticos fue posible identificar que 17 de 23 niños del grupo CwASD mostraron un patrón de conducta diferente relacionado a tres características del autismo, lo que sugiere que este patrón puede usarse para identificar el riesgo de autismo factores a través de intervenciones basadas en robots.14 páginasapplication/pdfengElsevierS.L.https://www.sciencedirect.com/science/article/pii/S0921889019304452?via%3DihubRobot-Assisted Intervention for children with special needs: A comparative assessment for autism screeningArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 127 (2020)141127Robotics and Autonomous Systems] B. Scassellati, L. Boccanfuso, C.-M. Huang, M. Mademtzi, M. Qin, N. Salomons, P. Ventola, F. Shic, Improving social skills in children with ASD using a long-term, in-home social robot, Sci. Robot. 3 (21) (2018) eaat7544.B. Scassellati, How social robots will help us to Diagnose, Treat, and Understand Autism, Robot. Res. (2007) 552–563, http://dx.doi.org/10.1007/ 978-3-540-48113-3{_}47.P. Gomez Esteban, P.E. Baxter, T. Belpaeme, E. Billing, H. Cai, H.-L. Cao, M. Coeckelbergh, C. Costescu, D. David, A. De Beir, Y. Fang, Z. Ju, J. Kennedy, H. Liu, A. Mazel, A. Pandey, K. Richardson, E. Senft, S. Thill, G. Van De Perre, B. Vanderborght, D. Vernon, Y. Hui, T. Ziemke, How to build a supervised autonomous system for robot-enhanced therapy for children with Autism Spectrum Disorder, Paladyn. J. Behav. Robot. 8 (1) (2017) 18–38, http://dx.doi.org/10.1515/pjbr-2017-0002.P. Pennisi, A. Tonacci, G. Tartarisco, L. Billeci, L. Ruta, S. Gangemi, G. Pioggia, Autism and social robotics: A systematic review, 2016, http://dx.doi.org/ 10.1002/aur.1527M. Begum, R.W. Serna, H.A. Yanco, Are robots ready to deliver Autism Interventions? A comprehensive review, Int. J. Soc. Robot. 8 (2) (2016) 157–181, http://dx.doi.org/10.1007/s12369-016-0346-y.B. Scassellati, Henny Admoni, M.J. Matarić, Robots for use in Autism research, Annu. Rev. Biomed. Eng. 14 (1) (2012) 275–294, http://dx.doi. org/10.1146/annurev-bioeng-071811-150036.A.M. Steiner, T.R. Goldsmith, A.V. Snow, K. Chawarska, Practitioner’s guide to assessment of Autism spectrum disorders in Infants and Toddlers, J. Autism Dev. Disord. 42 (6) (2012) 1183–1196, http://dx.doi.org/10.1007/ s10803-011-1376-9L.D. Wiggins, A. Reynolds, C.E. Rice, E.J. Moody, P. Bernal, L. Blaskey, S.A. Rosenberg, L.-C. Lee, S.E. Levy, Using standardized Diagnostic instruments to classify children with Autism in the study to explore early development, J. Autism Dev. Disord. 45 (5) (2015) 1271–1280, http://dx.doi.org/10.1007/ s10803-014-2287-3.S. Baron-Cohen, J. Allen, C. Gillberg, Can autism be detected at 18 Months?: The Needle, the Haystack, and the CHAT, Br. J. Psychiatry 161 (6) (1992) 839–843, http://dx.doi.org/10.1192/bjp.161.6.839.L. Lecavalier, An evaluation of the Gilliam Autism rating scale, J. Autism Dev. Disord. 35 (6) (2005) 795–805, http://dx.doi.org/10.1007/s10803-005- 0025-6M. Huerta, C. Lord, Diagnostic evaluation of autism spectrum disorders, Pediatr. Clin. N. Am. 59 (1) (2012) 103–111, http://dx.doi.org/10.1016/j. pcl.2011.10.018.R. Simut, J. Vanderfaeillie, A. Peca, G. Van de Perre, B. Vanderborght, Children with Autism spectrum Disorders make a fruit salad with Probo, the social robot: An interaction study, J. Autism Dev. Disord. 46 (1) (2016) 113–126, http://dx.doi.org/10.1007/s10803-015-2556-9.J.J. Cabibihan, H. Javed, M. Ang, S.M. Aljunied, Why robots? A survey on the roles and benefits of social robots in the Therapy of children with Autism, Int. J. Soc. Robot. 5 (4) (2013) 593–618, http://dx.doi.org/10.1007/s12369- 013-0202-2C.A.G.J. Huijnen, M.A.S. Lexis, R. Jansens, L.P. de Witte, Mapping robots to Therapy and educational objectives for Children with Autism Spectrum disorder, J. Autism Dev. Disord. 46 (6) (2016) 2100–2114, http://dx.doi.org/ 10.1007/s10803-016-2740-6.C.A.G.J. Huijnen, M.A.S. Lexis, L.P. de Witte, Matching robot KASPAR to Autism spectrum disorder (ASD) Therapy and educational goals, Int. J. Soc. Robot. 8 (4) (2016) 445–455, http://dx.doi.org/10.1007/s12369-016-0369- 4A.A. Ramírez-Duque, A. Frizera-Neto, T.F. Bastos, Robot-assisted Autism Spectrum disorder diagnostic based on artificial reasoning, J. Intell. Robot. Syst. (2019) http://dx.doi.org/10.1007/s10846-018-00975-yA. Tapus, M. Mataric, B. Scassellati, Socially assistive robotics [Grand Challenges of Robotics], IEEE Robot. Autom. Mag. 14 (1) (2007) 35–42, http://dx.doi.org/10.1109/MRA.2007.339605.E. Kim, R. Paul, F. Shic, B. Scassellati, Bridging the research gap: Making HRI useful to individuals with autism, J. Hum.-Robot. Interact. 1 (1) (2012) 26–54, http://dx.doi.org/10.5898/JHRI.1.1.Kim.P.S. Dehkordi, H. Moradi, M. Mahmoudi, H.R. Pouretemad, The design, development, and deployment of RoboParrot for screening Autistic children, Int. J. Soc. Robot. 7 (4) (2015) 513–522, http://dx.doi.org/10.1007/s12369- 015-0309-8M. Moghadas, H. Moradi, Analyzing human-robot interaction using machine vision for autism screening, in: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), IcRoM, IEEE, 2018, pp. 572–576, http://dx.doi.org/10.1109/ICRoM.2018.8657569.A. Duquette, F. Michaud, H. Mercier, Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism, Auton. Robots 24 (2) (2008) 147–157, http://dx.doi.org/10.1007/s10514- 007-9056-5.O. Damm, K. Malchus, P. Jaecks, S. Krach, F. Paulus, M. Naber, A. Jansen, I. Kamp-Becker, W. Einhaeuser-Treyer, P. Stenneken, B. Wrede, Different gaze behavior in human-robot interaction in Asperger’s syndrome: An eye-tracking study, in: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 2013, pp. 368–369, http: //dx.doi.org/10.1109/ROMAN.2013.6628501.S.M. Anzalone, E. Tilmont, S. Boucenna, J. Xavier, A.L. Jouen, N. Bodeau, K. Maharatna, M. Chetouani, D. Cohen, How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D + time) environment during a joint attention induction task with a robot, Res. Autism Spectr. Disord. 8 (7) (2014) 814–826, http://dx.doi.org/10.1016/j.rasd.2014. 03.002.E. Bekele, U. Lahiri, A.R. Swanson, J.A. Crittendon, Z.E. Warren, N. Sarkar, A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism, IEEE Trans. Neural Syst. Rehabil. Eng. 21 (2) (2013) 289–299, http://dx.doi.org/10.1109/TNSRE.2012.2230188.Z. Zheng, L. Zhang, E. Bekele, A. Swanson, J.A. Crittendon, Z.E. Warren, N. Sarkar, Impact of robot-mediated interaction system on joint attention skills for children with autism, in: IEEE International Conference on Rehabilitation Robotics, 2013, http://dx.doi.org/10.1109/ICORR.2013. 6650408.Z.E. Warren, Z. Zheng, A.R. Swanson, E. Bekele, L. Zhang, J.A. Crittendon, A.F. Weitlauf, N. Sarkar, Can robotic interaction improve joint attention Skills?, J. Autism Dev. Disord. 45 (11) (2015) 3726–3734, http://dx.doi.org/ 10.1007/s10803-013-1918-4.S.-S. Yun, J. Choi, S.-K. Park, G.-Y. Bong, H. Yoo, Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system, Autism Res. 10 (7) (2017) 1306–1323, http://dx.doi. org/10.1002/aur.1778H. Kumazaki, Y. Yoshikawa, Y. Yoshimura, T. Ikeda, C. Hasegawa, D.N. Saito, S. Tomiyama, K.-m. An, J. Shimaya, H. Ishiguro, Y. Matsumoto, Y. Minabe, M. Kikuchi, The impact of robotic intervention on joint attention in children with autism spectrum disorders, Mol. Autism 9 (1) (2018) 46, http://dx.doi.org/10.1186/s13229-018-0230-8.H. Cai, Y. Fang, Z. Ju, C. Costescu, D. David, E. Billing, T. Ziemke, S. Thill, T. Belpaeme, B. Vanderborght, D. Vernon, K. Richardson, H. Liu, Sensing-enhanced Therapy System for assessing children with Autism Spectrum disorders: A feasibility study, IEEE Sens. J. 1748 (c) (2018) 1, http://dx.doi.org/10.1109/JSEN.2018.2877662S.M. Anzalone, J. Xavier, S. Boucenna, L. Billeci, A. Narzisi, F. Muratori, D. Cohen, M. Chetouani, Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment, Pattern Recognit. Lett. 0 (2018) 1–9, http://dx.doi.org/10.1016/ j.patrec.2018.03.007.Z. Zheng, H. Zhao, A.R. Swanson, A.S. Weitlauf, Z.E. Warren, N. Sarkar, Design, development, and evaluation of a noninvasive autonomous robotmediated joint attention intervention system for Young Children with ASD, IEEE Trans. Hum.-Mach. Syst. 48 (2) (2018) 125–135, http://dx.doi.org/10. 1109/THMS.2017.2776865.D.O. David, C.A. Costescu, S. Matu, A. Szentagotai, A. Dobrean, Developing joint attention for Children with Autism in robot-enhanced therapy, Int. J. Soc. Robot. (2018) http://dx.doi.org/10.1007/s12369-017-0457-0.S. Lemaignan, M. Warnier, E.A. Sisbot, A. Clodic, R. Alami, Artificial cognition for social human–robot interaction: An implementation, Artificial Intelligence 247 (2017) 45–69, http://dx.doi.org/10.1016/j.artint.2016.07. 002.T. Baltrušaitis, P. Robinson, L.-P. Morency, OpenFace: an open source facial behavior analysis toolkit, in: IEEE Winter Conference on Applications of Computer Vision, 2016, http://dx.doi.org/10.1109/WACV.2016.7477553, URL https://www.cl.cam.ac.uk/~tb346/res/openface.html.D.E. King, Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res. 10 (2009) 1755–1758, http://dx.doi.org/10.1145/1577069.1755843, URL http: //jmlr.csail.mit.edu/papers/v10/king09a.html.M. Danelljan, G. Häger, F. Shahbaz Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: Proceedings of the British Machine Vision Conference 2014, British Machine Vision Association, 2014, pp. 1–65, http://dx.doi.org/10.5244/C.28.65T. Baltrušaitis, P. Robinson, L.P. Morency, Constrained local neural fields for robust facial landmark detection in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 354–361, http://dx.doi.org/10.1109/ICCVW.2013.54.A. Zadeh, Y.C. Lim, T. Baltrusaitis, L.-P. Morency, Convolutional experts constrained local model for 3D facial landmark detection, in: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), volume 2018-Janua, IEEE, 2017, pp. 2519–2528, http://dx.doi.org/10.1109/ICCVW. 2017.296.T. Baltrusaitis, A. Zadeh, Y.C. Lim, L.P. Morency, Openface 2.0: Facial behavior analysis toolkit, in: Proceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, 2018, pp. 59–66, http://dx.doi.org/10.1109/FG.2018.00019.] S. Sheikhi, J.-M. Odobez, Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions, Pattern Recognit. Lett. 66 (2015) 81–90, http://dx.doi.org/10. 1016/j.patrec.2014.10.002.] S.O. Ba, J.-M. Odobez, Multi-person visual focus of attention from head pose and meeting Contextual cues, IEEE Trans. Pattern Anal. Mach. Intell. 33 (August) (2008) 1–16] C. Vandevelde, J. Saldien, C. Ciocci, B. Vanderborght, The use of social robot ono in robot assisted therapy, in: International Conference on Social Robotics, Proceedings m, 2013.T. Smith, Discrete trial training in the treatment of autism, in: Focus on Autism and Other Developmental Disabilities, Vol. 16, 2001, pp. 86–92, http://dx.doi.org/10.1177/108835760101600204.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineTecnología médicaMedical technologyAutismo en niñosAutism in childrenAutismo - InvestigacionesAutism - ResearchTrastorno del espectro autistaDetección de autismoRobótica de asistencia socialInteracción niño-robotAutism Spectrum DisorderAutism screeningSocial assistive roboticsChild–Robot InteractionTEXTRobot-Assisted Intervention for children with special needs A.pdf.txtRobot-Assisted Intervention for children with special needs A.pdf.txtExtracted texttext/plain80831https://repositorio.escuelaing.edu.co/bitstream/001/3311/4/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf.txt3d0f2458b9f1876849f3e9460addae6cMD54metadata only accessTHUMBNAILPortada Robot-Assisted Intervention for children with special needs A..JPGPortada Robot-Assisted Intervention for children with special needs A..JPGimage/jpeg140639https://repositorio.escuelaing.edu.co/bitstream/001/3311/3/Portada%20Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A..JPGe0a5feffa738114d992693cb3061b4c0MD53open accessRobot-Assisted Intervention for children with special needs A.pdf.jpgRobot-Assisted Intervention for children with special needs A.pdf.jpgGenerated Thumbnailimage/jpeg16223https://repositorio.escuelaing.edu.co/bitstream/001/3311/5/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf.jpg69fee25a8b4373f4fc6378e86601d394MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3311/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALRobot-Assisted Intervention for children with special needs A.pdfRobot-Assisted Intervention for children with special needs A.pdfapplication/pdf2860672https://repositorio.escuelaing.edu.co/bitstream/001/3311/1/Robot-Assisted%20Intervention%20for%20children%20with%20special%20needs%20A.pdf31cd375eb4a21ff0470602bc02766990MD51metadata only access001/3311oai:repositorio.escuelaing.edu.co:001/33112024-10-12 03:00:42.41metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |